
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/312057530

Towards	a	Virtual	Personal	Assistant	Based	on	a
User-Defined	Portfolio	of	Multi-Domain	Vocal
Applications

Conference	Paper	·	December	2016

DOI:	10.1109/SLT.2016.7846252

CITATIONS

0

READS

61

4	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Design	of	assistive	technologies	with	people	with	disabilities	View	project

Tatiana	Ekeinhor-Komi

Université	d´Avignon	et	des	Pays	du	Vaucluse

1	PUBLICATION			0	CITATIONS			

SEE	PROFILE

Jean-Léon	Bouraoui

Orange	Labs

44	PUBLICATIONS			89	CITATIONS			

SEE	PROFILE

Romain	Laroche

Microsoft	Maluuba

58	PUBLICATIONS			185	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Romain	Laroche	on	04	January	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/312057530_Towards_a_Virtual_Personal_Assistant_Based_on_a_User-Defined_Portfolio_of_Multi-Domain_Vocal_Applications?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/312057530_Towards_a_Virtual_Personal_Assistant_Based_on_a_User-Defined_Portfolio_of_Multi-Domain_Vocal_Applications?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Design-of-assistive-technologies-with-people-with-disabilities?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tatiana_Ekeinhor-Komi?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tatiana_Ekeinhor-Komi?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_d_Avignon_et_des_Pays_du_Vaucluse?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tatiana_Ekeinhor-Komi?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Leon_Bouraoui?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Leon_Bouraoui?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Orange_Labs?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jean_Leon_Bouraoui?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Romain_Laroche?enrichId=rgreq-8caa97ce0cf13096049c8c6196de0735-XXX&enrichSource=Y292ZXJQYWdlOzMxMjA1NzUzMDtBUzo0NDY5MTkzNTM4NjgyODhAMTQ4MzU2NTI4NTExOQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


TOWARDS A VIRTUAL PERSONAL ASSISTANT BASED ON A USER-DEFINED
PORTFOLIO OF MULTI-DOMAIN VOCAL APPLICATIONS

Tatiana Ekeinhor-Komi1,2, Jean-Léon Bouraoui1, Romain Laroche1, Fabrice Lefèvre2

1 Orange Labs
2 CERI-LIA, Université d’Avignon

firstname.surname@orange.com,firstname.surname@univ-avignon.fr

ABSTRACT

This paper proposes a novel approach to defining and simu-
lating a new generation of virtual personal assistants as multi-
application multi-domain distributed dialogue systems. The
first contribution is the assistant architecture, composed of in-
dependent third-party applications handled by a Dispatcher.
In this view, applications are black-boxes responding with a
self-scored answer to user requests. Next, the Dispatcher dis-
tributes the current request to the most relevant application,
based on these scores and the context (history of interaction
etc.), and conveys its answer to the user. To address variations
in the user-defined portfolio of applications, the second con-
tribution, a stochastic model automates the online optimisa-
tion of the Dispatcher’s behaviour. To evaluate the learnabil-
ity of the Dispatcher’s policy, several parametrisations of the
user and application simulators are enabled, in such a way that
they cover variations of realistic situations. Results confirm in
all considered configurations of interest, that reinforcement
learning can learn adapted strategies.

Index Terms— multi-application spoken dialogue sys-
tems, multi-domain, dialogue strategy, reinforcement learn-
ing.

1. INTRODUCTION

Virtual personal assistants (VPA) are dialogue systems allow-
ing a large range of tasks. Such systems are said to be multi-
domain [1, 2, 3]. In such systems, independent dialogue ap-
plications are cooperating in various ways. Most of the pre-
vious studies share to consider that domains and applications
are strictly aligned. For instance, with two domains “weather”
and “flight”, there will only be one application (or module) re-
lated to each domain. However, this view is limited as there
are situations in which applications, even acting on different
domains, may share the same semantic concepts leading to
ambiguity, semantic overlap and homophones. For example,
a weather forecast application shares the city names with a
flight reservation application. Conversely, one can imagine
VPA in which several applications co-exist for the same do-
main (coming from different manufacturers for instance).

The ultimate goal would be to have each user define the
set of dialogue applications she wants to install on her VPA,
but in the current situation, it requires consistency in the ap-
plication portfolio. Such constraint limits VPA to be almost
exclusively designed by companies which are able to gather
a large and extensible set of tightly integrated applications
(either in-house or from third-party partners). In our proposi-
tion, potentially any application could be automatically added
to the portfolio, after a light interface convention is accepted
(mostly providing a self-scored answer). Then, an online
trainable policy will allow the development of an assistant
with a user-defined and extensible portfolio of applications.

The distributed architecture introduced in [4] is now com-
monly adopted in multi-domain dialogue systems [5, 2]. The
primary challenge of such an architecture is thus to select, at
the right time, the right application related to the right domain.
Different methodologies already exist to tackle this problem.
Amongst them, Supervised Learning methods are the most
popular [4, 6, 1]. The selection is generally performed as
a two-fold classification to decide whether to remain on the
current application or switch to the one with the best score, if
not the same. A three-fold classification, with the third cat-
egory being ‘out-of-domain’, has also been considered [5].
Additionally, dialogue history has been used to improve the
selection [7, 8, 9].

Yet, a dialogue is a complex task that also requires a
clarification and error-handling strategy. Indeed, clarification
plays a major role in multi-domain dialogue due to domain
overlaps, disambiguation of the user’s intent or wrong as-
sumptions about domains. Reinforcement Learning (RL) [10]
based systems [11, 12, 13] are also considered where dialogue
is seen as an optimization problem leading to optimal strate-
gies. Unlike local classification, RL offers the advantage
of considering the dialogue as a sequence of action selec-
tion to achieve a long term goal and can therefore integrate
clarification steps for the sake of the whole dialogue success.

One shortcoming of these methods though, is that they
require a huge amount of data of user interactions. As a
workaround, many studies have proven that a system can be
bootstrapped by using a user simulator [14, 15, 16], which can



State

Goal
Generator

User Dispatcher

ASR

Application

Agenda

TTS

Decision
Function

heurisitic

I/O

Fig. 1. VPA simulator architecture

also be used for design automation and optimization [17, 18].
Lacking available representative data of the proposed scheme,
we have recourse to simulation as a proof-of-concept in this
paper. It gives us the opportunity to develop a first imple-
mentation of the Dispatcher architecture and we define the
configuration variables in the simulation setup to be able to
render some realistic situations. Based on these situations,
RL training is shown to outperform handcrafted versions of
the Dispatcher strategy for handling applications better able
to answer users’ requests.

Section 2 presents our first contribution: the design of a
novel distributed architecture enabling the automatic fusion
of black box dialogue applications into a multi-domain sys-
tem. These dialogue applications are only required to re-
turn a score for their own relevance to answer the current re-
quest. Next, Sections 3 and 4 expose our second contribution:
the abstraction model for distributions of applications over
domains, inter-domain confusions, and understanding error
model allowing the development of a simulator of the pro-
posed architecture. In Section 5, we report our third contri-
bution: the simulation results confirming that a Dispatcher’s
policy can be RL-optimized to highly variable configuration
setups. Finally, Section 6 concludes the article.

2. INTERACTION MODEL

A human-machine dialogue is a sequence of interactions be-
tween a user and a system. Figure 1 depicts the proposed
VPA architecture. Let n be the number of applications in the
current VPA configuration and m be the number of under-
lying domains. Then, the system’s service is embodied in a
portfolio of applications {αi}i∈J1,nK, which handle domains
{δj}j∈J1,mK.

The user performs an action aUt in agreement with her
current goal seen as a sequence of elementary tasks to per-
form. At every turn, the Dispatcher receives an observation
oUt and sends it to all applications. Every application outputs
its responses with a relevance score. Then, the Dispatcher
performs an action aSt which consist in giving the ground to
an application α∗, returning its answer to the user or in enter-
ing a clarification stage. The user, in her turn, observes oSt .

The exchanges are formalised through dialogue acts

act arg Description
offer αi transfers the answer of the

application αi
confExpl αi explicitly asks for confirma-

tion about the choice αi
askSelect αi, αi′ asks the user to choose be-

tween two options αi and
αi′

askRepeat ∅ asks the user to repeat
bye ∅ ends the dialogue

Table 1. Dispatcher dialogue acts

(DAs). Each DA is defined as act(arg) where act denotes
the DA type and arg denotes its argument list, as inspired
by [19]. In the Dispatcher, DAs are only represented at the
level of the targeted applications or domains. Table 1 reports
the list of system actions (user DAs in the simulator are also
abstracted, see Section 3.2).

3. SIMULATOR FRAMEWORK

Here, the different components of the simulator framework
and their functions in our VPA architecture are detailed.

3.1. Goal Generator

Simulated user goals are generated by a goal generator. A
goal is defined as a sequence of tasks: G = {τk}. For in-
stance, in order to prepare a trip, one has to check the flights,
then the hotels, the places to visit, the weather forecast. The
goal generation is characterized by two parameters: pG influ-
ences the number of tasks in the goal and pτ influences the
type of each task.

The goal’s length is sampled from a geometric distribu-
tion with parameter pG. A task can have two types: tasks that
should be solved directly by a specific application and tasks
that can be resolved by any application handling a specific
domain. In practice, a user may want to check any available
flights for a defined travel and a particular schedule (flight do-
main) or, she may want to check exclusively the availability of
Air France flights (Air France application). In the randomly
generated goals, the type of a task is sampled according to
the value of pτ : the task is about an application with prob-
ability pτ or a domain with probability 1 − pτ . In this first
setup, it is assumed that the tasks the user wants to perform
are only about the applications or the domains available in
the current configuration of the system. The management of
out-of-domain requests is left for future work.

3.2. User simulator

The user behaviour is simulated at two levels: her intention in
using the personal assistant, and her linguistic production.



At the beginning of each dialogue, a generated goal is at-
tributed to the user. This goal is transformed into an agenda:
each task τk requires one or several dialogue turns to be com-
pleted, and therefore requires many ”ask” DAs to be per-
formed. As for the goal length, each task length is sam-
pled from a geometric distribution of parameter pAg . As a
consequence, the agenda’s length has an expected value of
1/pGpAg .

This agenda-based user simulation is inspired by [16].
But unlike [16] which defines the agenda in terms of con-
straints and requests, we remain at the intention level to per-
form tasks on applications or domains. Consequently, the
agenda contains all the ask DAs the user wants to convey
to the system. Table 2 contains the list of possible user DAs.
Also for the sake of simplicity, we assume that during the di-
alogue, the user’s goal does not change, though answers to
some intermediate tasks can influence further ones (but in the
real setting user’s agenda is a latent variable anyway).

act arg Description
ask αi|δj the user’s request is expected to

be handled by application αi or
by any application of domain δj

select αi the user’s request specifies ex-
plicitly the targeted application
αi

agree αi the user agrees with the system’s
proposal αi

refuse αi the user does not agree with the
system’s proposal αi

hangup ∅ the user ends the dialogue before
reaching her goal

bye ∅ the user ends the dialogue

Table 2. Simulated user dialogue acts

Once the agenda has been defined, the user model is de-
fined as a rule-based decision function selecting the user’s ac-
tions. It is responsible for maintaining the negotiation ex-
change between the user and the system until the dialogue
ends or fails. The dialogue fails when the user reaches the
limit of her patience. The patience is defined as the capacity
of the user to tolerate the system errors and misunderstand-
ings. We distinguish the patience at the task level (local pa-
tience) and at the dialogue level (global patience). The former
indicates the maximal number of turns necessary for the user
to move to another task even if the current one is not achieved.
The latter is the total number of errors the user tolerates before
she ends the dialogue irrespective of reaching her goal.

An action from the user agenda aUt may either concern an
application αi or a domain δj . In this latter case any appli-
cation that belongs to this domain is a relevant decision. The
action aUt is represented as an m-size vector. Each domain
manipulates a set of semantic concepts and applications are

grouped by concept similarity. For a given task, the user will
use specific semantic concepts. Consequently, we choose to
represent a user utterance by an m-size vector, each dimen-
sion being a domain.

3.3. I/O error simulator

Input/Output modules, speech recognition and synthesis are
also taken into account in our simulation as a reason for er-
rors in the communication flow. However, in order to reflect
human-machine dialogue reality, a simulated user always un-
derstands what the system says; hence no errors are intro-
duced in the synthesis side. But on top of the vector repre-
senting the user DA, Automatic Speech Recognition (ASR)
errors are simulated according to an error rate ER. With
the probability 1 − ER the sentence is well recognised and
oUt = aUt , and with the probability ER, the vector is cor-
rupted with a noise vector nt uniformly sampled on the do-
main set: oUt = (aUt + nt)/2.

3.4. Application Simulator

In order to simulate the application behaviours and the inter-
application ambiguities, a correspondence between applica-
tions and domains is introduced. In the simulation it is repre-
sented by means of a n×m matrix C = {cij}, where cij = 1
if the application αi can manage domain δj and 0 otherwise.
To model the domain similarity, we use a symmetric m ×m
matrix D = {djk}. 0 ≤ djk = dkj ≤ 1 represents the simi-
larity between domains δj and δk.

The application scores are computed in the application
simulator given observation oUt , matricesC andD as follows:
first the domain similarity matrix D is multiplied by the input
observation oUt , in order to compute the domains of interest,
and then by the application-domain correspondence matrix C
to score how intensely each application considers itself rele-
vant with oUt . Finally, in order to add a variability on how
the applications are understanding the input, a Gaussian noise
N (0, σ2) is added. This variability represents the I/O errors
of the applications (due to a natural language understanding
module). The output vector sct = (scαi

t )i∈J1,nK is therefore
computed as follows:

sct = CDoUt +
(
Ni(0, σ2)

)
i∈J1,nK

4. THE DISPATCHER

The role of the Dispatcher is to choose, given the application
scores scαi

t and a dialogue history, the best action aSt to prop-
agate to the user. A reinforcement learning approach is used
to find the optimal strategy for this task.



4.1. Reinforcement Learning basics

The dialogue is formalised as an MDP < S,A, P,R, γ >
where: S is the state set, A the action set, P : S × A → S
the stochastic state transition function, R : S × A → R the
stochastic reward function and γ ∈ [0, 1) a discount factor
penalising long-term rewards.

TheQ-function is the expected value of taking an action a
in a state s under a policy π. The optimal policy π∗ maximises
the Q-function and its optimal value is noted Q∗. It verifies
the Bellman optimality equation:

Q∗(s, a) = E[R(s) + γmax
a′

Q∗(P (s, a), a′)]

Since γ < 1, a procedure called value iteration can be
used to estimate Q∗ [10]. The representation of the function
can be done by using a table with an entry for each state-
action pair. However, when the system state space is large or
even continuous, like in dialogue systems, a parametric func-
tion [20] can be used as an approximation of the Q-function:

Q̂θ(s, a) = θtφ(s, a)

where φ(s, a) is the p-dimensional feature vector and θ ∈ Rp
is the parameter vector and Q̂θ the approximate Q-function.
The goal is to find a good approximation Q̂∗ of Q∗, therefore
to optimize θ. To do so, we use Fitted-Q Iteration algorithm
[21, 22].

4.2. MDP modelling of the Dispatcher belief

State: The information represented in one state corresponds
to the system’s view of the user’s intent. The retained state
variables are: scores of applications, user request, history of
the system proposal and grounding information.

We use a grounding model to report the consistency of the
information exchanged by the different participants of a dia-
logue, here the user and the system about which application
or domain is required. The grounding as described in [23]
serves to resolve disagreement in a dialogue. A grounded
action is the one which the user has approved. The various
values of the grounding status are: init(αi) initial state of the
application αi, dnd(αi) when the application αi has been de-
nied by the user when it was proposed to her and gnd(ai)
means that the user agreed about ai. The history of proposal
is summarised in the array lastTime(αi) which values are 0, if
αi was never selected, 1 if it was offered during the previous
turn, and k if it has been offered k turns before.

To save computation time, we use a summarised version
of the state information in order to use only the relevant fea-
tures for the learning phase. As a result, the state representa-
tion φ(s) is composed of: scores of the 1st and 2nd-best scored
application, grounding informations of the 1st and 2nd-best
scored application (1 for gnd, −1 for dnd, 0 for init), his-
tory informations of the 1st and 2nd-best scored application,
and turn count.

Subclass Name Characteristics
App Family 1 All the applications belongs to exactly

one domain and all the domains are
disjoint.

App Family 2 All the applications belong to one
unique domain.

App Family 3 Applications belong to up to 2 do-
mains. But one of them is greedy,
meaning that it belongs to all available
domains. The elements of the D ma-
trix are picked randomly.

App Family 4 Mix of App Family 1 and 3. Applica-
tions belong to up to 2 domains. But
one of them is greedy. The domains of
the system are disjoint (consequently
C is the same as Family 3 and D as
for Family 1).

Table 3. Subclasses of the application family

Actions: In practice, the action set (i.e. the system DAs)
defined in Table 1 is too large. So, in the MDP only the acts
are used, therefore A = {offer, confExpl, askSelect,
askRepeat, bye} without their arguments. A heuristic
function is defined manually to select the arguments of the
selected act in order to obtain the full DA. Two heuristics are
defined. The first one always select the best scored appli-
cation as the argument of the DA; we call it best heuristic
or simply best. The second heuristic proposes the last ap-
plication successfully proposed that was not denied when it
existed, we call it last heuristic or simply last.

Reward: The reward function is defined as follows:

R =

 −λDL in the intermediary turns
−λHU if the user hangs up
λTC when task is completed

(1)

where t represents the duration of the dialogue, and λDL,
λHU , and λTC are positive weights that respectively control
the relative importance of the different key performance indi-
cators: dialogue length, user hang-up and task completion.

5. EXPERIMENTS

5.1. Settings

Many configurations of parameters are possible for the simu-
lator. Ideally, we should be able to define the different param-
eters from some initial sets of real data. However as such VPA
system doesn’t exist yet, none are available. After a sensitiv-
ity analysis, where the different variable influences have been
studied, we make reasonable assumptions on the behaviours
of the users and the applications. They make possible the
definition of a first set of simulator parameters and run some
proof-of-concept experiments. The parameters derived from
these assumptions should be general enough to match the true



ones. We expect to demonstrate it after collecting data from a
future system. We then identify and group into families some
of the parameter values.

The goal family: we intend to simulate the diversity in
user scenarios through three subclasses. The app-goal sub-
class consists in goals where the tasks are only about appli-
cations (pτ = 1). The domain-goal subclass corresponds to
goals where the tasks are only about domains (pτ = 0). Then
the mixed-goal subclass has a mixed type of tasks (pτ = 0.5).
To generate average length goals, the parameter of the geo-
metric distribution that determines the length of the goals pG
is set to 0.7 for all the subclasses.

The application family: it groups various configurations
of application portfolios according to their behaviours. It is
characterized by the values of the matrices C and D. Table
3 lists all the different sub-classes considered in our experi-
ments. Of course this list is no exhaustive, but representative
enough to give us bound values of how groups of applications
can be situated in terms of the domains they address and how
these domains may overlap or be confusing.

The user family: we categorize the users according to
their patience and their agenda. To be more specific, we con-
sider three profiles of users. The patient user is characterized
by a high patience parameter. The impatient user is charac-
terized by a low patience parameters. And an intermediary
profile, normal, is also defined. The parameter controlling
the length of the agenda is set identically for all the types of
users, pAg = 0.5.

5.2. Experiment specifications

In the experiments, 10 applications and 10 domains are con-
sidered for the subclasses 1, 3 and 4 of the Application Fam-
ilies. The subclass 2 is composed of 10 applications and 1
domain. This number has been selected as representative of
the normal set of applications that a user may use on a daily
basis (on a smartphone for instance). Also, it allows to situate
our work with respect to standard approaches where hardly
more than 2-4 applications are considered1 The noise vector
added to the application score computation is generated with
a variance of σ2 = 0.2. And for sake of simplicity, in all the
experiments only the app-goal subclass of the goal family has
been evaluated.

In order to generate initial data and to test policies, we
define two handcrafted policies. The offer policy always
presents the best choice (in terms of application score) to
the user, and never asks for clarification. The random policy
selects randomly an action between: offer, confExpl,
askSelect and askRepeat (a backoff mechanism is
implemented if the selected action is not possible at some
point).

1Obviously, these applications are to be specially designed for this pur-
pose. this is also a huge burden in the system design, that we intend to greatly
reduce here.

5.3. Results and discussions

Our aim is to find optimal strategies according to the differ-
ent settings we defined above. The figures in this subsection
show the average discounted sum of rewards and associated
standard deviation over 50 parallel runs for policy learned
using the Fitted-Q Iteration algorithm, with discount factor
γ = 0.9.

With Fitted-Q Iteration, the policy is updated every 500
dialogues for a total of 2500 dialogues to ensure convergence.

An ε-greedy policy is used with ε =
1

2j
where j is the iteration

index. The learning starts using a random policy in order to
collect data. Then with the collected dialogues, the θ parame-
ters are computed and will be used for the upcoming dialogue
collection until the next update.

The experimental results presented in Figure 2 show that
the dialogue policy learned using Fitted-Q performs better
than the handcrafted strategies for the subclasses 2, 3 and 4
with an ER of 0.1 and a patient user. Not surprisingly for
the Family 1, where applications and domains are highly dis-
tinguishable, the simple offer policy stays above the others.
Then we increase the noise level in the input: ASR error rate
from 0.2 to 0.7 (the latter is not very realistic but it allows to
strengthen the effects on the plot, and a normal, less patient,
user). We observe in Figure 3 that the offer policy has a re-
duced average return, and that after several thousand sample
dialogues the RL policy can beat it by about 10% relative.

On a regular basis it can also be observed from the figures
that the trained strategy is sample efficient and needs only
1000 dialogues to outperform the handcrafted policies. Yet
in this implementation, Fitted-Q Iteration has been used but
more efficient solutions exist, as in [24, 25], and could even
increase further the training speed.

6. CONCLUSION

In this paper, we introduce a novel approach for building a
multi-application dialogue system based on a user-defined
portfolio of applications covering several domains. This ap-
proach differs from the standard monolithic multi-domain
systems, thanks to a new module, the Dispatcher, in charge
of selecting the best application to answer a user request at
anytime. It should make possible then to aggregate dialogue
applications developed by any contributor and not only by the
main system’s owner. In this framework, the Dispatcher func-
tioning is of paramount importance and its strategy should be
learned from data and adapted online, to address the possible
evolution of the portfolio.

To test our proposition, we designed a simulator with
various parameters which tuning may fit real-life dialogue
situations. These situations are related to user profiles (ex-
pertise, patience etc.), application and domain characteristics
(domain confusion, application overlapping etc.), system



Fig. 2. All Application Families (ER = 0.1): 1 top left, 2 top right, 3 bottom left and 4 bottom right

Fig. 3. Application Family 1 with ER of 0.2 (left) and 0.7 (right).

recognition and understanding errors. A first set of experi-
ments shows that, except for situations in which applications
are highly domain-dependent, reinforcement learning-based
strategies outperform simple handcrafted ones. Furthermore,
in all situations, the trained strategies are preferable when the
noise level in the system’s inputs is increased.

Many challenges remain to build a complete system based
on this proposition. To name a few, out-of-domain handling,

applications overestimating their scores, adaptation to a spe-
cific user [26], non stationary usages of sets of application
and more generally co-adaptation [27, 28] belong to our con-
cerns. To address most of them, our next step is to build a real
system based on several available applications and to collect
field data of users defining their own scenarios of usage and
then incrementally add new applications.



7. REFERENCES

[1] Joaquin Planells, Lluıs-F Hurtado, Encarna Segarra, and
Emilio Sanchis, “A multi-domain dialog system to
integrate heterogeneous spoken dialog systems,” in
Proceedings of the 13th Annual Conference of the In-
ternational Speech Communication Association (Inter-
speech), 2013.

[2] Zhuoran Wang, Hongliang Chen, Guanchun Wang, Hao
Tian, Hua Wu, and Haifeng Wang, “Policy learning for
domain selection in an extensible multi-domain spoken
dialogue system,” in Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP). 2014, pp. 57–67, Association for
Computational Linguistics.

[3] Tatiana Ekeinhor-Komi, Hajar Falih, Christine Charde-
non, Romain Laroche, and Fabrice Lefèvre, “Un assis-
tant vocal personnalisable,” in Proceedings of the 21st
Conférence sur le Traitement Automatique des Langues
Naturelles (TALN), Marseille, France, July 2014, pp.
28–29, Association pour le Traitement Automatique des
Langues.

[4] Bor-shen Lin, Hsin-ming Wang, and Lin-shan Lee, “A
distributed architecture for cooperative spoken dialogue
agents with coherent dialogue state and history,” in
Proceeding of the 2nd IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU). Cite-
seer, 1999, vol. 99, p. 4.

[5] Mikio Nakano, Shun Sato, Kazunori Komatani, Kyoko
Matsuyama, Kotaro Funakoshi, and Hiroshi G Okuno,
“A two-stage domain selection framework for extensible
multi-domain spoken dialogue systems,” in Proceedings
of 12th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (Sigdial). Association for
Computational Linguistics, 2011, pp. 18–29.

[6] Kazunori Komatani, Naoyuki Kanda, Mikio Nakano,
Kazuhiro Nakadai, Hiroshi Tsujino, Tetsuya Ogata, and
Hiroshi G Okuno, “Multi-domain spoken dialogue sys-
tem with extensibility and robustness against speech
recognition errors,” in Proceedings of the 10th Annual
Meeting of the Special Interest Group on Discourse and
Dialogue (Sigdial). Association for Computational Lin-
guistics, 2009, pp. 9–17.

[7] Wei-Tek Hsu, Huei-Ming Wang, and Yi-Chun Lin, “The
design of a multi-domain chinese dialogue system,” in
Proceedings of the 3rd International Symposium on Chi-
nese Spoken Language Processing (ISCSLP), 2002.

[8] Botond Pakucs, “Towards dynamic multi-domain dia-
logue processing.,” in Proceedings of the 3rd Annual

Conference of the International Speech Communication
Association (Interspeech), 2003.

[9] Satoshi Ikeda, Kazunori Komatani, Tetsuya Ogata, and
Hiroshi G. Okuno, “Integrating topic estimation and
dialogue history for domain selection in multi-domain
spoken dialogue systems,” in New Frontiers in Applied
Artificial Intelligence, pp. 294–304. Springer, 2008.

[10] Richard S Sutton and Andrew G Barto, Reinforcement
learning: An introduction, vol. 1, MIT press Cam-
bridge, 1998.

[11] Esther Levin, Roberto Pieraccini, and Wieland Eckert,
“Learning dialogue strategies within the markov deci-
sion process framework,” in Proceeding of the 1st IEEE
Workshop on Automatic Speech Recognition and Under-
standing (ASRU). IEEE, 1997, pp. 72–79.

[12] Olivier Lemon and Olivier Pietquin, “Machine learning
for spoken dialogue systems,” in Proceedings of the 7th
Annual Conference of the International Speech Com-
munication Association (Interspeech), 2007, pp. 2685–
2688.

[13] Romain Laroche, Ghislain Putois, Philippe Bretier, and
Bernadette Bouchon-Meunier, “Hybridisation of exper-
tise and reinforcement learning in dialogue systems,” in
Proceedings of the 10th Annual Conference of the In-
ternational Speech Communication Association (Inter-
speech), Special Session: Machine Learning for Adap-
tivity in Spoken Dialogue, Brighton (United Knigdom),
2009.

[14] Wieland Eckert, Esther Levin, and Roberto Pieraccini,
“User modeling for spoken dialogue system evaluation,”
in Procceding of the 1st IEEE Workshop on Automatic
Speech Recognition and Understanding (ASRU). IEEE,
1997, pp. 80–87.

[15] Kallirroi Georgila, James Henderson, and Oliver
Lemon, “Learning user simulations for information
state update dialogue systems.,” in Proceedings of
the 5th Annual Conference of the International Speech
Communication Association (Interspeech), 2005, pp.
893–896.

[16] Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young, “Agenda-based user simula-
tion for bootstrapping a pomdp dialogue system,” in Hu-
man Language Technologies 2007: The Conference of
the North American Chapter of the Association for Com-
putational Linguistics; Companion Volume, Short Pa-
pers. Association for Computational Linguistics, 2007,
pp. 149–152.



[17] Olivier Pietquin and Thierry Dutoit, “A probabilistic
framework for dialog simulation and optimal strategy
learning,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 14, no. 2, pp. 589–599, 2006.

[18] Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefèvre, “Reinforcement learning for turn-taking man-
agement in incremental spoken dialogue systems,” .

[19] Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and Kai
Yu, “The hidden information state model: A practical
framework for pomdp-based spoken dialogue manage-
ment,” Computer Speech & Language, vol. 24, no. 2,
pp. 150–174, 2010.

[20] Richard Bellman and Stuart Dreyfus, “Functional ap-
proximations and dynamic programming,” Mathemati-
cal Tables and Other Aids to Computation, vol. 13, no.
68, pp. 247–251, 1959.

[21] Damien Ernst, Pierre Geurts, and Louis Wehenkel,
“Tree-based batch mode reinforcement learning,” Jour-
nal of Machine Learning Research, pp. 503–556, 2005.

[22] Senthilkumar Chandramohan, Matthieu Geist, and
Olivier Pietquin, “Optimizing spoken dialogue man-
agement with fitted value iteration.,” in Proceedings of
the 10th Annual Conference of the International Speech
Communication Association (Interspeech), 2010, pp.
86–89.

[23] Susan Elise Brennan, Seeking and providing evidence
for mutual understanding, Ph.D. thesis, Stanford Uni-
versity, 1990.

[24] Lucie Daubigney, Matthieu Geist, Senthilkumar Chan-
dramohan, and Olivier Pietquin, “A comprehensive re-
inforcement learning framework for dialogue manage-
ment optimization,” Selected Topics in Signal Process-
ing, IEEE Journal of, vol. 6, no. 8, pp. 891–902, 2012.

[25] Emmanuel Ferreira and Fabrice Lefèvre,
“Reinforcement-learning based dialogue system
for human–robot interactions with socially-inspired
rewards,” Computer Speech & Language, vol. 34, no.
1, pp. 256–274, 2015.

[26] Aude Genevay and Romain Laroche, “Transfer learning
for user adaptation in spoken dialogue systems,” in Pro-
ceedings of the 15th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS).
International Foundation for Autonomous Agents and
Multiagent Systems, 2016.

[27] Senthilkumar Chandramohan, Matthieu Geist, Fabrice
Lefèvre, and Olivier Pietquin, “Co-adaptation in spoken
dialogue systems,” in Natural Interaction with Robots,

Knowbots and Smartphones, pp. 343–353. Springer,
2014.

[28] Merwan Barlier, Julien Perolat, Romain Laroche, and
Olivier Pietquin, “Human-machine dialogue as a
stochastic game,” in Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse and
Dialogue (Sigdial), 2015.

View publication statsView publication stats

https://www.researchgate.net/publication/312057530

