
Discovering Concrete Attacks on Website Authorization by Formal Analysis

Chetan Bansal
†BITS Pilani-Goa

Karthikeyan Bhargavan
∗INRIA Paris-Rocquencourt

Sergio Maffeis
‡Imperial College London

Abstract—Social sign-on and social sharing are becoming an
ever more popular feature of web applications. This success is
largely due to the APIs and support offered by prominent social
networks, such as Facebook, Twitter, and Google, on the basis
of new open standards such as the OAuth 2.0 authorization
protocol. A formal analysis of these protocols must account for
malicious websites and common web application vulnerabili-
ties, such as cross-site request forgery and open redirectors.
We model several configurations of the OAuth 2.0 protocol
in the applied pi-calculus and verify them using ProVerif.
Our models rely on WebSpi, a new library for modeling web
applications and web-based attackers that is designed to help
discover concrete website attacks. Our approach is validated by
finding dozens of previously unknown vulnerabilities in popular
websites such as Yahoo and WordPress, when they connect to
social networks such as Twitter and Facebook.

I. INTRODUCTION

A growing number of websites now seek to use social

networks to personalize each user’s browsing experience.

For example, using the social sign-on, social sharing, and

social integration APIs provided by Facebook, a website

can read and write social data about its visitors, without

requiring them to establish a dedicated personal profile. Ac-

cess to these APIs is mediated by an authorization protocol

that ensures that only websites that a user has explicitly

authorized may access her social data.

Web authorization protocols. After years of ad hoc au-

thentication and authorization mechanisms for web APIs,

a series of standards have emerged. SAML [14] and other

XML-based security protocols (such as Cardspace) are pri-

marily used for SOAP-based API access, for example, on

Amazon and Microsoft Azure. OpenID [29] is used for

light-weight user authentication, for example, on Google and

PayPal. OAuth [20], [22] is used for REST-based API access

to social APIs, for example, on Twitter and Facebook.

It is no longer uncommon to see websites supporting a

variety of login options using different social networks. Con-

sensus seems to be emerging around the use of some varia-

tion or combination of the OpenID and OAuth protocols [6],

and OAuth 2.0 [22] is currently the most widely supported

protocol for API authorization, especially for REST, AJAX,

and JSON-based API access. It is currently supported by

Google, Facebook, and Microsoft, among others. OpenID

Connect is a proposal to build the next version of OpenID on

top of OAuth 2.0, hence unifying API-based authentication

and authorization in a single framework.

Formal analyses of web security. Web authorization proto-

cols have been subject to careful human analysis [25], [17],

which can detect some potential vulnerabilities. However,

most practical vulnerabilities depend on specific deployment

configurations that are too difficult to analyze systematically

by hand. Automatic tools such as Alloy [24], AVISPA [1]

and ProVerif [9] have proven to be effective in the formal

analysis of security protocols. Unfortunately, these tools are

geared towards low-level network attackers and it is often

difficult to relate the formal counterexamples produced by

such analyses to concrete website attacks.

Our approach. In this paper, inspired by [5], we define

an automated framework to find web authorization vulner-

abilities in a systematic way. We show how a protocol

designer can model different protocol configurations and

verify them against different attacker models, until she

reaches a design that satisfies her specific security goals.

After all, choosing the right adversary is fundamental to

reason about composition of security mechanisms [18].

We model various configurations of the OAuth 2.0 proto-

col in the applied pi-calculus [2] and analyze them using

ProVerif. Our models rely on a generic library, WebSpi,

that defines the basic components (users, browsers, HTTP

servers) needed to model web applications and their security

policies. The library also defines an operational web attacker

model so that attacks discovered by ProVerif can be mapped

to concrete website actions closely corresponding to the ac-

tual PHP implementation of an exploit. The model developer

can fine-tune the analysis by enabling and disabling different

classes of attacks. The effectiveness of our approach is

testified by the discovery of several previously unknown

vulnerabilities involving some of the most popular web sites,

including Facebook, Yahoo, and Twitter. We have reported

these problems and helped fixing them.

The main contributions of this paper are the WebSpi

library, a formal analysis of OAuth 2.0 using WebSpi and

ProVerif, and a description of new concrete website attacks

found and confirmed by our formal analysis. Full ProVerif

scripts, including the WebSpi library, the OAuth 2.0 model,

and formal attacks, are available online [15].

II. MOTIVATING EXAMPLE: SOCIAL SIGN-ON

Social sign-on (or social login) is the use of a social

network to login to a third-party website, without having

to register at the website. It is a service provided by many

2012 IEEE 25th Computer Security Foundations Symposium

v/12 $26.00 © 2012 IEEE

DOI

235

2012 IEEE 25th Computer Security Foundations Symposium

© 2012, Chetan Bansal. Under license to IEEE.
DOI 10.1109/CSF.2012.27

235

2012 IEEE 25th Computer Security Foundations Symposium

247

social networks and authentication servers, using protocols

such as OpenID (e.g. Google) and OAuth (e.g. Facebook).

For clarity, we henceforth adopt OAuth terminology: a user

who owns some data is called a resource owner, a website

that holds user data and offers API access to it is called a

resource server, and a third party that wishes to access this

data is called a client or an app.

Consider WordPress.

com, a website that hosts

hundreds of thousands of

active blogs with millions

of visitors every day. A

visitor may comment on

a blog post only after

authenticating herself by

logging in as a Word-

Press, Facebook, or Twitter user. When visitor Alice clicks

on “Log in with Facebook”, an authorization protocol is set

into motion where Alice is the resource owner, Facebook the

resource server, and WordPress the client. Alice’s browser is

redirected to Facebook.com which pops up a window asking

to allow WordPress.com to access her Facebook profile.

WordPress.com would like access to Alice’s basic informa-

tion (her name and email address) as proof of identity.

If Alice authorizes this access, she is sent back

to WordPress.com with an API access token that lets

WordPress.com read her email address from Facebook and

log her in. All subsequent actions that Alice performs at

WordPress.com, such as commenting on a blog, are associ-

ated with her Facebook identity.

Social sharing. Some client websites also implement social
sharing: reading and writing data on the resource owner’s

social network. For example, on CitySearch.com, a guide

with restaurant and hotel recommendations, any review or

comment written by a logged-in Facebook user is instantly

cross-posted on her profile feed (‘Wall’) and shared with

all her friends. Some websites go further: Yahoo.com acts

as both client and resource server to provide deep social
integration where the user’s social information flows both

ways, and may be used to enhance her experience on a

variety of online services, such as web search and email.

Security goals. Let us first consider the informal security

goals of the social sign-on interaction described above, from

the viewpoint of Alice, WordPress and Facebook.

• Alice wants to ensure that her comments will appear

under her own name; nobody else can publish com-

ments in her name; no unauthorized website should

gain access to her name and email address; even

authorized websites should only have access to the

information she decided to share.

• WordPress wants to ensure that the user trying to log

in and post comments as Alice, is indeed Alice.

• Facebook wants to ensure that both the resource owner

and client are who they say they are, and that it only

releases data when authorized by the resource owner.

These security goals are fairly standard for three-party

authentication. What makes social sign-on more interesting,

is that it needs to enforce these goals under normal web

conditions. For example, Alice may use the same browser

to log-in on WordPress and, in another tab, visit an untrusted

website, possibly over an insecure Wi-Fi network. In such a

scenario, threats to Alice’s security goals include: network

attackers who can intercept and inject clear-text HTTP

messages between Alice and WordPress; malicious websites

who can try to fool Facebook or Alice by pretending to be

WordPress; malicious users who can try to fool Facebook

or WordPress by pretending to be Alice.

Web-based attacks. Network attacks are well understood, and

can be mitigated by the systematic use of HTTPS [30], or

more sophisticated cryptographic mechanisms. Many web-

sites, such as Facebook, do not even seek to protect against

network attackers, allowing users to browse over HTTP.

They are more concerned about website- and browser-based

attacks, such as Cross-Site Scripting (XSS), SQL Injection,

Cross-Site Request Forgery (CSRF) and Open Redirectors.

For example, various flavours of CSRF are common on

the web. When a user logs into a website, the server typically

generates a fresh, unguessable, session identifier and returns

it to the browser as a cookie. All subsequent requests from

the browser to the website include this cookie, so that

the website associates the new request with the logged-in

session. However, if the website relies only on this cookie

to authorize security-sensitive operations on behalf of the

user, it is vulnerable to CSRF. A malicious website may

fool the user’s browser into sending a (cross-site) request to

the vulnerable website (by using JavaScript, HTTP redirect,

or by inviting the user to click on a link). The browser

will then automatically forward the user’s session cookie

with this forged request, implicitly authorizing it without

the knowledge of the user, and potentially compromising

her security. A special case is called login CSRF: when

a website’s login form itself has a CSRF vulnerability, a

malicious website can fool a user’s browser into silently

logging in to the website under the attacker’s credentials, so

236236248

that future user actions are credited to the attacker’s account.

The typical countermeasure for CSRF is to require in every

security-sensitive request to the website a session-specific

nonce that would be difficult for a malicious website to

forge. The nonce can be embedded in the target URL or

within a hidden form field. However, such mechanisms are

particularly difficult to enforce in multi-party interactions

such as social sign-on.

Social CSRF attacks. We now describe one of the new

attacks we found thanks to our formal analysis of OAuth in

Section V. This example shows how a CSRF attack on low-

value client website CitySearch.com can be translated into

an attack on its high-value resource server Facebook.com.
Suppose Alice clicks on the social login form on City-

Search to log in with her Facebook account. So, CitySearch

obtains an API access token for Alice’s Facebook profile. If

Alice then wants to review a restaurant on CitySearch, she

is presented with a form that also asks her if she would like

her review to be posted on Facebook.

When she submits this form, the review is posted to

CitySearch as a standard HTTP POST request; CitySearch

subsequently reposts it on Alice’s Facebook profile (using

its API access token on the server side).

POST /rate/listing?listingId=628337570 HTTP/1.1
Host: lasvegas.citysearch.com
Content-Type: application/x-www-form-urlencoded
Cookie: usrid=ab76fb...

title=GREAT&rating=6&publishToFacebook=true&text=...

We found that the review form above is susceptible to a

regular CSRF attack; the contents of the POST request do

not contain any nonce, except for the cookie, which is au-

tomatically attached by the browser. So, if Alice were to go

to an untrusted website while logged in to CitySearch, that

website could post a review in Alice’s name on CitySearch

(and hence, also on Alice’s Facebook profile.)
Moreover, CitySearch’s social login form is also suscepti-

ble to a CSRF attack. So, if Alice has previously used social

login on CitySearch, any website that Alice visits could

submit this form to silently log in Alice on CitySearch via

Facebook. Alice is not asked for permission since Facebook

typically only asks a user for authorization the first time

she logs in to a client. Combining the two attacks, we built

a demonstrative malicious website that, when visited by a

user who has previously used social sign-on on CitySearch,

can automatically log her into CitySearch and post arbitrary

reviews in her name both on CitySearch and Facebook. This

is neither a regular CSRF attack on Facebook, nor a login

CSRF attack on CitySearch (the user signs-in in her own

name). We call this class of attack a Social CSRF attack.

Attack amplification. To understand the novelty of Social

CSRF attacks, it is instructive to compare Alice’s security

before and after she used social sign-on on CitySearch.

Before, Alice’s reviews were subject to a CSRF attack, but

only if she visited a malicious site at the same time as

when she was logged into CitySearch. No website could log

Alice automatically into CitySearch since it would require

Alice’s password. Moreover, no website would have been

able to post a message on Alice’s Facebook wall without

her permission, because Facebook implements strong CSRF

protections. But now, even if Alice uses social login once on

CitySearch and never visits the site again, a website attacker

will always be able to modify both Alice’s Facebook wall

and her CitySearch reviews.

Empirically, we find that social CSRF attacks are

widespread, probably because websites have been encour-

aged to hastily integrate social login and social sharing with-

out due consideration of the security implications. Social

CSRFs pose a serious threat both to resource servers and

clients, because these attacks can be amplified both ways.

On one hand, as we have seen, a CSRF vulnerability in

any Facebook client becomes a CSRF on Facebook. On

the other hand, a login CSRF attack that we discovered

on twitter.com (see Section IV), becomes a login CSRF

vulnerability for all of its client websites.

Towards a systematic discovery of web-based attacks. The

CitySearch vulnerability described above composes two dif-

ferent CSRF attacks, involves three websites and a browser,

and consists of at least nine HTTP(S) connections. It does

not depend on the details of the underlying authorization

protocol, but the other vulnerabilities in Section V rely on

specific weaknesses in OAuth 2.0 configurations. We found

such attacks by a systematic formal analysis, and we believe

at least some would have escaped a human protocol review.

Modeling web-based attackers offers new challenges com-

pared to the attackers traditionally considered in formal

cryptographic protocol analysis. For example, in a model

that enables the attacker to control the network, websites

such as CitySearch and Facebook are trivially insecure as

most user data is sent over insecure HTTP. With such

strong attacker models, we are unlikely to discover subtle

website-based attacks such as CSRF. Conversely, a model

that treats the browser and the user as one entity will miss

CSRF attacks completely. In Section IV we present a web

security library that allows us to fine-tune the attacker model,

enabling the discovery of new and interesting web attacks.

237237249

Figure 1. OAuth 2.0: User-Agent Flow (left) and Web Server Flow (right).

III. OAUTH 2.0: BROWSER-BASED API AUTHORIZATION

The aim of the OAuth 2.0 authorization protocol is to

enable third party clients to obtain limited access, on behalf

of a resource owner, to the API of a resource server [22]. The

protocol involves five parties: a resource server that allows

access to its resources over the web on receiving an access

token issued by a trusted authorization server; a resource
owner who owns data on the resource server, has login

credentials at the authorization server, and uses a user-agent
(browser) to access the web; a client website, that needs to

access data at the resource server, and whose application

credentials are registered at the authorization server. In the

example of Section II, Facebook is both the authorization

server and resource server; we find that this is a common

configuration.

The first version of OAuth was designed to unify ex-

isting authorization mechanisms implemented by Twitter,

Flickr, and Google. However, it was criticized as being

website-centric, inflexible, and too complex. In particular,

the cryptographic mechanisms used to protect authorization

requests and responses were deemed too difficult for website

developers to implement (correctly).

OAuth 2.0 is designed to address these shortcomings. The

draft specification defines five different flows or protocol

configurations, only two of which directly apply to website

applications. The protocol itself requires no cryptographic

mechanisms whatsoever and instead relies on transport layer

security (HTTPS). Hence, it claims to be lightweight and

flexible, and has fast emerged as the API authorization

protocol of choice, supported by Microsoft, Google and

Facebook, among others. We next describe the two website

flows of OAuth 2.0, their security goals, and their typical

implementations.

User-Agent Flow. The User-Agent flow, also called Implicit

Grant flow, is meant to be used by client applications

that can run JavaScript on the resource owner’s user-agent.

For example, it may be used by regular websites or by

browser extensions. The authorization flow, adapted from

the specification, is depicted on the left in Figure 1.

Let the resource server be located at the URL RS and its

authorization server be located at AS. Let the resource owner

RO have a username u and password p at AS. Let the client

be located at URL C and have an application identifier id
at AS. The message flow and relevant security events of the

user-agent flow are as follows:

1) Login(RO,b,sid,AS,u): RO using browser b starts a login

session sid at AS using credentials u,p.

2) SocialLogin(RO,b,sid’,C,AS,RS): RO using b starts a so-

cial sign-on session sid’ at C using AS for RS.

3) TokenRequest(C,b,AS,id,perms): C redirects b to AS re-

questing a token for id with access rights perms.

4) Authorize(RO,b,sid,C,perms): AS looks up id and asks RO
for authorization; RO using browser b in session sid at

AS authorizes C with perms.

5) TokenResponse(AS,b,C,token): AS redirects b back to C
with an access token.

6) APIRequest(C,RS,token,getId()): C makes an API request

getId() to RS with token.

7) APIResponse(RS,C,token,getId(),u): RS verifies token, ac-

cepts the API request and returns u to C.

8) SocialLoginAccept(C,sid’,u,AS,RS): C accepts RO’s social

sign-on session sid’ as u at AS for RS.

9) SocialLoginDone(RO,b,sid’,C,u,AS,RS): RO is logged in

to C in a browser session sid’ associated with u at AS,

granting access to RS.

These steps may be followed by any number of API

calls from the client to the resource server, on behalf of the

resource owner. Each step in this flow consists of one (or

more) HTTP request-response exchanges. The specification

requires that the AS must and the C should implement these

exchanges over HTTPS. In the rest of this paper, we assume

that all OAuth exchanges occur over HTTPS unless specified

otherwise.

For example, in a user-agent flow between WordPress and

Facebook, the TokenRequest(C,b,AS,id,perms) step is typically

implemented as an HTTPS redirect from WordPress

to a URI of the form: https://www.facebook.com/

dialog/permissions.request?app_id=id&perms=email.

The TokenResponse is also an HTTPS redirect back to

WordPress, of the form: https://public-api.wordpress.

com/connect/?service=facebook#access_token=token.

Note that the access token is passed as a fragment URI.

238238250

JavaScript running on behalf of the client can extract the

token and then pass it to the client when necessary.

Web Server Flow. The Web Server flow, also called Explicit

Grant flow or Authorization Code flow, can be used by client

websites wishing to implement a deeper social integration

with the resource server by using server-side API calls. It

requires that the client must have a security association with

the authorization server, using for example an application se-

cret. Moreover, it requires that the access token be retrieved

on the server-side by the client. The motivation for this is

two-fold. (i) It allows the authorization server to authenticate

the client’s token request using a secret that only the client

and the server know. In contrast, the authorization server in

the user-agent flow has no way to ensure that the client in

fact wanted a token to be issued, it simply sends a token to

the client’s HTTPS endpoint. (ii) It prevents the access token

from passing through the browser, and hence ensures that

only the client application may access the resource server

directly. In contrast, the access token in the user-agent flow

may be leaked through referrer headers or browser history

to malicious third-party JavaScript running on the client.

The authorization flow is depicted in Figure 1. Let the

client at URL C and have both an application identifier id and

a secret sec pre-registered at AS. The difference between the

web server and user-agent flows begins after the SocialLogin
step, and ends before the APIRequest step:

3) CodeRequest(C,b,AS,id,perms): C redirects b to AS re-

questing authorization for id with perms.

4) Authorize(RO,b,sid,C,perms): AS looks up id and asks RO
for authorization; RO using browser b in session sid at

AS authorizes C with perms.

5) CodeResponse(AS,b,C,code): AS redirects b back to C
with an authorization code.

5.1) APITokenRequest(C,AS,code,id,sec): C makes an API re-

quest for an access token to AS with code, id, and sec.

5.2) APITokenResponse(AS,C,token): AS checks id and sec,

verifies the code and returns a token to C.

Additional Protocol Parameters. In addition to the basic

protocol flows outlined above, OAuth 2.0 enables several

other optional features. Our models capture the following:

- Redirection URI: Whenever a client sends a message

to the authorization server, it may optionally provide a

redirect uri parameter, where it wants the response to be sent.

In particular, the TokenRequest and CodeRequest messages

above may include this parameter, and if they do, then

also the corresponding APITokenRequest must include it.

The client may thus ask for the authorization server to

redirect the browser to the same page (or state) from which

the authorization request was issued. Since the security of

OAuth crucially depends on the URI where codes and tokens

are sent, the specification strongly advises that clients must

register all their potential redirection URIs beforehand at

the authorization server. If not, it predicts attacks where a

malicious website may be able to acquire codes or tokens

and break the security of the protocol. Indeed, our analysis

found such attacks both in our model and in real websites.

We call such attacks Token Redirection attacks.

- State Parameter: After the TokenRequest or CodeRequest
steps above, the client waits for the authorization server to

send a response. The client has no way of authenticating

this response, so a malicious website can fool the resource

owner into sending the client a different authorization code

or access token (belonging to a different user.) This is a

variation of the standard website login CSRF attack that

we call a Social Login CSRF attack. To prevent this attack,

the OAuth specification recommends that clients generate a

nonce that is strongly bound to the resource owner’s session

at the client (say, by hashing a cookie). It should then pass

this nonce as an additional state parameter in the CodeRequest
or TokenRequest messages. The authorization server simply

returns this parameter in its response, and by checking that

the two are the same, the client can verify that the returned

token or code is meant for the current session.

After incorporating the above parameters, the following

protocol steps are modified as shown:

TokenRequest(C,b,AS,id,perms,state,redirect uri)
TokenResponse(AS,b,redirect uri,state,token)

CodeRequest(C,b,AS,id,perms,state,redirect uri)
CodeResponse(AS,b,redirect uri,state,code)

APITokenRequest(C,AS,code,id,sec,redirect uri)
APITokenResponse(AS,C,token)

Our analysis does not cover other features of OAuth,

such as refresh tokens, token and code expiry, the right

use of permissions, or the other four flows described in the

specification. We leave these features for future work.

A Threat Model for OAuth 2.0. The OAuth specification and

documents commenting on it [25], [17] together provide

an exhaustive list of potential threats to the protocol. We

consider a subset of these threats.

The ultimate aim of the attackers we consider is to steal or

modify the private information of an honest resource owner,

for example by fooling honest or buggy clients, authorization

servers, or resource owners into divulging this information.

To this end, we consider: network based attackers who can

sniff, intercept, and inject messages into insecure HTTP

sessions; malicious websites that honest resource owners

may browse to; malicious clients, resource owners, and au-

thorization servers; honest clients with redirectors that may

forward HTTP requests to malicious websites; honest clients

and authorization servers with CSRF vulnerabilities. We do

not explicitly consider attacks on the browser or operating

system of honest participants; we treat such participants as

compromised, that is, as fully controlled by an attacker.

Security Goals for OAuth 2.0. We describe the security goals

for each participant by defining Datalog-like authorization

239239251

policies [19] that must be satisfied at different stages of the

protocol. The policy A :− B,C is read as “A if B and C”.
The resource owner has completed successfully the social

sign-on if it intended to sign-on to the client, if it agreed

to authorize the client, and if the client and resource owner

agree upon the user’s social identity and session identifier:

SocialLoginDone(RO,b,sid’,C,u,AS,RS) :−
Login(RO,b,sid,AS,u),SocialLogin(RO,b,sid’,C,AS,RS),

Authorize(RO,b,sid,C,idPermission),

Says(C,SocialLoginAccept(C,sid’,u,AS,RS)).

The authorization server must ensure that a token is issued

only to authorized clients. Its policy for the user-agent flow

is written as:

TokenResponse(AS,b,C,state,token) :−
ValidToken(token,AS,u,perms),Says(RO,Login(RO,b,sid,AS,u)),

Authorize(RO,b,sid,C,perms),ValidClient(C,id,redirect uri).

Note that we do not require that the TokenResponse is only

issued in response to a valid TokenRequest: at this stage, the

user-agent flow has not authenticated the client yet.
The web server flow policy of the authorization server is

APITokenResponse(AS,C,state,token) :−
ValidToken(token,AS,u,perms),Says(RO,Login(RO,b,sid,AS,u)),

Says(C,TokenRequest(C,b,AS,id,perms,state,redirect uri)),
Authorize(RO,b,sid,C,perms),ValidClient(C,id,redirect uri).

From the viewpoint of the resource server, every API call

must be authorized by a token from the authorization server.

APIResponse(RS,b,C,token,req,resp) :−
ValidToken(token,AS,u,perms),Permitted(perms,req),

Says(C,APIRequest(C,RS,token,req)).

Finally, from the viewpoint of the client, the social sign-

on has completed successfully if it has correctly identified

the resource owner currently visiting its page, and obtained

an access token for the API accesses it requires.

SocialLoginAccept(C,sid’,u,AS,RS) :−
Says(RO,SocialLogin(RO,b,sid’,C,AS,RS)),

Says(AS,TokenResponse(AS,b,C,token)),

Says(RS,APIResponse(RS,C,token,getId(),u)).

IV. THE WEBSPI LIBRARY AND ITS USAGE

Various calculi, starting from the spi calculus [3], have

been remarkably successful as modeling languages for

cryptographic protocols, thanks also to the emergence of

automated verification tools that can analyze large protocol

models. Following in this tradition, we model web security

mechanisms in an applied pi-calculus, and verify them using

ProVerif. We identify a set of idioms that are particularly

useful in modeling web applications and web-based attack-

ers, and offer them as a library, called WebSpi, available to

other developers of web models. The syntax of the language

used by ProVerif is summarized in Appendix A, and its

authoritative definition is the ProVerif manual [11].

Figure 2. WebSpi architectural diagram.

A. Principals, Browsers, and HTTP Servers
WebSpi models consist of users who surf the Internet

through web browsers, to interact with web applications

that are hosted by web servers. Figure 2 gives a schematic

representation of the model. Users and servers are the

principals, or agents, of our model. Users hold credentials to

authenticate with respect to a specific web application (iden-

tified by a host name and by a path) in the table credentials,

whereas servers hold private and public keys to implement

TLS secure connections in the table serverIdentities.

table credentials(Host,Path,Principal,Id,Secret).
table serverIdentities(Host,Principal,pubkey,privkey).

These tables are private to the model and represent a pre-

existing distribution of secrets (passwords and keys). They

are populated by the process CredentialFactory that provides

an API for the attacker (explained later) to create an arbitrary

population of principals and compromise some of them. The

process WebSurfer models a generic user principal who is

willing to browse the web to any public URL.

Browsers and web servers communicate using the

HTTP(S) protocol over a channel net, and their core func-

tionality is modeled by the processes HttpClient and HttpServer.
The process HttpClient accepts an HTTP request and a URI

(from a user, or a client-side web application) on the channel

httpClientRequest and performs the desired GET or POST

request-response exchange with the specified URI. If the

response is an HTTP redirect, then it retries the exchange

with the new URI. Otherwise, it returns the response on

the private channel httpClientResponse. The HttpClient also

maintains browser cookies for each browser and host in a ta-

ble browserCookies(Browser,Host,Cookie) With every HTTP(S)

request, it automatically attaches the cookies stored for the

server host, and every response contains an updated cookie

which the client should store in the table.

The process HttpServer is the dual of HttpClient: it accepts

HTTP(S) requests over net, forwards them to the server-side

application over the private channel httpServerRequest, waits

for a response on httpServerResponse, and returns it to the

client. Server-side sessions (stored in a table serverSessions)

are maintained by individual web applications.

240240252

These processes incorporate a simple model of anony-

mous HTTP(S) connections: each request to an HTTP URI

is encrypted with a fresh symmetric key, that is in turn

encrypted under the server’s public key. The response is

encrypted with the same symmetric key.

B. Distributed security policies
Since their introduction in the context of the spi cal-

culus [21], Datalog-like security policies have proven to

be an ideal tool to describe enforceable authorization and

authentication policies for distributed security protocols. A

program statement such as Assume(UserSends(u,m)) adds to a

global knowledge base the fact that user u has sent message

m. Such a statement should precede the actual code used by

the user to send the message, and its purpose it to reflect the

operation in the policy world. A program statement such as

Expect(ServerAuthorizes(s,u,d)) instead means that at this point

in the code, we must be able to prove that the server s is

willing to authorize user u to retrieve data d. The main idea

is that the Expect triggers a query on the security policy,

using the facts known (and assumed) so far. In this paper,

we adopt a similar style to express our policies and bind

them to protocol code.

Using ProVerif’s native support for predicates defined by

Horn clauses, we embed the assumption of fact e by the code

if Assume(e) then P, where Assume is declared as a blocking
predicate, so that ProVerif treats Assume(e) as an atomic fact

and adds it as a hypothesis in its proof derivations about

P. Conversely, the expectation that e holds is written as

event Expect(e). Security policies are defined as Horn clauses

extending a predicate fact. In particular, the WebSpi library

includes the generic clause forall e:Fact; Assume(e) →fact(e)

that admits assumed facts, and a generic security query
forall e:Fact; event(Expect(e)) =⇒fact(e) that requires every

expected predicate to be provable from the policy and

previously assumed facts.

Moreover, inspired by Binder [19], [4], we also encode a

standard Says modality, axiomatised below:

forall p:Principal,e:Fact; fact(e) →fact(Says(p,e));

forall p:Principal,e:Fact; fact(Compromised(p)) →fact(Says(p,e)).

The two rules state that if a fact is true, it can be assumed to

be said by any principal, and that if a principal is known to

be compromised, denoted by the fact Compromised(p), then

it cannot be trusted anymore and is ready to say anything.

Although predicates have existed in ProVerif for some

time, to our knowledge, we are the first to use them to embed

Datalog-like policies and use them for a real case study.

C. Modeling web applications using WebSpi
To model a web application using WebSpi, one typically

writes three processes:

• a server-side (PHP-like) process representing the web-

site, running on top of HttpServer;

• a client-side (JavaScript-like) process representing the

web page, running on top of HttpClient;
• a user process representing the behaviour of a human

who uses a browser to access the web application.

In some simple cases, the second and third process may be

combined. In addition to messaging over HTTP(S), these

processes may perform other actions, such as cryptography

or database operations.

As an example, we show how to model and analyze

the core functionality of a typical website login appli-

cation (such as the Twitter login form above). We also

consider enhancements such as CSRF protections on the

form, and JavaScript that hashes the password. We illustrate

our methodology using the login application, which is a

building block of the OAuth models considered in this paper.

First, we model the login user as a process that first views

the login form and then fills and submits it:

let LoginUserAgent() =

in(httpClientResponse,(b:Browser,sid:Cookie,sp:Principal,
u:Uri,d:bitstring));

let up = principal(b) in
let uri(proto,h,app) = ep(u) in
if proto = https() then
if loginForm = formTag(d) then
get credentials(=h,=app,=p,uid,pwd) in
if Assume(Login(up,b,sid,ep(u),uid)) then
out(httpClientRequest,
(b,sid,formAction(d),u,httpPost(loginFormReply(d,uid,pwd))));

in(httpClientResponse,(=b,=sid,=sp,formAction(d),loginSuccess()));

event Expect(ValidSession(up,b,sid,ep(u)))

First, the user-agent receives the login page from the server,

parsed through the HttpClient process, as a message on the

channel httpClientResponse. In particular, it receives the URL

u of the web page, the login form d, and a session cookie sid
(already stored in the browserCookies table). If the protocol

used by the URL is HTTPS, if the form is indeed a login

form, and if the user wishes to log in to the web application,

she retrieves her password (from the credentials table) and

submits the form, by sending an HTTP POST request to the

URL specified in the form action, via the httpClientRequest
channel. Hence, this model assumes a careful user who only

releases her password to the right website, and does not fall

victim to phishing attacks. (We consider careless users to

be compromised, that is under the control of the attacker.)

Finally, the user-agent waits for the loginSuccess() page to

be loaded before proceeding with security sensitive actions.

Both the statements Assume(Login(up,b,sid,ep(u),uid)) and

Expect(ValidSession(up,b,sid,ep(u))) are included in the secu-

rity specification. The former states that the user up agrees

to log in as the user uid at the web application ep(u), using

the browser b in session sid. The latter demands that at this

stage the user can be sure to be logged in to the right website.

We model the server-side login application as follows:

241241253

let LoginApp(h:Host,app:Path) =

in(httpServerRequest,(sp:Principal,u:Uri,req:HttpRequest,
hs:Headers,requestId:bitstring));

if url(https(),h,app) = ep(u) then
let sid = cookie(hs) in
let httpPost(loginFormReply(d,uId,pwd)) = req in
get credentials(=h,=app,p,=uId,pwd) in
event Expect(LoginAuthorized(sp,uId,ep(u),sid));

insert serverSessions(h,app,sid,uId);

out(httpServerResponse,

(sp,u,httpOk(loginSuccess()),sid,requestId))

The server receives parsed web requests from HttpServer
on channel httpServerRequest, which is shared between all

server-side applications. It first checks that the request was

addressed to itself and that it was received over HTTPS.

It then parses the headers to extract the session cookie,

and parses the request body to obtain the login form

containing uId and pwd. It retrieves the credentials of the

user uId and checks the validity of the password pwd to

authenticate the user. If these checks succeed the application

registers a new server session for the user by the com-

mand insert serverSessions(h,app,sid,uId); if any check fails,

it silently rejects the request; otherwise it returns a page

loginSuccess(). Before registering the session, the process

issues its policy event Expect(LoginAuthorized(sp,u,ep(u),sid)):

the server expects that the user uId logged-in on the session

sid has been authenticated and authorized. For clarity, we

write the policies for LoginAuthorized and ValidSession in

Datalog style (in ProVerif syntax, they are written right-to-

left as clauses that extend the fact predicate).

LoginAuthorized(sp,uId,e,sid) :− Server(sp,h),User(up,uId,h,app),

endpointUri(e,https(),h,loginPath(app)),

Says(up,Login(up,b,sid,e,uId)).

ValidSession(up,b,sid,e) :− Server(sp,h),User(up,x,h,app),

endpointUri(e,https(),h,loginPath(app)),

Says(sp,LoginAuthorized(sp,x,e,sid)).

The first policy states that the application denoted by the

host h (owned by principal sp) and path app (as encoded in

the endpoint e) can login over HTTPS the registered user

with user-id uId into a session sid if the principal up owning

x’ credentials intended to do so (or if up was compromised).

The second policy states that the browser session sid of user

up at endpoint e is valid if the principal sp owning e has

logged in the user over HTTPS under the right username.

These policies can be read as the standard correspondence
assertions typically used to specify authentication properties

in cryptographic protocols. However, using predicates, we

can also encode more expressive authorization policies that

would generally be difficult to write as ProVerif queries.

D. A customizable attacker model
We consider a standard symbolic active (Dolev-Yao) at-

tacker who controls all public channels and some princi-

pals, but cannot guess secrets or access private channels.

Furthermore, the attacker can create new data and can

encrypt or decrypt any message for which it has obtained

the cryptographic key, but it cannot break cryptography.

By default, all the channels, tables, and credentials used

in WebSpi are private. We define a process AttackerProxy that

mediates the attacker’s access to these resources, based on a

set a configuration flags. The attacker executes a command

by sending a message on the public channel admin and

if the current configuration allows it, the process executes

the command and returns the result (if any) on the public

channel result. The full list of commands that the attacker

can send is listed in Table I. This API is designed to be

operational: each command corresponds to a concrete attack

that can be mounted on a real web interaction. We identify

three categories of attacker capabalities enabled by this API:

Managing principals. The first two commands (enabled

by the flag NetworkSetup) allow the attacker to set up an ar-

bitrary population of user and server principals by populating

the credentials and serverIdentities tables. If these commands

are disabled, the model developer must create his own

topology of users and servers. The third and fourth command

(enabled by the flag MaliciousUsers, MaliciousServers) allow the

attacker to obtain the credentials of a selected user or server.

Network attackers. The next two commands (enabled by

the flag NetworkAttackers) allow the attacker to intercept and

inject arbitrary messages into a connection between any two

endpoints. Hence, the attacker can alter the cookies of an

HTTP request, but cannot read the (decrypted) content of

an HTTPS message.

Website attackers. The next four commands (enabled by

UntrustedWebsites) give the attacker an API to build web

applications and deploy them (on top of HttpServer) at a

given endpoint, potentially on a honest server. This API

gives the attacker fewer capabilities than he would have on a

compromised server, but is more realistic, and allows us to

discover interesting website based (PHP) attacks. The last

two commands (enabled by UntrustedJavaScript) model the

API provided on the client side, by HttpClient, to JavaScript

downloaded from untrusted websites.

E. From ProVerif analysis to concrete web attacks
When analyzing a web application model built on top

of WebSpi, the model developer may fine-tune the attacker

model and run ProVerif to discover attacks of interest.

ProVerif will either prove the model correct (with respect

to its security goals), or fail to verify the model, or not

terminate. If verification succeeds, the correctness theorem

for ProVerif [10] guarantees that no attacks exist, at least

among the (limited) class of attacks considered in the model.

When verification fails, ProVerif sometimes produces an

242242254

Managing principals

createServer(sp) create a new server for principal sp
createUser(up,h,p) create a new user up for the app at path p on host h
compromiseUser(id,h,p) force user with login id on app p at h to reveal its password
compromiseServer(h) force principal of server hosted at h to reveal its secret key

Network attackers injectMessage(e1,e2,m) send message m to endpoint e2 as if it came from e1
interceptMessage(e1,e2) intercept a message from e1 to e2

Malicious websites

startUntrustedApp(h,p) start a malicious application p at h
getServerRequest(h,p) intercept a request between the http module and app p at h
sendServerResponse(h,p,u,r,c,m) send m to u on behalf of h, p, with cookie c and

HTTP response type r, from the server with principal sp
httpRequestResponse(c,u,m) send m to u and wait for response

Malicious JavaScript getClientResponse(b,h,p) intercept the response from browser b to app h, p
sendClientRequest(b,h,p,c,u1,u2,m) send m to h, p as if b clicked on u1 on a page from u2

Table I
A COMMAND API FOR THE ACTIVE WEB ATTACKER

attack trace, or else it provides a proof derivation that

hints towards a potential attack. Because of the way our

attacker model is designed, all attacker actions in traces and

derivations appear as concrete commands and responses on

the admin and result channels. This makes potential attacks

remarkably easy to extract, and sometimes such attacks can

be translated to real-world web attacks.

As an example, we analyze our WebSpi model of the login

application against its two security policies, and explore

its robustness against different categories of attackers. Our

results are summarized at the beginning of Tables II and III.

If we only enable network attackers, malicious users,

and malicious servers, ProVerif proves the model secure.

Suppose we relax the LoginUserAgent process so that users

may also login over HTTP; ProVerif then finds a network-

based password-sniffing attack that breaks both policies.

If we also enable malicious websites, ProVerif finds a

standard login CSRF attack. Our login forms, much like the

Twitter login form, do not include any unguessable values.

So a malicious website that also controls a malicious user

Eve can fool an honest user Alice into logging in as Eve.

Let us see how we can reconstruct this attack.

In this case, ProVerif produces a proof derivation, but not

an attack trace. Such derivations can be very long, since they

list all attempted attacks, ending in the successful one, and

they explain how the attacker constructed each message. For

our example, the derivation has 3568 steps. However, if we

select just the messages on the admin and result channels, we

end up with a derivation of 89 steps. Most of these steps are

redundant commands towards the beginning of the derivation

that are easy to identify and discard. Starting from the end,

we can optimize the derivation by hand to finally obtain an

attack in 7 steps (a time-consuming but rewarding process).

Next, we verify the attack by modeling the malicious

website as a ProVerif process that uses the attacker API:

let TwitterAttack(twitterLoginUri:Uri,eveAppUri:App,
eveId:Id,evePwd:Secret) =

(∗ Alice browses to Eve’s website ∗)
out (admin,getServerRequest(eveAppUri));
in (result,(=getServerRequest(eveAppUri),

(u:Uri,req:HttpRequest,hs:Params,corr:bitstring)));
(∗ Eve redirects Alice to login as Eve@Twitter ∗)
out(admin,sendServerResponse(eveAppUri,(u,

httpOk(twitterLoginForm(twitterLoginUri,eveId,evePwd)),
nullCookiePair(),corr))).

If ProVerif can find the attack again using just this attacker

process, disabling all other attackers (by setting attacker

mode to passive), then we say that the attack is concrete.

Finally, we attempt to execute the attack on a real website.

We rewrite the process above as a PHP script and, indeed,

we find that a login CSRF attack can be mounted on the

Twitter login page. This attack was known to exist, but as

we show in the following section, it can be used to build

new login CSRF attacks on Twitter clients.

V. ANALYZING OAUTH 2.0 USING PROVERIF

In this section, we build a model of OAuth on top of the

WebSpi library and analyze its security properties.

A. OAuth 2.0 model
Our model consists of an unbounded number of users

and servers. Each user is willing to browse to any website

(whether trusted or malicious) but only sends secret data

to trusted sites. Each server may host one or more of the

applications described below.

Login: As shown in Section IV, this application consists

of a server process LoginApp and a corresponding user-agent

process LoginUserAgent that together model form-based login

for websites. In our model, both OAuth authorization servers

and their client websites host login applications.

Data Server: An application that models resource servers.

It includes a server process DataServerApp that offers an

API with two functions: getData retrieves all the data for

a particular user, and storeData stores new data for a user.

We treat getId as a special case of getData where the caller is

only interested in the user’s identity. Users logged in locally

on the resource server (through its LoginApp) may access their

data through a browser, and their behaviour is modeled by

a user-agent process DataServerUserAgent. OAuth clients may

243243255

Model Lines Verification Time
WebSpi Library 463
Login Application 122 5s
Login with JavaScript Password Hash 124 5s
+ Data Server Application 131 41s
+ OAuth User-Agent Flow 180 1h12m
+ OAuth Web Server Flow 52 2h56m
Total (including attacks) 1245

Table II
PROTOCOL MODELS VERIFIED WITH PROVERIF

remotely access data on behalf of their social login users,

by presenting an access token.

OAuth Authorization (User−Agent Flow): A three-party social

web application that models the user-agent flow of the

OAuth protocol. The process OAuthImplicitServerApp mod-

els authorization servers, and the process OAuthUserAgent
models resource owners. These processes closely follow

the protocol flow described in Section III. The process

OAuthImplicitClientApp models clients that offer social login;

it offers a social login form for resource owners to click

on to initiate social sign-on. When sign-on is completed,

it provides the resource owner with additional forms to get

and store data from the resource server. These additional data

actions are not explicitly covered by the OAuth protocol, but

are a natural consequence of its use.

OAuth Authorization (Web Server Flow): A three-party so-

cial web application that models the web server flow

of the OAuth protocol, as described in Section III.

The process OAuthExplicitClientApp models clients and

OAuthExplicitServerApp models authorization servers.

We elide details of the ProVerif code for these appli-

cations, except to note that they are built on top of the

library processes HttpClient and HttpServer, much like the login

application, and implement message exchanges as described

in the protocol. Each process includes Assume and Expect
statements that track the security events of the protocol. For

example, the OAuthUserAgent process assumes the predicate

SocialLogin(RO,b,sid,C,AS,RS) before sending the social login

form to the client; after login is completed it expects

the predicate SocialLoginDone(RO,b,sid,C,u,AS,RS). We then

encode the security goals of Section III as clauses defining

such predicates. The full script is available online [15].

B. Results of the ProVerif analysis
We analyze the security of different configurations of

our OAuth model using ProVerif. Table II summarizes our

positive verification results. Each line lists a part of the

model, the number of lines of ProVerif code, and the time

taken to verify them. The most general model for which

we were able to obtain positive results makes the following

assumptions: network attackers, malicious resource owners

and clients, untrusted websites and JavaScript are enabled;

both OAuth explicit and implicit mode are enabled; but no

HTTP redirectors are allowed on honest servers; no login

or data CSRF attacks exist on honest apps; each client has

exactly one authorization server; and every authorization

server is honest. Under these conditions, ProVerif is unable

to find any attacks, even considering an unbounded number

of sessions. This should not be interpreted as a definitive

proof of security, since we model only a subset of OAuth

configurations and our attacker model is not complete.

Under other attacker configurations, ProVerif finds proto-

col traces that violate the security goals (attacks). Table III

summarizes the attacks found by ProVerif. In each case, we

were able to extract attacker processes (as we did for the

login application of Section IV). In Appendix B we provide

processes for some of these attacks, the full listings can be

found online. These formal attacks led to our discovery of

concrete, previously unknown attacks involving Facebook,

Twitter, Yahoo, IMDB, Bitly and several other popular web

sites. Table IV in Appendix B summarizes our website

attacks. The rest of this section describes and discusses these

attacks.

C. Social CSRF attacks against OAuth 2.0

We identify four conditions under which OAuth 2.0

deployments are vulnerable to Social CSRF attacks.

Automatic Login CSRF. As described in Section II, the social

login form of the OAuth client CitySearch is not protected

against CSRF. Hence, a malicious website can cause the

resource owner to log in to CitySearch (through Facebook)

even if she did not wish to. We call this an automatic login

CSRF, and it is widespread among OAuth client websites.

ProVerif finds this attack on both OAuth flows, as a

violation of the SocialLoginAccepted policy on our model. It

demonstrates a trace where it is possible for the OAuth client

process to execute the event SocialLoginAccepted even though

this resource owner never previously executed SocialLogin.

Social Sharing CSRF. Again as described in Section II, the

review forms on CitySearch are not protected against regular

CSRF attacks. Hence, a malicious website can post arbitrary

reviews in the name of an honest resource owner, and this

form will be cross-posted on Facebook.

ProVerif finds this attack on both OAuth flows, as a vio-

lation of the APIRequest policy at the client. It demonstrates

a trace where a malicious website causes the client process

to send a storeData API request, even though the resource

owner never asked for any data to be stored.

Social Login CSRF on stateless clients. OAuth clients like

IMDB do not implement the optional state parameter, hence

they are subject to a Social login CSRF attack, as predicted

by the OAuth specification. ProVerif finds a trace that

violates SocialLoginDone.

Social Login CSRF through AS Login CSRF. If an OAuth

authorization server, such as Twitter, is vulnerable to a login

CSRF, this vulnerability can be translated to a Social Login

244244256

CSRF attack on any of its clients. ProVerif again finds a

violation of SocialLoginDone.

D. Token redirection attacks against OAuth 2.0
We identify three conditions under which OAuth 2.0

deployments are vulnerable to access token and authoriza-

tion code redirection, leading to serious attacks such as

unauthorized login on the client and resource theft on the

resource server. All of these attacks involve manipulations of

the redirect uri, and rely on the existence of an open redirector

on the client.

Unauthorized Login by Authentication Code Redirection.
Many OAuth clients, such as WordPress and Yahoo, host

HTTP redirectors on their website. Suppose the redirector’s

URI is an allowable redirect uri for the client at the authoriza-

tion server. Moreover, assume that the authorization server

does not check that the same redirect uri is used in both the

CodeRequest and in the APITokenRequest. Then a malicious

website can use this URI to login to the client impersonating

an honest resource owner. ProVerif finds this attack as a

violation of the SocialLoginAccepted policy.

Consider as an example WordPress, which allows single

sign-on with Facebook. Suppose the attacker has a blog

on WordPress. For a fee, WordPress allows its members

to forward all traffic sent to their blog to an external

website. Hence, the attacker can set up an HTTP redirector

at eve.wordpress.com.

Now, when a resource owner tries to log in to someblog.

wordpress.com using Facebook, she is redirected to Face-

book and then back with the authorization code to someblog.

wordpress.com/connect/?code=C. However, Facebook is

willing to redirect this code to any URL of the form

.wordpress.com/ because the domain registered for the

WordPress app at Facebook is just wordpress.com. This

enables an attack where a malicious website can obtain

the authorization code of an honest resource owner by

redirecting him to Facebook with the redirection uri eve.

wordpress.com. Using this authorization code, the attacker

can then log in to WordPress (on his own browser), thus

breaking the primary authentication goal of social sign-on.

We note that this attack is not prevented by using a state

parameter at the client.

Resource Theft by Access Token Redirection. If an OAuth

authorization server is willing to enter a user-agent flow

with a client that has an HTTP redirector, then an attack

similar to the previous one becomes possible, except that the

malicious website is able to obtain the access token instead

of the authorization code. It can then use this access token

to directly access the resource server APIs to steal an honest

user’s resources. ProVerif finds this attack as a violation of

the APIResponse policy.

For example, we found such an attack on Yahoo, since it

offers an HTTP redirector as part of its search functionality.

A malicious website can read the Facebook profile of any

user who has in the past used social login on Yahoo. It

is interesting to note that even though Yahoo itself never

engages in the user-agent flow, Facebook is still willing to

enter into a user-agent flow with a website pretending to be

Yahoo, which leads to this attack.

Cross Social-Network Request Forgery. Suppose an OAuth

client supports social login with multiple social networks,

but it uses the same login endpoint for all networks. This

is the case on many websites that use the JanRain or

GigYa libraries to manage their social login. Then if one

of the authorization servers is malicious, it can steal an

honest resource owner’s authorization code, access token,

and resources at any of the other authorization servers,

by confusing the OAuth client about which social network

the user is logging in with. ProVerif finds the attack as a

violation of the APITokenResponse policy.

E. Constructing concrete website attacks
Going from the formal counterexamples of ProVerif in

Table III to the concrete website attacks of Table IV involved

several steps. First we analysed the ProVerif traces to extract

the short attacker processes of Appendix B, as illustrated

in Section IV for the login application. Then we collected

normal web traces using the TamperData extension for

Firefox. By running a script on these traces, we collected

client and authorization server login URIs, CSRF vulnerable

forms, and client application identifiers. Using this data,

we wrote website attackers in a combination of PHP and

JavaScript and examined an arbitrary selection of OAuth 2.0

clients and authorization servers. We focused on websites on

which we quickly found vulnerabilities. Other websites may

also be vulnerable to these or related attacks.

F. Discussion
Some of the attacks described here were known (or

predicted) in theory, but their existence in real websites were

usually unknown before we reported them. We have notified

Yahoo, Facebook and other websites mentioned in this paper,

which have already adopted some of our suggested fixes.

Our attacks rely on weaknesses in OAuth clients or

authorization servers, and we find that these do exist in

practice. It is worth discussing why this may be the case.

CSRF attacks on websites are widespread and seem to be

difficult to eradicate. We found a login CSRF attack on the

front page of Twitter, a highly popular website, and it seems

this vulnerability has been known for some time, and was

not considered serious, except that it may now be used as a

login CSRF attack on any Twitter client. Our analysis finds

such flaws, and proposes a general rule-of-thumb: that any
website action that leads to a social network action should

be protected from CSRF.

Open redirectors in client websites are another known

problem, although most of the focus on them is to prevent

245245257

Configuration Time Policy Violated Attacks Found Steps Attack Process
Login over HTTP 12s LoginAuthorized Password Sniffing 1324 8 lines
Login form without CSRF protection 11s ValidSession Login CSRF 3568 12 lines
Data Server form update without CSRF protection 43 DataStoreAuthorized Form CSRF 2360 11 lines
OAuth client login form without CSRF protection 4m SocialLoginAccepted Automatic Login CSRF 2879 11 lines
OAuth client data form without CSRF protection 13m APIRequest Social Sharing CSRF 11342 21 lines
OAuth auth server login form without CSRF protection 12m SocialLoginAccepted Social Login CSRF 13804 28 lines
OAuth implicit client without State 16m SocialLoginDone Social Login CSRF 25834 37 lines
OAuth implicit client with token redirector 20m APIResponse Resource Theft 23101 30 lines
OAuth explicit client with code redirector 23m SocialLoginDone Unauthorized Login 12452 34 lines
OAuth explicit client with multiple auth servers 17m APITokenResponse Cross Social-Network

Request Forgery
19845 31 lines

The first three configurations correspond to normal website attacks and their effect on website security goals. The rest of the table shows OAuth attacks
discovered by ProVerif. For each configuration, we name the security policy violation found by ProVerif, the number of steps in the ProVerif derivation,
and the size of our attacker process.

Table III
FORMAL ATTACKS FOUND USING PROVERIF

phishing. Our attacks rely more generally on any redirector

that may forward an OAuth token to a malicious website. We

found three areas of concern. Search engines like Yahoo use

redirection URLs for pages that they index. URL shortening

services like Bitly necessarily offer a redirection service.

Web hosting services such as WordPress offer potentially

malicious clients access to their namespace. When inte-

grating such websites with social networks, it becomes

imperative to carefully delineate the part of the namespace

that will be used for social login and to ensure there are no

redirectors allowed in this namespace.

The incorrect treatment of redirection URIs at authoriza-

tion servers enables many of our attacks. Contrarily to the

OAuth 2.0 specification recommendations, Facebook does

not require the registration of the full client redirection URI,

because some clients may also use an OAuth flow where the

redirection URI cannot be verified. Finding a way to rectify

this problem while still supporting such clients is the subject

of ongoing discussions.

Finally, a word of comparison between OAuth 2.0 and its

competitors. OAuth 2.0 lacks request and response authen-

tication, which leads to several of the issues found in this

paper. Still, correct implementations of OAuth 2.0 do not

suffer from these attacks. OAuth 1.0 featured both request

and response authentication, but it was deemed too difficult

to implement for widespread adoption (moreover, it was still

vulnerable to session fixation attacks.) OpenID 2.0 features

response authentication but not request authentication, which

prevents some of the attacks found in this paper but not

attacks like OpenID Realm Phishing [32].

VI. RELATED WORK

Formal models of web browsing. Yoshihama et al. [34]

present a browser security model that relies on information

flow labels to enforce fine-grained access control, focusing

on mashups. They describe the browser by means of a

big-step operational semantics that models the evaluation

of client-side scripts. The model includes multiple browser

windows, the DOM, cookies and high-level HTTP requests.

Some of the attacks we presented cannot be observed in

that model. For example, CSRF attacks are prevented by

construction. By contrast, since our goal is to analyze

protocols and detect potential flaws, our browser model

makes it possible to observe any sequence of events that

can be triggered by a combination of web users, client side

scripts and server-provided pages, including those leading to

security violations.

Motivated by [34], Bohannon and Pierce [12] formal-

ize the core of a web browser as an executable, small-

step reactive semantics. The model gives a rather precise

description of what happens within a browser, including

DOM tags, user actions to navigate windows, and a core

scripting language. Our formalization instead abstracts away

from browser implementation details and focuses on web

pages, client-side scripts and user behaviour. Both [34] and

[12] focus on the web script security problem, that is how

to preserve security for pages composed by scripts from

different sources. The model does not encompass features

such as HTML forms, redirection and https which are

important in our case to describe more general security goals

for web applications.

Akhawe et al. [5] propose a general model of web

security, which consists of a discussion of important web

concepts (browsers, servers and the network), a web threat

model (with users and web, network and gadget attackers),

and of two general web security goals: preserving existing

applications invariants and preserving session integrity. They

implement a subset of this general model in the Alloy

protocol verifier [24]. Alloy lets user specify protocols in a

declarative object-modeling syntax, and then verify bounded

instances of such protocols by translation to a SAT solver.

This formal subset of the web model is used on five different

case studies, leading to the re-discovery of two known

vulnerability and the discovery of three novel vulnerabilities.

246246258

Website Role(s) Preexisting Vulnerabilities New Social CSRF Attacks New Token Redirection Attacks
Login Form Token Login Automatic Sharing Resource Unauthorized Cross Social-Network
CSRF CSRF Redirector CSRF Login CSRF Theft Login Request Forgery

Twitter AS, RS Yes Yes
Facebook AS, RS Yes Yes Yes
Yahoo Client Yes Yes Yes
WordPress Client Yes Yes Yes Yes Yes
CitySearch Client Yes Yes Yes Yes Yes
IndiaTimes Client Yes Yes Yes Yes Yes
Bitly Client Yes Yes Yes
IMDB Client Yes Yes Yes
Posterous Client Yes Yes
Shopbot Client Yes Yes Yes
JanRain Client lib Yes
GigYa Client lib Yes

The first section summarizes attacks on authorization servers, the second on OAuth clients, and the third on OAuth client libraries.
This is a representative selection of attacks found between June 2011 and February 2012. Most of these websites have since been fixed.

Table IV
CONCRETE OAUTH WEBSITE ATTACKS DERIVED FROM PROVERIF TRACES

Our work was most inspired by [5], with notable differences.

We directly express our formal model in the variant of the

applied pi-calculus, a formalism ideally suited to describe

security protocols in an operational way, that is focusing on

a high-level view of the actions performed by the various

components of a web application. This approach reflects as

closely as possible the intuition of the human designer (or

analyzer) of the protocol, and helps us in the systematic

reconstruction of attacks from formal traces. This language

is also understood by the ProVerif protocol analysis tool,

that is able to verify protocol instances of arbitrary size, as

opposed to the bounded verification performed in Alloy.
Unbounded verification becomes important for flexible

protocols such as OAuth 2.0, that even in the simplest

case involve five heterogeneous principals and eight HTTP

exchanges. In general, one may even construct OAuth con-

figurations with a chain of authorization servers, say signing-

on to a website with a Yahoo account, and signing-on

to Yahoo with Facebook. For such extensible protocols, it

becomes difficult to find a precise bound on the protocol

model that would suffice to discover potential attacks.

Formal analysis of social sign-on. Early single sign-on

protocols were often formally analyzed [28], [23], [8], but

were not deployed widely enough to expose the kinds of

website attacks (such as CSRF) discussed in this paper.
Pai et al. [27] adopt a Knowledge Flow Analysis ap-

proach [31] to formalize the specification of OAuth 2.0 in

predicate logics, a formalism similar to our Datalog-like

policies. They directly translate and analyze their logical

specification in Alloy, rediscovering a previously known

protocol flaw. Our ProVerif models are more operational,

closer to a web programmer’s intuition. Our analysis with

respect to different classes of attackers is able to discover a

larger number of potential protocol abuses.
Chari et al. [16] analyze the authorization code mode of

OAuth 2.0 in the Universal Composability Security Frame-

work [13]. They model a slightly revised version of the

protocol that assumes that both client and servers use TLS

and mandates some additional checks. This model is proven

secure by a simulation argument, and is refined into an

HTTPS-based implementation.

Miculan and Urban [26] model the Facebook Connect

protocol for single sign-on using the HLPSL specification

language and AVISPA. Due to the lack of a specification of

the protocol, which is offered as a service by Facebook, they

infer a model of Facebook Connect in HLPSL by observing

the messages effectively exchanged during valid protocol

runs. Using AVISPA, they identify a replay attack and a

masquerade attack for which they propose and verify a fix.

VII. CONCLUSIONS

We present a security analysis of the OAuth 2.0 protocol,

using ProVerif, extended with the WebSpi library that for-

malizes web users, applications and attackers. Our analysis

establishes both positive and negative security results, and

the design of our library makes it easy to translate formal

counterexamples into concrete attacks on websites. The

effectiveness of the approach is validated by the discovery

of several vulnerabilities in leading websites that use the

OAuth 2.0 protocol. Expert human reviewers would have

been able to find these attacks on a case-by-case basis.

Our contribution is to make this discovery systematic, and

partially automated. The models presented here do not cover

some other common attacks, such as XSS, SQL Injection,

and DNS rebinding. In future work, we plan to extend

WebSpi in order to capture also these attacks, and verify

more web security mechanisms and protocols.

Acknowledgments. Bhargavan is supported by the ERC Start-

ing Grant CRYSP. Maffeis is supported by EPSRC grant

EP/I004246/1. Part of this work was done while Bansal and

Maffeis were visiting the Microsoft-INRIA Joint Centre and

INRIA Paris-Rocquencourt.

247247259

REFERENCES

[1] AVISPA. http://http://avispa-project.org/.

[2] M. Abadi and C. Fournet. Private authentication. Theoretical
Computer Science, 322(3):427–476, 2004.

[3] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computing,
148(1):1–70, 1999.

[4] M. Abadi and B.T. Loo. Towards a declarative language
and system for secure networking. In Proceedings of the
3rd USENIX international workshop on Networking meets
databases, page 2. USENIX Association, 2007.

[5] D. Akhawe, A. Barth, P.E. Lam, J. Mitchell, and D. Song.
Towards a formal foundation of web security. In 2010 23rd
IEEE Computer Security Foundations Symposium, pages 290–
304. IEEE, 2010.

[6] D. Balfanz, B. de Medeiros, D. Recordon, J. Smarr, and
A. Tom. OpenID OAuth Extension. Internet Draft, 2009.

[7] K. Bhargavan, C. Fournet, R. Corin, and E. Zălinescu. Ver-
ified cryptographic implementations for tls. ACM Trans. Inf.
Syst. Secur., 15(1):3:1–3:32, March 2012.

[8] K. Bhargavan, C. Fournet, A.D. Gordon, and N. Swamy.
Verified implementations of the information card federated
identity-management protocol. In Proceedings of the 2008
ACM symposium on Information, computer and communica-
tions security, ASIACCS ’08, pages 123–135, New York, NY,
USA, 2008. ACM.

[9] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. In CSFW, pages 82–96, 2001.

[10] B. Blanchet. Automatic verification of correspondences for
security protocols. Journal of Computer Security, 17(4):363–
434, 2009.

[11] B. Blanchet and B. Smyth. ProVerif: Automatic Crypto-
graphic Protocol Verier, User Manual and Tutorial. http:
//www.proverif.ens.fr/manual.pdf.

[12] A. Bohannon and B. C. Pierce. Featherweight Firefox.
Proceedings of the 2010 USENIX conference on Web, 2010.

[13] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS, pages 136–145, 2001.

[14] S. Cantor, J. Kemp, R. Philpott, and E. Maler. Assertions and
protocols for the oasis security assertion markup language
(saml) v2.0, 2005.

[15] C.Bansal, K. Bhargavan, and S. Maffeis. WebSpi and web
application models. http://prosecco.gforge.inria.
fr/webspi/, 2011.

[16] S. Chari, C. S. Jutla, and A. Roy. Universally composable
security analysis of oauth v2.0. IACR Cryptology ePrint
Archive, 2011:526, 2011.

[17] F. Corella and K. Lewison. Security Analysis of Double
Redirection Protocols. Pomcor Technical Report, 2011.

[18] A. Datta, J. Franklin, D. Garg, L. Jia, and D. Kaynar. On
adversary models and compositional security. IEEE Security
& Privacy, 9(3):26–32, 2011.

[19] J. DeTreville. Binder, a logic-based security language. In
IEEE Symposium on Security and Privacy, pages 105–113,
2002.

[20] E. Hammer-Lahav. The OAuth 1.0 Protocol. IETF RFC 5849,
2010.

[21] C. Fournet, A. D. Gordon, and S. Maffeis. A type discipline
for authorization policies. ACM Trans. Program. Lang. Syst.,
29(5), 2007.

[22] E. Hammer-Lahav, D. Recordon, and D. Hardt. The OAuth
2.0 Authorization Protocol. IETF Internet Draft, 2011.

[23] S. Hansen, J. Skriver, and H.R. Nielson. Using static analysis
to validate the saml single sign-on protocol. In Proceedings of
the 2005 workshop on Issues in the theory of security, WITS
’05, pages 27–40, New York, NY, USA, 2005. ACM.

[24] D. Jackson. Alloy: A logical modelling language. In ZB,
page 1, 2003.

[25] T Lodderstedt, M Mcgloin, and P Hunt. OAuth 2.0 Threat
Model and Security Considerations. IETF Internet Draft,
2011.

[26] M. Miculan and C. Urban. Formal analysis of Facebook
Connect Single Sign-On authentication protocol. In SofSem
2011, Proceedings of Student Research Forum, pages 99–116,
2011.

[27] S. Pai, Y. Sharma, S. Kumar, R. M. Pai, and S. Singh.
Formal Verification of OAuth 2.0 Using Alloy Framework.
2011 International Conference on Communication Systems
and Network Technologies, pages 655–659, June 2011.

[28] B. Pfitzmann and M. Waidner. Analysis of liberty single-sign-
on with enabled clients. IEEE Internet Computing, 7(6):38–
44, 2003.

[29] D. Recordon and D. Reed. OpenID 2 . 0 : A Platform for
User-Centric Identity Management. Discovery, pages 11–15,
2006.

[30] E. Rescorla. HTTP Over TLS. IETF RCF 2818, 2000.

[31] E. Torlak, M. van Dijk, B. Gassend, D. Jackson, and S. De-
vadas. Knowledge flow analysis for security protocols. MIT
Technical Report MIT-CSAIL-TR-2005-066, 2006.

[32] OpenID Wiki. Phishing Brainstorm. http://wiki.openid.
net/w/page/12995216/OpenID_Phishing_Brainstorm,
2009.

[33] T.Y.C. Woo and S.S. Lam. A semantic model for authentica-
tion protocols. In IEEE Symposium on Security and Privacy,
pages 178–194, 1993.

[34] S. Yoshihama, T. Tateishi, N. Tabuchi, and T. Matsumoto.
Information-Flow-Based Access Control for Web Browsers.
IEICE Transactions on Information and Systems, E92-
D(5):836–850, 2009.

248248260

APPENDIX

A. ProVerif
In this Appendix we describe the ProVerif specification

language, and summarize its verification methodology, to

the extent used in this paper. We refer the reader to [11], [9]

for details on the ProVerif syntax and verification method.
The ProVerif specification language is a variant of the

applied pi-calculus [2], an operational model of communi-

cating concurrent processes with a flexible sublanguage for

describing data structures and functional computation.

Messages. Basic types are channels, bitstrings or user-

defined. Atomic messages, typically ranged over by

a, b, c, h, k, ... are tokens of basic types. Messages can be

composed by pairing (M,N) or by applying n-ary data

constructors and destructors f(M1, ...,Mn). Constructors

and destructors are particularly useful for cryptography, as

described below. Pattern matching is extensively used to

parse messages. Messages may be sent on private or public

channels or stored in tables.

M,N,X ::= message

a channel,key,data,...

x variable

(M,N) pair

f(M1,...,Mn) constructor or destructor

f applied to M1, ...,Mn
=M matching operator

Cryptography. ProVerif models symbolic cryptography:

cryptographic algorithms are treated as perfect black-boxes

whose properties are abstractly encoded using constructors

and destructors. Consider authenticated encryption:

fun aenc(bitstring,symkey): bitstring.

reduc forall b:bitstring,k:symkey; adec(aenc(b,k),k) = b.

Given a bit-string b and a symmetric key k, the term aenc(b,k)

stands for the bitstring obtained by encrypting b under k. The

destructor adec, given an authenticated encryption and the

original symmetric key, evaluates to the original bit-string b.
ProVerif constructors are collision-free (one-one) func-

tions and are only reversible if equipped with a correspond-

ing destructor. Hence, MACs and hashes are modeled as

irreversible constructors, and asymmetric cryptography is

modeled using public and private keys:

fun hash(bitstring) : bitstring.

fun pk(privkey):pubkey.

fun wrap(symkey,pubkey): bitstring.

reduc forall k:symkey,dk:privkey; unwrap(wrap(k,pk(dk)),dk) = k.

fun sign(bitstring,privkey): bitstring.

reduc forall b:bitstring,sk:privkey; verify(sign(b,sk),pk(sk)) = b.

These and other standard cryptographic operations are part

of the ProVerif library. Users can define other primitives

where necessary. Such primitives can be used for example

to build detailed models of protocols like TLS [7].

Protocol Processes.. The syntax of the applied-pi processes

used in ProVerif (reported below) is mostly standard from

process algebra. Messages may be sent and received on

channels, or stored and retrieved from tables (which are

formally just private channels). Fresh messages (such as

nonces) are generated using new. Pattern matching is used

to parse messages in let, but also when receiving messages

from channels or tables. Predicates p(M) are invoked in

conditionals (boolean conditions M=N are a special case).

Finally, processes can be run in parallel, and even replicated.

P,Q ::= process

out(a,M);P send M on channel a
in(a,X);P receive message in X
insert(t,M);P insert M into table t
get(t,X) in P retrieve table entry in X
new a;P fresh name with scope P
event e(M1,...,Mn);P insert event in trace

let X=M in P pattern matching

if p(M) then P else Q conditional statement

P|Q run P and Q in parallel

!P run unbounded number of

copies of P in parallel

Security Queries. The command event e(M1,...,Mn) inserts an

event e(M1,...,Mn) in the trace of the process being executed.

Such events form the basis of the verification model of

ProVerif. A script in fact contains processes and queries of

the form ∀M1, ...Mk. e(M1, ...Mk) ⇒ φ. The tool tries to

prove that whenever the event e is reachable, the formula φ
is true (φ can contain conjunctions or disjunctions).

A common case is that of correspondence assertions [33],

where φ = e′(M1, ...Mk) and the goal is to show that if e is

reachable then e′ must have been reached beforehand. Corre-

spondence queries naturally encode authentication goals, as

noted in Section IV-B. Syntactic secrecy goals are encoded

as reachability queries on the attacker’s knowledge.

Verification. ProVerif translates applied-pi processes into

Horn clauses in order to perform automatic verification. The

main soundness theorem in [10] guarantees that if ProVerif

says that a query is true for a given script, then it is in fact

the case that the query is true on all traces of the applied-

pi processes defined in the script in parallel with any other

arbitrary attacker processes.
If a query is false, ProVerif produces a proof derivation

that shows how an attacker may be able to trigger an event

that violates the query. In some cases, ProVerif can even

extract a step-by-step attack trace.
General cryptographic protocol verification is undecid-

able, and hence ProVerif cannot always terminate. ProVerif

uses conservative abstractions that let it analyze protocol

instances for an unbounded number of participants, sessions,

and attackers, but may potentially report false positives.

Hence, one needs to validate proof derivations and formal

attack traces before accepting them as counterexamples.

249249261

B. Example ProVerif Attacks on OAuth 2.0 Websites

Automatic Login and Social Sharing CSRF
(on CitySearch and Facebook).
let CitysearchFacebookAttack(csSocialLoginUri:Uri,

csReviewSubmitUri:Uri,eveAppUri:App) =
(∗ Alice browses to Eve’s website∗)
out (admin,getServerRequest(eveAppUri));
in (result,(=getServerRequest(eveAppUri),

(u:Uri,req1:HttpRequest,
hs1:Params,corr1:bitstring)));

(∗ Eve redirects Alice to automatically login at Citysearch ∗)
out(admin,sendServerResponse(eveAppUri,

(u,httpRedirect(csSocialLoginUri),
nullCookiePair(),corr1)));

out (admin,getServerRequest(eveAppUri));
(∗ Alice browses again to Eve’s website ∗)
in (result,(=getServerRequest(eveAppUri),

(=u,req2:HttpRequest,
hs2:Params,corr2:bitstring)));

(∗ Eve redirects Alice to post Eve’s review at Citysearch & Facebook ∗)
new myReview:bitstring;
out(admin,sendServerResponse(eveAppUri,(u,

httpOk(csReviewForm(csReviewSubmitUri,myReview)),
nullCookiePair(),corr2))).

Social Login CSRF
(on IMDB using Facebook).
let IMDBAttack(facebookLoginUri:Uri,facebookOAuthUri:Uri,

imdbSocialLoginUri:Uri,
eveAppUri:App,eveId:Id,evePwd:Secret) =

(∗ Eve logs in to Facebook ∗)
let C1 = httpRequestResponse(nullCookiePair(),

facebookLoginUri,httpGet()) in
out (admin,C1);
in (result,(=C1,(sid:Cookie,sp:Principal,httpOk(form1))));
let C2 = httpRequestResponse(sid,facebookLoginUri,

httpPost(loginFormReply(form1,eveId,evePwd))) in
out (admin,C2);
in (result,(=C2,(=sid,=sp,httpOk(loginSuccess()))));

(∗ Eve authorize IMDB as a Client for Eve@Facebook ∗)
let C3 = httpRequestResponse(sid,facebookOAuthUri,httpGet()) in
out (admin,C3);
in (result,(=C3,(=sid,=sp,httpOk(form2))));
let C4 = httpRequestResponse(sid,facebookOAuthUri,

httpPost(oauthFormReply(form2))) in
out (admin,C4);

(∗ Eve intercepts her Authorization Code for IMDB ∗)
let C5 = httpRequestResponse(nullCookiePair(),

imdbSocialLoginUri,httpGet()) in
out (admin,C5);
in (result,(=C5,(sid’:Cookie,sp’:Principal,httpRedirect(fb))));
let C6 = httpRequestResponse(sid,fb,httpGet()) in
out (admin,C6);
in (result,(=C6,(=sid,=sp,httpRedirect(im))));

(∗ Alice browses to Eve’s website ∗)
let C7 = getServerRequest(eveAppUri) in
out (admin,C7);
in (result,(=C7,(u:Uri,req:HttpRequest,

hs:Params,corr:bitstring)));
(∗ Eve redirects Alice to login to IMDB using Eve’s Authorization Code ∗)
let C8 = sendServerResponse(eveAppUri,

(u,httpRedirect(im),
nullCookiePair(),corr)) in

out(admin,C8).

Resource Theft by Access Token Redirection
(on Yahoo and Facebook).
let YahooFacebookAttack(facebookOAuthUri:Uri,

facebookGraphAPI:Uri,eveAppUri:App,
yahoo app id:Id, yahoo eve redirector:Uri) =

(∗ Alice browses to Eve’s website ∗)
let C1 = getServerRequest(eveAppUri) in
out (admin,C1);
in (result,(=C1,(u1:Uri,req1:HttpRequest,

hs1:Params,corr1:bitstring)));
(∗ Eve redirects Alice to Facebook’s OAuth Server

using redirect uri=yahoo eve redirector ∗)
new state:Cookie;
let authUri = uri(ep(facebookOAuthUri),

oauthRequest(yahoo app id,state,
ep(yahoo eve redirector))) in

let C2 = sendServerResponse(eveAppUri,
(u1,httpRedirect(authUri),
nullCookiePair(),corr1)) in

out(admin,C2);
(∗ Alice is redirected to yahoo eve redirector with

her access token for Yahoo, which redirects her back to Eve ∗)
let C3 = getServerRequest(eveAppUri) in
out (admin,C3);
in (result,(=C3,(u2:Uri,req2:HttpRequest,

hs2:Params,corr2:bitstring)));
let oauthToken(=state,token) = params(u2) in
(∗ Eve uses Alice’s access token to steal her Facebook data ∗)
let dataUri = uri(ep(facebookGraphAPI),oauthDataRequest(token)) in
let C4 = httpRequestResponse(nullCookiePair(),dataUri,httpGet()) in
out (admin,C4);
in (result,(=C4,(sid:Cookie,sp:Principal,httpOk(data)))).

Unauthorized Social Login by Auth Code Redirection
(on WordPress and Facebook).
let WordpressFacebookAttack(wpSocialLoginUri:Uri,

eveAppUri:App, wp app id:Id,wp eve redirector:Uri) =
(∗ Eve starts to ”Login with Facebook” on Wordpress ∗)
let C1 = httpRequestResponse(nullCookiePair(),

wpSocialLoginUri,httpGet()) in
out (admin,C1);
(∗ Eve intercepts the authorization request to Facebook

and modifies redirect uri to wp eve redirector ∗)
in (result,(=C1,(sid:Cookie,sp:Principal,httpRedirect(fb))));
let oauthRequest(app id,state,redirect ep) = params(fb) in
let newParams = oauthRequest(app id,state,ep(wp eve redirector)) in
let newUri = uri(ep(fb),newParams) in
(∗ Alice browses to Eve’s website ∗)
let C2 = getServerRequest(eveAppUri) in
out (admin,C2);
in (result,(=C2,(u1:Uri,req1:HttpRequest,

hs1:Params,corr1:bitstring)));
(∗ Eve redirects Alice to modified Facebook authrization URI ∗)
let C3 = sendServerResponse(eveAppUri,

(u1,httpRedirect(newUri),
nullCookiePair(),corr1)) in

out(admin,C2);
(∗ Alice is redirected to wp eve redirector with

her access code for Wordpress, which redirects her back to Eve ∗)
let C4 = getServerRequest(eveAppUri) in
out (admin,C4);
in (result,(=C4,(u2:Uri,req2:HttpRequest,

hs2:Params,corr2:bitstring)));
let oauthCode(=app id,=state,as,code) = params(u2) in
(∗ Eve logs into Wordpress using this code pretending to

respond to the original authorization request ∗)
let loginUri = uri(redirect ep,oauthCode(app id,state,as,code)) in
let C5 = httpRequestResponse(nullCookiePair(),loginUri,httpGet()) in
out (admin,C5).

250250262

