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ABSTRACT
As a framework for extractive summarization, sentence regression
has achieved state-of-the-art performance in several widely-used
practical systems. �e most challenging task within the sentence
regression framework is to identify discriminative features to en-
code a sentence into a feature vector. So far, sentence regression
approaches have neglected to use features that capture contextual
relations among sentences.

We propose a neural network model, Contextual Relation-based
Summarization (CRSum), to take advantage of contextual relations
among sentences so as to improve the performance of sentence
regression. Speci�cally, we �rst use sentence relations with a word-
level a�entive pooling convolutional neural network to construct
sentence representations. �en, we use contextual relations with a
sentence-level a�entive pooling recurrent neural network to con-
struct context representations. Finally, CRSum automatically learns
useful contextual features by jointly learning representations of
sentences and similarity scores between a sentence and sentences
in its context. Using a two-level a�ention mechanism, CRSum is
able to pay a�ention to important content, i.e., words and sentences,
in the surrounding context of a given sentence.

We carry out extensive experiments on six benchmark datasets.
CRSum alone can achieve comparable performance with state-of-
the-art approaches; when combined with a few basic surface fea-
tures, it signi�cantly outperforms the state-of-the-art in terms of
multiple ROUGE metrics.
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1 INTRODUCTION
Extractive summarization aims to generate a short text summary
for a document or a set of documents by selecting salient sentences
in the document(s) [35]. In recent years, sentence regression has
emerged as an extractive summarization framework that achieves
state-of-the-art performance [3, 50]; it has been widely used in
practical systems [16, 18, 40, 49]. �ere are two major components
in sentence regression: sentence scoring and sentence selection. �e
former scores a sentence to measure its importance, and the la�er
chooses sentences to generate a summary by considering both the
importance scores and redundancy.

Sentence scoring has been extensively investigated in extractive
summarization. Many approaches [3, 33] directly measure the
salience of sentences whereas others [13, 23] �rst rank words (or bi-
grams) and then combine these scores to rank sentences. Traditional
scoring methods incorporate feature engineering as a necessary but
labor-intensive task. To the best of our knowledge, most features
of these methods are surface features, such as sentence length,
sentence position, TF-IDF based features, etc. In Table 1, we list
the scores achieved by t-SR [40], a traditional feature engineering-
based sentence regression method for extractive summarization that
achieves state-of-the-art performance. We also list an upper bound
for the performance of sentence regression, which is obtained by
scoring the sentences against human wri�en summaries. �ere is a
sizable gap in performance between t-SR and the upper bound. We
believe that the reason for this is that none of t-SR’s features tries
to encode semantic information.

Recent neural network-based methods for abstractive summa-
rization have addressed this ma�er [7, 31, 42]. Extracting semantic
features via neural networks has received increased a�ention, also
for extractive summarization [2, 3, 6]. Latent features learned by
neural networks have been proven e�ective. PriorSum [3] is a re-
cent example. To the best of our knowledge, PriorSum achieves
the best performance on the three datasets listed in Table 1. But
all methods, including PriorSum, extract latent features from stan-
dalone sentences. None considers their contextual relations.
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Table 1: Multi-document summarization. ROUGE (%) of Sen-
tence Regression (with greedy based sentence selection). Up-
per bounds are determined by scoring the sentences against
human written summaries.

Dataset Approach ROUGE-1 ROUGE-2

DUC 2001
t-SR 34.82 7.76
PriorSum 35.98 7.89
Upper bound 40.82 14.76

DUC 2002
t-SR 37.33 8.98
PriorSum 36.63 8.97
Upper bound 43.78 15.97

DUC 2004
t-SR 37.74 9.60
PriorSum 38.91 10.07
Upper bound 41.75 13.73

(a) General-to-speci�c

(b) Speci�c-to-general

(c) Speci�c-to-general-to-speci�c

Figure 1: Sentence contexts in di�erent instances from the
DUC 2004 dataset. �e color depth represents the impor-
tance of the sentence in terms of ROUGE-2 based on human
written summaries. (Best viewed in color.)

We argue that sentence importance also depends on contex-
tual relations, i.e., on relations of a sentence with its surrounding
sentences. Figure 1(a) illustrates a general-to-speci�c paragraph
structure, where the �rst sentence is a general summary of the
event that is explained in detail by the following sentences. Figure
1(b) illustrates a speci�c-to-general paragraph structure, where the
last sentence is a conclusion or reason of the event described by its
preceding sentences. Figure 1(c) illustrates a speci�c-to-general-to-
speci�c paragraph structure where the most important sentence is
a connecting link between the preceding and the following context.
So it summarizes both its preceding and following sentences.

We propose a hybrid neural model, namely Contextual Relation-
based Summarization (CRSum), to automatically learn contextual
relation features from data. CRSum applies a two-level a�en-
tion mechanism (word-level and sentence-level) to a�end di�er-
entially to more and less important content when constructing
sentence/context representations. Speci�cally, we �rst leverage

sentence relations using a convolutional neural network with word-
level a�entive pooling to construct sentence representations. �en,
we leverage contextual relations using a recurrent neural network
with sentence-level a�entive pooling to construct context represen-
tations. With its two-level a�ention mechanism, CRSum can pay
a�ention to more important content (words and sentences) in the
surrounding context of a given sentence. Finally, CRSum jointly
learns sentence/context representations as well as similarity scores
between the sentence and its preceding/following context, which
are regarded as the sentence’s capacity to summarize its context.

We conduct extensive experiments on the DUC 2001, 2002, 2004
multi-document summarization datasets and the DUC 2005, 2006,
2007 query-focused multi-document summarization datasets. Our
experimental results demonstrate that CRSum alone can achieve
comparable performance to the state-of-the-art approaches. When
combined with a few basic Surface Features (SF), CRSum+SF outper-
forms the state-of-the-art approaches in terms of ROUGE metrics.

To sum up, the main contributions in this paper are three-fold:
• We propose a neural model, CRSum, to take a sentence’s

contextual relations with its surrounding sentences into
consideration for extractive summarization. CRSum jointly
learns sentence and context representations as well as their
similarity measurements. �e measurements are used to
estimate a sentence’s ability to summarize its local context.

• We fuse contextual relations with a two-level a�ention
mechanism in CRSum. With the mechanism, CRSum can
learn to pay a�ention to important content (words and sen-
tences) in the surrounding sentences of a given sentence.

• We carry out extensive experiments and analyses on six
benchmark datasets. �e results indicate that CRSum can
signi�cantly improve the performance of extractive sum-
marization by modeling the contextual sentence relations.

2 RELATEDWORK
We group related work on extractive summarization in three cate-
gories, which we discuss below.

2.1 Unsupervised techniques
In early studies on extractive summarization, sentences are scored
by employing unsupervised techniques [37, 52]; centroid-based
and Maximum Marginal Relevance (MMR)-based approaches are
prominent examples. Centroid-based methods use sentence cen-
trality as to indicate importance [29]. Radev et al. [37, 38] model
cluster centroids in their summarization system, MEAD. LexRank
(or TextRank) computes sentence importance based on eigenvec-
tor centrality in a graph of sentence similarities [10, 30]. Wan et
al. [45–48] propose several centroid-based approaches for summa-
rization. MMR-based methods consider a linear trade-o� between
relevance and redundancy [5]. Goldstein et al. [14] extend MMR
to support extractive summarization by incorporating additional
information about the document set and relations between the
documents. McDonald [28] achieves good results by reformulat-
ing MMR as a knapsack packing problem and solving it using ILP.
Later, Lin and Bilmes [26, 27] propose a variant of the MMR frame-
work that maximizes an objective function that considers the linear
trade-o� between coverage and redundancy terms.
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2.2 Feature engineering based techniques
Machine learning techniques have been used for be�er estimations
of sentence importance. Kupiec et al. [22] train a Naive Bayes
classi�er to decide whether to include a sentence in the summary.
Li et al. [24] evaluate sentence importance with support vector
regression, a�er which a rule-based method is applied to remove
redundant phrases. Gillick and Favre [13] evaluate bi-gram im-
portance and use the scores to evaluate sentence importance and
redundancy with a linear combination. Lin and Bilmes [26] pro-
pose a structural SVM learning approach to learn the weights of
feature combinations using the MMR-like submodularity function
proposed by Lin and Bilmes [26, 27]. Yan and Wan [51] propose the
Deep Dependency Sub-Structure (DDSS) and topic-sensitive Multi-
Task Learning (MTL) model. Given a document set, they parse
all sentences into deep dependency structures with a Head-driven
Phrase Structure Grammar parser and mine the frequent DDSSs
a�er semantic normalization. �ey then employ MTL to learn the
importance of these frequent DDSSs. Hu and Wan [19] propose
PPSGen to automatically generate presentation slides by selecting
and aligning key phrases and sentences. �ese methods all rely on
human-engineered features. Most of the used features are surface
features that do not take contextual relations into account.

2.3 Deep learning based techniques
Deep learning techniques have a�racted considerable a�ention
in the summarization literature, e.g., abstractive summarization
[1, 7, 31], sentence summarization [11, 17, 42] and extractive sum-
marization [2, 3, 6]. We focus on the use of deep learning techniques
for extractive summarization. Kågebäck et al. [20] and Kobayashi
et al. [21] use the sum of trained word embeddings to represent
sentences or documents. �ey formalize the summarization task
as the problem of maximizing a submodular function based on the
similarities of the embeddings. Yin and Pei [53] propose CNNLM, a
model based on convolutional neural networks, to project sentences
into dense distributed representations, then model sentence redun-
dancy by cosine similarity. Cao et al. [3] develop a summarization
system called PriorSum, which applies enhanced convolutional
neural networks to capture the summary prior features derived
from length-variable phrases. In other work, the authors develop
a ranking framework based on recursive neural networks (R2N2)
to rank sentences for multi-document summarization. R2N2 for-
mulates the ranking task as a hierarchical regression process that
simultaneously measures the salience of a sentence and its con-
stituents (e.g., phrases) in the parse tree [2]. Cheng and Lapata
[6] treat single document summarization as a sequence labeling
task and model it with recurrent neural networks. �eir model is
composed of a hierarchical document encoder and an a�ention-
based extractor; the encoder derives the meaning representation
of a document based on its sentences and their constituent words
while the extractor adopts a variant of neural a�ention to extract
sentences or words. Cao et al. [4] propose a system called A�Sum
for query-focused multi-document summarization that applies an
a�ention mechanism to simulate the a�entive reading of human
behavior when a query is given.

A growing number of publications on extractive summarization
focus on deep learning techniques. Unlike these publications, we

Table 2: Basic surface features used in this paper.
Feature Description

flen(St ) Length of St
fpos(St ) Position of St in its document

ftf (St ) =
∑
w∈St TF(w )
flen(St )

Average term frequency. TF(w)
is the term frequency of word w

fdf (St ) =
∑
w∈St DF(w )
flen(St )

Average document frequency. DF(w)
is the document frequency of word w

propose a hybrid deep neural network that leverages the contextual
information re�ected by contextual sentence relations, which, to
the best of our knowledge, are not considered in existing studies.

3 METHOD
3.1 Overview
�ere are two phases in our method to generate a summary: sen-
tence scoring and sentence selection. In the sentence scoring phase,
we learn a scoring function f (St | θ ) for each sentence St to �t the
ground truth ROUGE-2 score1, i.e., ROUGE-2(St | Sref ):

f (St | θ ) ∼ ROUGE-2(St | Sref ) (1)
where θ are the parameters; ROUGE-2(St | Sref ) is the ground
truth score of St in terms of ROUGE-2 based on human wri�en
summaries Sref [25]. As with existing studies [3, 36, 40], we also
use ROUGE-2 recall as the ground truth score. In §3.2, we detail
how we model f (St | θ ). During the sentence selection phase, we
select a subset of sentences as the summary Ψ subject to a given
length constraint l , i.e.,

Ψ∗ = arg max
Ψ⊆D

∑
St ∈Ψ

f (St | θ )

such that
∑
St ∈Ψ

|St | ≤ l and r (Ψ) hold,
(2)

where D is the set of sentences from one or more documents that
belong to the same topic; |St | is the length of St in words or bytes;
r (Ψ) is a constraint function to avoid redundancy in the �nal sum-
mary. Details of the algorithm are explained in §3.3.

3.2 Sentence scoring
Given a sentence St , we assume that its preceding context sentence
sequence is Cpc = {St−m , . . . , St−c , . . . , St−1 | 1 ≤ c ≤ m} and
that its following context sentence sequence is Cf c = {St+1, . . . ,
St+c , . . . , St+n | 1 ≤ c ≤ n}. Se�ings of m and n are discussed in
§4 below. We use fpc(v(St ), vpc(St )) to estimate the ability of St to
summarize its preceding context:

fpc(v(St ), vpc(St )) = cos(v(St ), vpc(St )). (3)
Similarly, ffc(v(St ), vfc(St )) estimates the ability of St to summarize
its following context:

ffc(v(St ), vfc(St )) = cos(v(St ), vfc(St )), (4)
where v(St ) is the sentence model of St ; cos indicates the cosine
similarity; vpc(St ) and vfc(St ) are the context models of Cpc and
Cfc .

1h�p://www.berouge.com/Pages/default.aspx

http://www.berouge.com/Pages/default.aspx


SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, JapanPengjie Ren, Zhumin Chen, Zhaochun Ren, Furu Wei, Jun Ma, and Maarten de Rijke

AP-Bi-CNN

LSTM

St−m

Sentence-level attentive pooling

LSTM

AP-Bi-CNN

LSTM LSTM LSTM

AP-Bi-CNN Bi-CNN AP-Bi-CNN AP-Bi-CNN AP-Bi-CNN

Sentence-level attentive pooling

Cos

MLP

Cos

Surface features

f(St | θ)

St−m+1 St−c St−1 St

Capability to summarize the preceding context Capability to summarize the following context

St+1 St+c St+n−1 St+n

…

…

…

…

Context representations

AP-LSTM

AP-Bi-CNN

Sequence of sentences

Cosine similarity layer

Concat layer

Fully connected layers

LSTMLSTM

Figure 2: Architecture of CRSum+SF.

Word-level attentive pooling St

St−c

Word embeddings

Bi-gram representations

Convolution operation

Sentence representation

<L> Today is supposed to be the start of training camp . <R> Words of sentence St−c

Figure 3: Attentive Pooling Bi-gram Convolutional Neural Network (AP-Bi-CNN) for sentence modeling.

Our model CRSum+SF is shown in Figure 2, where we combine
v(St ), fpc(v(St ), vpc(St )) and ffc(v(St ), vfc(St )) with four basic Sur-
face Features (SF) listed in Table 2. �en we apply a MultiLayer
Perceptron (MLP) [12, 41] as the decoder to transform the features
into a single value as the �nal salience score to St , as shown in
Eq. 5:

f (St | θ ) = MLP

©­­­­­­­­­«



fpc(v(St ), vpc(St ))
ffc(v(St ), vfc(St ))

v(St )
flen(St )
fpos(St )
ftf (St )

fdf (St )



ª®®®®®®®®®¬
. (5)

Here, θ are the parameters of the neural network. We use a 3
hidden layers MLP with tanh activation function; the sizes of the
layers are 100, 50, and 1. Increasing the number and dimension
size of layers has li�le in�uence on the performance according to
our experiments. �e model without the Surface Features (SF) in
Table 2 is referred to as CRSum.

As with existing studies [2, 3, 40], we use the standard Mean
Square Error (MSE) as the loss function to train CRSum (and CR-
Sum+SF):

L(θ ) =
1

|C | · |D |

∑
D∈C

∑
St ∈D

Err(St )

Err(St ) =
(
f (St | θ ) − ROUGE-2(St | Sref )

)2
,

(6)

where C is the set of all documents.
Sentence modeling: v(St ). Since we conduct regression with
respect to ROUGE-2, which is computed as the bi-gram overlap
between the system generated summary and the human wri�en

summary, we use Bi-CNN [3] to model each sentence. We �rst
concatenate adjacent words into bi-grams:

bi(i, i + 1) =
[

vi
vi+1

]
, (7)

where vi is the word embedding for the i-th word of a sentence.
A�er that, we perform convolutions on the bi-grams with a �lter
matrix:

vbi (i, i + 1) = f (WT
c · bi(i, i + 1) + b), (8)

where Wc ∈ R
2 |vi |× |vi | is the �lter matrix; b is the bias; and f (·) is

the activation function. We use the tanh(·) function in our experi-
ments.

�en we perform element-wise max pooling over the bi-gram
representations Vbi (St ) = {vbi (i, i + 1) | 0 ≤ i ≤ |St |} to get the
sentence St ’s representation v(St ):

v(St ) = max
vbi (i,i+1)∈Vbi (St )

vbi (i, i + 1). (9)

�e function max chooses the maximum value of each dimension
of the vectors in Vbi (St ).

In order to selectively encode the more important bi-grams into
the sentence representations, an A�entive Pooling Convolutional
Neural Network (AP-Bi-CNN) is applied, as shown in Figure 3. �e
di�erence with Bi-CNN is that we jointly learn a bi-gram weight
wbi (i, i + 1) when conducting pooling:

v(St−c ) = max
vbi (i,i+1)∈Vbi (St−c )

wbi (i, i + 1) · vbi (i, i + 1). (10)

Here, St is the sentence to conduct regression on; St−c is St ’s
context sentence; and wbi (i, i + 1) is the a�ention weight for the
bigram vector vbi (i, i + 1).
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Unlike existing a�entive pooling techniques [8, 54], we use sen-
tence relations to learn the pooling weights in Eq. 11:

wbi (0, 1)
...

wbi (i, i + 1)
...

wbi (|St−c |, |St−c + 1|)


= so�max

©­­­­­­­­«



cos(vbi (0, 1), v(St ))
...

cos(vbi (i, i + 1), v(St ))
...

cos(vbi (|St−c |, |St−c + 1|), v(St ))



ª®®®®®®®®¬
.

(11)

We use the so�max function to normalize the weights. �e index
of wbi starts from 0 and ends with |St−c + 1| because we add two
padding words “<L>” (Le�) and “<R>” (Right) to each sentence,
as shown in Figure 3.
Context modeling: vpc(St ) and vfc(St ). In order to model the
relations between a sentence and its context, we also need to en-
code the context sentences into a vector representation. Recurrent
Neural Networks with a Long Short-Term Memory (LSTM) unit
have been successfully applied to many sequence modeling tasks
[11, 31, 42]. �ere are many variations of LSTM that di�er in their
connectivity structure and activation functions. �e LSTM archi-
tecture we use is given by the following equations [15]:

LSTM : ht−1, v(St ), ct−1 → ct , ht

xt =
[
ht−1
v(St )

]
fi = sigm(WT

i · xt + bi );

ff = sigm(WT
f · xt + bf )

fo = sigm(WT
o · xt + bo );

fд = tanh(WT
д · xt + bд)

ct = ff � ct−1 + fi � fд ;
ht = fo � tanh(ct ),

(12)

where Wi ,Wf ,Wo ,Wд ∈ R
2 |v(St ) |× |v(St ) | are the parameter matri-

ces; bi ,bf ,bo ,bд are the bias parameters; ht is the hidden state with
respective to the t-th time step input v(St ); ct is the memory cell
vector of the t-th time step; and sigm and tanh are applied element-
wise. LSTM has a complicated dynamics that allows it to easily
“memorize” information for an extended number of timesteps. �e
“long term” memory is stored in a vector of memory cells ct . LSTM
can decide to overwrite the memory cell, retrieve it, or keep it for
the next time step.

Given a sentence St , we recurrently apply the LSTM unit to
its preceding context sentence sequence Cpc and following con-
text sentence sequence Cfc . For each timestamp t , St is fed into
the LSTM unit and a corresponding vector representation ht is
generated. �en, we have Vpc = {ht−m , . . . , ht−1} for Cpc and
Vfc = {ht+1, . . . , ht+n } for Cfc . Finally, we encode Vpc and Vfc into
vector representations with sentence-level a�entive pooling which

can a�end di�erentially to more and less important sentences, as
shown in Figure 2. �e formula for St ’s preceding context is

vpc (St ) = max
ht−i ∈Vpc

wt−i · ht−i , (13)

where wt−i is the a�ention weight for the hidden context state
ht−i . �e formula for St ’s following context is similar.

Unlike most existing a�ention mechanisms where the last hidden
state of an LSTM is used to learn the a�ention weights [7, 42], here
we apply contextual sentence relations to model a�ention weights:

wt−m
...

wt−i
...

wt−1


= so�max

©­­­­­­­­«



cos(ht−m , ht )
...

cos(ht−i , ht )
...

cos(ht−1, ht )



ª®®®®®®®®¬
. (14)

3.3 Sentence selection
�ere are two branches of commonly used algorithms for sentence
selection, namely Greedy and Integer Linear Programming (ILP).
Greedy is a li�le less promising than ILP because it greedily maxi-
mizes a function which ILP exactly maximizes. However, it o�ers a
nice trade-o� between performance and computation cost. Besides,
since the objective (Eq. 2) is submodular, maximizing it with Greedy
has a mathematical guarantee on optimality [26, 27, 32]. �us, we
use Greedy as the sentence selection algorithm. �e algorithm
starts with the sentence of the highest score. In each step, a new
sentence St is added to the summary Ψ if it satis�es the following
two conditions:

(1) It has the highest score in the remaining sentences;
(2) bi-gram-overlap(St ,Ψ)

flen(St )
≤ 1 − λ, where bi-gram-overlap(St ,Ψ)

is the count of bi-gram overlap between sentence St and
the current summary Ψ.

�e algorithm terminates when the length constraint is reached.
Se�ings of λ are discussed in §7.2 below.

4 EXPERIMENTAL SETUP
We list the datasets and metrics used in §4.1 and introduce the
implementation details of our model in §4.2.

4.1 Datasets and evaluation metrics
For evaluation we use well-known corpora made available by the
Document Understanding Conference (DUC).2 �e DUC 2001, 2002
and 2004 datasets are for multi-document summarization. �e DUC
2005, 2006 and 2007 datasets are for query-focused multi-document
summarization. �e documents are from the news domain and
grouped into thematic clusters. For each document cluster, we
concatenate all articles and split them into sentences using the tool
provided with the DUC 2003 dataset. We follow standard practice
and train our models on two years of data and test on the third.

�e ROUGE metrics are the o�cial metrics of the DUC extractive
summarization tasks [39]. We use the o�cial ROUGE tool3 [25] to
evaluate the performance of the baselines as well as our approaches.
�e length constraint is “-l 100” for DUC 2001/2002, “-b 665” for

2h�p://duc.nist.gov/
3ROUGE-1.5.5 with options: -n 2 -m -u -c 95 -x -r 1000 -f A -p 0.5 -t 0.

http://duc.nist.gov/
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DUC 2004 and “-l 250” for DUC 2005/2006/2007. We take ROUGE-2
recall as the main metric for comparison because Owczarzak et al.
[36] show its e�ectiveness for evaluating automatic summariza-
tion systems. For signi�cance testing we use a two-tailed paired
Student’s t-test with p < 0.05.

4.2 Implementation details
Stanford CoreNLP4 is used to tokenize the sentences. �e 50 dimen-
sional GloVe5 vectors are used to initialize the word embeddings.
We replace a word that is not contained in the GloVe vocabulary
as “<U>” (Unknown). �e word embeddings are �ne-tuned during
training. Before feeding the word embeddings into the neural mod-
els, we perform the dropout operation that sets a random subset
of its argument to zero. �e dropout layer acts as a regularization
method to reduce over��ing during training [44]. To learn the
weights of our model, we apply the diagonal variant of AdaGrad [9]
with mini-batches, whose size we set to 20. �e parametersm and n
that represent the number of context sentences are considered from
1 to 10. We found that there is no further improvement form, n > 5,
so we set m, n = 5 in our experiments. �e best se�ings of the
parameter λ are decided by presenting the ROUGE-2 performance
with λ ranging from 0 to 0.9 with a step size of 0.05.

5 TWO EXAMPLES
We present two examples to illustrate our methods at work. �e
�rst is an instance from the DUC 2004 dataset. From top-le� to
bo�om-right, Figure 4 shows the ground truth, SF, CRSum, and
CRSum+SF, respectively. �e depth of the color corresponds to
the importance of the sentence given by ground truth or models.
We can see that, SF cannot signi�cantly distinguish the di�erent
importance of di�erent sentences. It wrongly estimates which of the
two is more important, the third sentence or the fourth. CRSum is
be�er than SF, however its capability is still limited in distinguishing
di�erent degrees of importance compared to the ground truth. In
contrast, when combining CRSum and SF, CRSum+SF can be�er �t
the ground truth.

As a second example, we visualize the learned two-level a�entive
pooling weights of an instance, as shown in Figure 5. Figure 5(a)
illustrates word-level a�entive pooling. We can see that St helps
to pick up the more important words of St+1 when modeling St+1
into a vector representation. Figure 5(b) illustrates sentence-level
a�entive pooling. As shown, the context sentences St+1 to St+5
are treated di�erently according to their relevance to St . �e more
relevant sentences have more e�ect on the �nal results.

6 RESULTS
In §6.1, we compare CRSum with several state-of-the-art methods
on the DUC 2001, 2002 and 2004 multi-document summarization
datasets. We con�rm that modeling contextual sentence relations
signi�cantly improves the performance of extractive summariza-
tion. In §6.2 we evaluate the e�ectiveness of contextual features
on the DUC 2005, 2006 and 2007 query-focused multi-document
summarization datasets. Here, we show that modeling contextual

4h�p://stanfordnlp.github.io/CoreNLP/
5h�p://nlp.stanford.edu/projects/glove/

(a) Ground truth. (b) SF.

(c) CRSum. (d) CRSum+SF.

Figure 4: Visualization of sentence scoring. �e depth of the
color corresponds to the importance of the sentence given
by groundtruth or models. �e boxed characters Si indicate
sentence start. (Best viewed in color.)

(a) Word-level a�ention. Color depth corresponds to the weight wbi (i, i + 1) (Eq. 11).

(b) Sentence-level a�ention. Color depth corresponds to the weight wt -i (Eq. 14).

Figure 5: Visualization of word-level and sentence-level at-
tention mechanisms. (Best viewed in color.)

sentence relations is also useful for query-focused summarization.
We follow with further analyses of the results in §7.

6.1 Generic multi-document summarization
We �rst consider the generic multi-document summarization task.
We list the methods compared against CRSum in Table 3. LexRank,
ClusterHITS, ClusterCMRW are centroid-based methods; of these,
ClusterHITS achieves the best ROUGE-1 score on DUC 2001. Lin is
an MMR-based method. REGSUM, Ur, Sr, U+Sr and SF are feature
engineering-based methods with di�erent features. R2N2 uses an
RNN to encode each sentence into a vector based on its parse tree,
then performs sentence regression combined with 23 features. GA
and ILP are greedy and ILP-based sentence selection algorithms,

http://stanfordnlp.github.io/CoreNLP/
http://nlp.stanford.edu/projects/glove/
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Table 3: Methods considered for comparison in §6.1.
Acronym Gloss Reference

SF Surface features with MLP as decoder §3
CRSum �e proposed neural model in this paper §3
CRSum (no a�ention) CRSum without a�ention mechanism §3
CRSum+SF Combination of CRSum and SF §3

Unsupervised methods
LexRank Centroid based method [10]
ClusterHITS Centroid based method [48]
ClusterCMRW Centroid based method [48]
Lin Maximal marginal relevance method [27]
Feature engineering based methods
REGSUM Regression word saliency estimation [2]
Ur REGSUM with di�erent features [2]
Sr SVR with 23 de�ned features [2]
U+Sr Combination of Ur and Sr [2]
Deep learning based methods
R2N2 GA RNN with greedy sentence regression [2]
R2N2 ILP RNN with ILP sentence regression [2]
PriorSum REGSUM with di�erent features [3]

respectively. PriorSum uses a CNN to encode each sentence into
a feature vector and then performs sentence regression combined
with surface features.

�e ROUGE scores of the methods listed in Table 3 on the DUC
2001, 2002 and 2004 datasets are presented in Table 4. For each
metric, the best performance per dataset is indicated in bold face.
Generally, CRSum+SF achieves the best performance in terms of
both ROUGE-1 and ROUGE-2 on all three datasets. Although Clus-
terHITS achieves higher ROUGE-1 scores on DUC 2001, its ROUGE-
2 scores are much lower. In contrast, CRSum+SF works quite stably
across datasets. ClusterCMRW gets higher ROUGE-1 scores on
DUC 2002 and its ROUGE-2 score is comparable with R2N2 GA,
but CRSum+SF improves ClusterCMRW by over 1.6 percentage
points (%pts) in terms of ROUGE-2.

�e performance of CRSum is comparable to the state-of-the-art
methods, R2N2 GA, R2N2 ILP and PriorSum. Note that CRSum is
a pure neural network model while R2N2 GA, R2N2 ILP and Prior-
Sum are combinations of neural models and dozens of hand-cra�ed
features. �e neural parts of R2N2 GA, R2N2 ILP and PriorSum
model the standalone sentence, while CRSum further considers the
local contextual relations.

When we combine CRSum with four basic surface features, there
is a big improvement and CRSum+SF achieves the best performance.
Speci�cally, CRSum+SF improves over PriorSum, the best method,
in terms of ROUGE-2 by 1%pt on DUC 2001, 2002 and over 0.5%pt
on DUC 2004. �e improvements in terms of ROUGE-2 achieved
on the three benchmark datasets are considered big [28, 39].

�e main insight is that CRSum captures di�erent factors than
SF, which we will analyze in detail in §7.

6.2 �ery-focused multi-document
summarization

Next, we consider the performance of CRSum on the query-focused
multi-document summarization task. We list the methods against

Table 4: Multi-document summarization. ROUGE results (%)
onDUC2001, 2002, 2004 datasets. Per dataset, signi�cant im-
provements over the underlined methods are marked with
† (t-test, p < .05).

Approach ROUGE-1 ROUGE-2

DUC 2001

Peer T 33.03 7.86
ClusterHITS∗ 37.42 6.81
LexRank 33.43 6.09
Ur∗ 34.28 6.66
Sr∗ 34.06 6.65
U+Sr∗ 33.98 6.54
R2N2 GA∗ 35.88 7.64
R2N2 ILP∗ 36.91 7.87
PriorSum∗ 35.98 7.89
SF 34.82 7.76
CRSum 35.36 8.30
CRSum+SF 36.54† 8.75†

DUC 2002

Peer 26 35.15 7.64
ClusterCMRW∗ 38.55 8.65
LexRank 35.29 7.54
Ur∗ 34.16 7.66
Sr∗ 34.23 7.81
U+Sr∗ 35.13 8.02
R2N2 GA∗ 36.84 8.52
R2N2 ILP∗ 37.96 8.88
PriorSum∗ 36.63 8.97
SF 37.33 8.98
CRSum 37.10 9.29
CRSum+SF 38.90† 10.28†

DUC 2004

Peer 65 37.88 9.18
REGSUM∗ 38.57 9.75
LexRank 37.87 8.88
Lin∗ 39.35 –
Ur∗ 37.22 9.15
Sr∗ 36.72 9.10
U+Sr∗ 37.62 9.31
R2N2 GA∗ 38.16 9.52
R2N2 ILP∗ 38.78 9.86
PriorSum∗ 38.91 10.07
SF 37.74 9.60
CRSum 38.19 9.66
CRSum+SF 39.53† 10.60†

(Peer T, 26, 65 are the best performing participants at DUC 2001,
2002, 2004, respectively. Scores of the methods marked with ∗ are
taken from the corresponding references listed in Table 3.)

which CRSum is compared in Table 6. LEAD simply selects the lead-
ing sentences to form a summary; it is o�en used as an o�cial base-
line of this task [4]. QUERY SIM ranks sentences according to their
TF-IDF cosine similarity to the query. MultiMR is a graph-based
manifold ranking method. SVR and SF+QF are feature engineering-
based methods. For the query-focused summarization task, the
relevance of sentences to the query is an important feature, so we
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Table 5: �ery Features (QF) used in this paper.
Feature Description

fq1(St , Sq ) = cos(TF(St ), TF(Sq ))
Cosine of TF vectors
of sentence St and query Sq

fq2(St , Sq ) = cos(emb(St ), emb(Sq ))
Cosine of average embedding
vectors of St and Sq

fq3(St , Sq ) =
overlap(St ,Sq )

flen(St )
Unigram overlap with
respect to St

fq4(St , Sq ) =
overlap(St ,Sq )

flen(Sq )
Unigram overlap with
respect to Sq

Table 6: Methods considered for comparison in §6.2.
Acronym Gloss Reference

SF+QF Surface features (Table 2+5) with MLP as decoder §3
CRSum �e proposed neural model in this paper §3
CRSum (no a�ention) CRSum without a�ention mechanism §3
CRSum+SF+QF Combination of CRSum and SF §3

Unsupervised methods
LEAD Select the leading sentences [4]
QUERY SIM TF-IDF cosine similarity [4]
MultiMR Graph based manifold ranking method [47]
Feature engineering based methods
SVR SVR with hand-cra�ed features [34]
Deep learning based methods
ISOLATION Embedding and TF-IDF cosine similarity [4]
DocEmb Embedding distributions based summarization[21]
A�Sum Neural a�ention summarization [4]

combine the Surface Features (SF) in Table 2 and the �ery Fea-
tures (QF) in Table 5, using SF+QF to refer to the resulting method.
ISOLATION contains two parts; sentence saliency is modeled as
the cosine similarity between a sentence embedding and the docu-
ment embedding; query relevance is modeled as the TF-IDF cosine
similarity between a sentence and the query. DocEmb summarizes
by asymptotically estimating KL-divergence based on document
embedding distributions. A�Sum learns distributed representations
for sentences and the documents; it applies an a�ention mechanism
to simulate human reading behavior.

�e results on the query-focused multi-document summariza-
tion task on the DUC 2005, 2006 and 2007 datasets are presented in
Table 7. Generally, CRSum alone is not enough for this task; it is
outperformed by SF+QF. �is is because CRSum does not consider
relevance of a sentence given the queries; the relevance relation
is captured by the features encoded in SF+QF. CRSum+SF+QF im-
proves over SF+QF by 0.5%pt to 0.7%pt, which means that CRSum
is also useful as a supplementary feature for the query-focused
summarization task.

7 ANALYSIS
Having answered our main research questions in the previous sec-
tion, we now analyze our experimental results and the impact of
our modeling choices. We analyze the e�ectiveness of the learned
contextual features compared to the surface features; we explore
di�erent se�ings of the threshold parameter λ in the greedy algo-
rithm (sentence selection phase, §3.3) to determine the sensitivity
of our method; and we analyze our a�ention mechanisms.

Table 7: �ery-focused multi-document summarization.
ROUGE results (%) on DUC 2005, 2006, 2007 datasets.
Per dataset, signi�cant improvements over the underlined
methods are marked with † (t-test, p < .05).

System ROUGE-1 ROUGE-2

DUC 2005

Peer 15 37.52 7.25
LEAD∗ 29.71 4.69
QUERY SIM∗ 32.95 5.91
SVR∗ 36.91 7.04
MultiMR∗ 35.58 6.81
DocEmb∗ 30.59 4.69
ISOLATION∗ 35.72 6.79
A�Sum∗ 37.01 6.99
SF+QF 39.18 7.79
CRSum 36.96 7.01
CRSum+SF+QF 39.52† 8.41†

DUC 2006

Peer 24 41.11 9.56
LEAD∗ 32.61 5.71
QUERY SIM∗ 35.52 7.10
SVR∗ 39.24 8.87
MultiMR∗ 38.57 7.75
DocEmb∗ 32.77 5.61
ISOLATION∗ 40.58 8.96
A�Sum∗ 40.90 9.40
SF+QF 41.45 9.57
CRSum 39.51 9.19
CRSum+SF+QF 41.70 10.03†

DUC 2007

Peer 15 44.51 12.45
LEAD∗ 36.14 8.12
QUERY SIM∗ 36.32 7.94
SVR∗ 43.42 11.10
MultiMR∗ 41.59 9.34
DocEmb∗ 33.88 6.46
ISOLATION∗ 42.76 10.79
A�Sum∗ 43.92 11.55
SF+QF 44.29 11.73
CRSum 41.20 11.17
CRSum+SF+QF 44.60† 12.48†

(Peer 15, 24, 15 are the best performing participants at DUC 2005,
2006, 2007, respectively. Scores of the methods marked with ∗ are
taken from the corresponding references listed in Table 6.)

7.1 CRSum vs. the surface features
Pearson correlation coe�cients can re�ect the e�ectiveness of the
feature to some extent. We examine correlations with the ground
truth of the surface features in Table 2 and of CRSum, as shown
in Table 8. CRSum achieves higher correlation scores than the
surface features (flen(St ), fpos(St ), ftf (St ) and fdf (St )) and com-
parable correlation scores with SF. �e results also con�rm that
flen(St ) and fpos(St ) are important features for extractive summa-
rization [2, 3, 49].

Pearson correlation coe�cients only re�ect linear correlations.
Hence, we further visualize the relation between the feature space
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Table 8: Pearson correlation coe�cients of surface features
and CRSum.

Features DUC 2001 DUC 2002 DUC 2004

flen(St ) 0.31 0.31 0.37
fpos(St ) 0.28 0.31 0.40
ftf (St ) 0.14 0.20 0.24
fdf (St ) 0.19 0.23 0.38
SF 0.45 0.48 0.64
CRSum 0.46 0.44 0.56

(a) CRSum vs. flen(St ) (b) CRSum vs. fpos(St )

(c) CRSum vs. ftf (St ) (d) CRSum vs. fdf (St )

Figure 6: CRSum scores vs. surface feature scores. Each
point represents a sentence. �e color depth re�ects the
importance of the sentence according to the ground truth.
(Best viewed in color.)

of CRSum and the surface features flen(St ), fpos(St ), ftf (St ), and
fdf (St ), as shown in Figure 6, by plo�ing CRSum scores against
the feature values.6 �e color depth re�ects the importance of
a sentence according to the ground truth. Low CRSum scores
mostly correspond to sentences with low ROUGE-2 scores, which
means that CRSum can distinguish useless sentences e�ectively.
Also, high CRSum scores mostly correspond to sentences with high
ROUGE-2 scores, which means that CRSum can distinguish the
most important sentences e�ectively. Obviously, this ability to
identify the most important sentences is extremely useful, as a
summary is usually short, containing just a few very important
sentences; we should also note that this ability is still limited as
there are low scoring and high scoring sentences mixed together.

7.2 �reshold parameter λ
Recall from §3.3 that a�er giving a salience score to each sentence,
we greedily select the sentence with the highest score for inclusion
in the �nal summary until the length constraint is reached. During
the process, a parameter λ is used to avoid redundant sentences by
discarding sentences whose bigram overlap with already selected

6�e scores for CRSum range from −1 to 1 as its activation function is Tanh.

Figure 7: Sensitivity to the parameter λ of CRSum+SF during
sentence selection.

sentences is larger than 1 − λ. To investigate the sensitivity of our
choice of λ, we examine the performance of CRSum+SF with the
threshold parameter λ ranging from 0 to 0.9 with a step size of
0.05. �e results are shown in Figure 7, where we plot performance
in terms of ROUGE-2 against λ. Generally, the performance of
CRSum+SF is not sensitive to the se�ing of λ for values less than
0.8, with the best performance achieved around 0.65 to 0.75.

7.3 Attention
We have illustrated our word and sentence level a�ention mecha-
nisms with two examples in Figure 5. Here, we analyze the perfor-
mance of these a�ention mechanisms in Table 9, using the same
data as in §6.1. Generally, with two-level a�entive pooling, CRSum
gains around 0.3%pt–0.5%pt improvements in terms of ROUGE-2
over CRSum (without a�ention). �e improvements are di�erent
on the three datasets with higher improvement on DUC 2001 and
smaller improvement on DUC 2004. Interestingly, world-level and
sentence-level a�ention yield comparable improvements over CR-
Sum without a�ention. But their contribution is complementary as
the combined a�ention mechanisms bring further improvements,
on all metrics and datasets, demonstrating the need for both.

8 CONCLUSIONS & FUTUREWORK
�is paper presents a novel neural network model, CRSum, to au-
tomatically learn features contained in sentences and in contextual
relations between sentences. We have conducted extensive exper-
iments on the DUC multi-document summarization datasets and
query-focused multi-document summarization datasets. Without
hand-cra�ed features, CRSum achieves a comparable performance
with state-of-the-art methods. When combined with a few basic
surface features, CRSum+SF signi�cantly outperforms the baselines

Table 9: Analyzing attention mechanisms on the multi-
document summarization task (%).

DUC 2001 DUC 2002 DUC 2004
CRSum a�ention ROUGE-1/2 ROUGE-1/2 ROUGE-1/2
without 34.33/7.81 36.18/8.91 37.76/9.32
word-level 34.54/7.95 36.31/9.09 37.80/9.37
sentence-level 34.57/8.01 36.29/9.07 37.82/9.41
two-level 35.36/8.30 37.10/9.29 38.19/9.66
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and achieves the best published performance on the DUC 2001, 2002
and 2004 datasets. Based on our experimental results and subse-
quent analyses, we conclude that CRSum encodes supplementary
information that surface features cannot capture.

We believe our work can be advanced and extended in several
directions: CRSum can be enriched by introducing a mechanism to
explicitly model �ne-grained sentence relations, such as parallelism
relations, progressive relations, inductive reasoning relations and
deductive reasoning relations [43]. Variants of CRSum can be also
extended to other tasks, such as abstractive summarization and
sentence summarization.
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