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Abstract
This article addresses a particular Transfer Reinforcement
Learning (RL) problem: when dynamics do not change from
one task to another, and only the reward function does. Our
method relies on two ideas, the first one is that transition sam-
ples obtained from a task can be reused to learn on any other
task: an immediate reward estimator is learnt in a supervised
fashion and for each sample, the reward entry is changed by
its reward estimate. The second idea consists in adopting the
optimism in the face of uncertainty principle and to use upper
bound reward estimates. Our method is tested on a navigation
task, under four Transfer RL experimental settings: with a
known reward function, with strong and weak expert knowl-
edge on the reward function, and with a completely unknown
reward function. It is also evaluated in a Multi-Task RL ex-
periment and compared with the state-of-the-art algorithms.
Results reveal that this method constitutes a major improve-
ment for transfer/multi-task problems that share dynamics.

1 Introduction
Reinforcement Learning (RL, (Sutton and Barto 1998)) is
a framework for optimising an agent behaviour in an envi-
ronment. It is generally formalised as a Markov Decision
Process (MDP): 〈S,A, R, P, γ〉 where S the state space, and
A the action space are known by the agent. P : S ×A → S ,
the Markovian transition stochastic function, defines the un-
known dynamics of the environment. R : S → R, the im-
mediate reward stochastic function, defines the goal(s)1. In
some settings such as dialogue systems (Laroche et al. 2009;
Lemon and Pietquin 2012) or board games (Tesauro 1995;
Silver et al. 2016),R can be inferred directly from the state by
the agent, and in some others such as in robotics and in Atari
games (Mnih et al. 2013; 2015), R is generally unknown.
Finally, γ ∈ [0, 1) the discount factor is a parameter given to
the RL optimisation algorithm favouring short-term rewards.
As a consequence, the RL problem consists in (directly or
indirectly) discovering P , sometimes R, and planning.

Even when R is unknown, R is often simpler to learn
than P : its definition is less combinatorial, R is generally

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1In this article, reward functions are defined on state represen-
tation S, but all the results can be straightforwardly transposed to
rewards received after performing an action in a given state, i.e. to
reward function defined on S ×A.

sparse, only a mean estimation is required, R tends to be
less stochastic than P , and finally it is frequently possible
for the designer to inject expert knowledge: for instance, an
adequate state space representation for R, the uniqueness of
the state with a positive reward, its determinism or stochastic
property, and/or the existence of R bounds: Rmin and Rmax.

Discovering (directly or indirectly) P and R requires col-
lecting trajectories. In real world problems, trajectory col-
lection is resource consuming (time, money), and Transfer
Learning for RL (Taylor and Stone 2009; Lazaric 2012),
through reuse of knowledge acquired from similar tasks, has
proven useful in many RL domains: Atari games (Romoff,
Bengio, and Pineau 2016), robotics (Taylor, Stone, and Liu
2007), or dialogue (Genevay and Laroche 2016). In this ar-
ticle, we address the problem of Transfer Reinforcement
Learning with Shared Dynamics (TRLSD), i.e. the transfer
problem when P is constant over tasks τ ∈ T , which thus
only differ from each other by their reward functions Rτ . We
include the Multi-Task RL variation of this problem under
this denomination, i.e. when learning is made in parallel on
several tasks. This family of problems may be encountered
for instance in robotics, where the robot agent has to under-
stand the complex shared environment dynamics in order to
perform high level tasks that rely on this understanding.

In this article, we advocate that experience gathered on
a task can be indirectly and directly reused on another task
and that transfer can be made at the transition sample level.
Additionally, the optimism in the face of uncertainty prin-
ciple allows to guide the exploration efficiently on a new
task, thanks to the dynamics knowledge transferred from the
other tasks. The combination of those two principles allows
us to define a general algorithm for TRLSD, on a continu-
ous state space, enabling the injection of task related expert
knowledge.

Section 2 offers an overview of the known studies related
to TRLSD, and introduces the principles of transition sample
sharing between tasks. Then, Section 3 recalls the optimism
in the face of uncertainty principle, explains how to apply it to
our setting, and explores different ways of computing this op-
timism, inspired from the UCRL algorithm. Finally, Section
4 presents various experiments illustrating and demonstrat-
ing the functioning of our algorithms in Transfer RL and
Multi-Task RL experiments. The experimental results demon-
strate the significant improvement brought by our approach,



in comparison with the state-of-the-art algorithms in TRLSD.

2 Background and Principle
To the authors knowledge at the time they write this article,
only two recent works were dedicated to TRLSD. First, (Bar-
reto et al. 2016) present the framework as a kind of hierarchi-
cal reinforcement learning, where composite and compound-
able subtasks are discovered by generalisation over tasks. In
order to do so, tasks share the successor features2 of their
policies, which are invariant from one task to another. Their
decomposition of the reward function from the dynamics is
unfortunately restricted to policies characterising the succes-
sor features. Additionally, the theoretical analysis depends
on Rτ similarities, which is not an assumption that is made
in this article. Second, (Borsa, Graepel, and Shawe-Taylor
2016) address the same problem in a Multi-Task RL setting
by sharing the value-function representation: they build a tran-
sition sample set for all tasks and apply generalised versions
of Fitted-Q iteration (Ernst, Geurts, and Wehenkel 2005)
and Fitted Policy Iteration (Antos, Szepesvári, and Munos
2007) learning on those transitions as a whole. The gener-
alisation amongst tasks occurs in the regularisation used in
the supervised learning step of Fitted-Q iteration (and policy
iteration/evaluation).

Instead of sharing successor features or value-function rep-
resentations, we argue that transition samples can be shared
across tasks. A transition sample (or sample in short) is classi-
cally defined as a 4-tuple ξ = 〈s, a, r, s′〉, where s is the state
at the beginning of the transition, a is the action performed, r
is the reward immediately received, and s′ is the state reached
at the end of the transition. For Transfer and Multi-Task RL,
it is enhanced with task τ to keep in memory which task gen-
erated the sample: ξτ = 〈τ, s, a, r, s′〉. Formulated in another
way, s is drawn according to a distribution depending on the
behavioural policy πτ , a according to the behavioural policy
πτ (s), r according to the reward function Rτ (s) of task τ
and s′ according to the shared dynamics P (s, a).

As a consequence, with a transition sample set for all
tasks Ξ =

⋃
τ∈T Ξτ , one can independently learn P̂ , an

estimate of P , in a supervised learning way. In the same
manner, with the sample set constituted exclusively of task τ
transitions Ξτ , one can independently learn R̂τ , an estimate
of the reward function expected value E[Rτ ], in a supervised
learning way. This is what model-based RL does (Moore
and Atkeson 1993; Brafman and Tennenholtz 2002; Kearns
and Singh 2002). In other words, if transition sample ξτ was
generated on task τ , and if task τ ′ shares the dynamics P
with τ , then ξτ can be used for learning the dynamics model
of task τ ′. The adaptation to non-stationary reward functions
has been an argument in favour of model-based RL for twenty
years. In particular, (Atkeson and Santamaria 1997) applies
it successfully on a task transfer with shared dynamics and
similar reward functions on the inverted pendulum problem.

Nevertheless, this approach has never been theorised nor
applied to Transfer or Multi-Task RL. We also advocate that

2A successor feature, a.k.a. feature expectation in (Ng and Rus-
sell 2000), is a vector summarising the dynamics of the Markov
chain induced by a fixed policy in a given environment.

learning the dynamics model P is not necessary and that
efficient policies can be learnt in a direct fashion: given a
target task τ , any transition sample ξτ ′ = 〈τ ′, s, a, r, s′〉
from any other task τ ′ 6= τ can be projected on task
τ , just by modifying the immediate reward r with R̂τ (s),
the estimate of the reward function expected value E[Rτ ]:
ψR̂τ (ξτ ′) = 〈τ, s, a, R̂τ (s), s′〉. The approach consists thus
in translating the transition sample set Ξ into R̂τ estimate:
ΨR̂τ

(Ξ) = {ψR̂τ (ξτ ′)}ξτ′∈Ξ, and then in using any off-
policy RL algorithm to learn policy πτ on ΨR̂τ

(Ξ). The
off-policy characteristic is critical in order to remove the
bias originated from the behavioural policies πτ controlling
the transition sample set Ξ generation. In our experiments,
we will use Fitted-Q Iteration (Ernst, Geurts, and Wehenkel
2005). The following subsection recalls the basics.

Fitted-Q Iteration
The goal for any reinforcement learning algorithm is to find
a policy π∗ which yields optimal expected returns, i.e. which
maximises the following Q-function:

Q∗(st, at) = Qπ
∗
(st, at) = argmax

π
Eπst,at

∑
t′≥0

γt
′
rt′+t

 .
The optimal Q-function Q∗ is known to verify Bellman’s

equation:

Q∗(s, a) = E
[
R(s, a, s′) + γmax

a′
Q∗(s′, a′)

]
(1)

⇔ Q∗ = T ∗Q∗. (2)
The optimal Q-function is thus the fixed point of Bell-

man’s operator T ∗. Since γ < 1, it is a contraction, and
Banach’s theorem ensures its uniqueness. Hence, the optimal
Q-function can be obtained by iteratively applying Bellman’s
operator to some initial Q-function. This procedure is called
Value Iteration.

When the state space is continuous (or very large) it is im-
possible to use Value-Iteration as such. The Q-function must
be parametrised. A popular choice is the linear parametrisa-
tion of the Q-function (Sutton and Barto 1998; Chandramo-
han, Geist, and Pietquin 2010):

Q(s, a) = θ>Φ(s, a), (3)
where Φ(s, a) = {1a=a′Φ(s)}a′∈A is the feature vector for
linear state representation, 1a=a′ is the indicator function,
Φ(s) are the features of state s, and θ = {θa}a∈A is the
parameter vector that has to be learnt. Each element of θa
represents the influence of the corresponding feature in the
Q-function.

The inference problem can be solved by alternately apply-
ing Bellman’s operator and projecting the result back onto
the space of linear functions, and iterating these two steps
until convergence.

θ(i+1) = (X>X)−1X>y(i), (4)
where, for a transition sample set Ξ = {ξj}j∈J1,|Ξ|K =
{〈sj , aj , s′j , rj〉}j∈J1,|Ξ|K,X is the observation matrix, which
lines are the sj feature vectors: (X)j = Φ(sj , aj), and y(i) is
a vector with elements (y(i))j = rj + γmaxa′ θ

(i)Φ(s′j , a
′).



Data: Ξ: transition sample set on various tasks
Data: Ξτ ⊆ Ξ: transition sample set on task τ
Learn on Ξτ an immediate reward proxy: R̃τ ;
Cast sample set Ξ on task τ : ΨR̃τ

(Ξ);
Learn on ΨR̃τ

(Ξ) a policy for task τ : πτ ;

Algorithm 1: Transition reuse algorithm

3 Optimism in the Face of Uncertainty
The batch learning presented in last section proves to be
inefficient in online learning: using an estimate R̂τ of Rτ is
inefficient in early stages, when only a few samples have been
collected on task τ and reward has never been observed in
most states, because the algorithm cannot decide if it should
exploit or explore further. We generalise our approach to a
reward proxy R̃τ in Algorithm 1.

In order to guide the exploration, we adopt the well-known
optimism in the face of uncertainty heuristic, which can be
found in Prioritized Sweeping (Moore and Atkeson 1993),
R-MAX (Brafman and Tennenholtz 2002), UCRL (Auer and
Ortner 2007), and VIME (Houthooft et al. 2016). In the op-
timistic view, R̃τ is the most favourable plausible reward
function. Only UCRL and VIME use an implicit represen-
tation of the exploration mechanism that is embedded into
the transition and the reward functions. The way UCRL sepa-
rates the dynamics uncertainty from the immediate rewards
uncertainty makes it more convenient to implement and the
following of the article is developed with UCRL solution, but
any other optimism-based algorithm could have been consid-
ered in its place. (Lopes et al. 2012) and (Osband, Roy, and
Wen 2016) are also proposing interesting alternative options
for guiding the exploration.

Upper Confidence Reinforcement Learning
UCRL algorithm keeps track of statistics for rewards and
transitions: the number of times N(s, a) action a in state s
has been performed, the average immediate reward r̂(s) in
state s, and the observed probability p̂(s, a, s′) of reaching
state s′ after performing action a in state s. Those statistics
are only an estimate of their true values. However, confidence
intervals may be used to define a setM of plausible MDPs
in which the true MDP belongs with high probability. As said
in last paragraph, UCRL adopts the optimism in the face of
uncertainty principle overM and follows one of the policies
that maximise the expected return in the most favourable
MDP(s) inM. The main idea behind the optimism explo-
ration is the fact that mistakes will be eventually observed
and knowledge of not doing it again will be acquired and
realised through a narrowing of the confidence interval.

One UCRL practical problem is the need for searching
the optimal policy inside M (Szepesvári 2010), which is
complex and computer time consuming. In our case, we can
however consider that P̂ is precise enough in comparison
with R̂τ and that dynamics uncertainty should not guide the
exploration. Therefore, the optimal policy onM is necessar-
ily the optimal policy of the MDP with the highest reward
function inside the confidence bounds, i.e. R̃τ (s) defined by

the following equation:

R̃τ (s) = R̂τ (s) + CIτ (s), (5)
where CIτ (s) is the confidence interval of reward estimate
R̂τ in state s. Afterwards, the optimal policy can be directly
learnt on data ΨR̃τ

(Ξ) with Fitted-Q Iteration.
Another UCRL limitation is that it does not accommodate

continuous state representations. If a continuous state rep-
resentation Φ(S) = Rd needs to be used for estimating R̃τ ,
UCCRL (Ortner and Ryabko 2012) or UCCRL-KD (Laksh-
manan, Ortner, and Ryabko 2015) have been considered. But,
they suffer from two heavy drawbacks: they do not define
any method for computing the optimistic plausible MDP and
the respective optimal policy; and they rely on the definition
of a discretisation of the state representation space, which is
exponential on its dimension, therefore intractable in most
case, and in our experimental setting more particularly.

Confidence intervals for continuous state space
We decided to follow the same idea and compute confidence
intervals around the regression R̂τ . The natural way of com-
puting such confidence intervals would be to use confidence
bands. Holm–Bonferroni method (Holm 1979) consists in
defining a band of constant diameter around the learnt func-
tion such that the probability of the true function to be outside
of this band is controlled to be sufficiently low. Unfortunately,
this method does not take into account the variability of confi-
dence in different parts of the space, and this variability is ex-
actly the information we are looking for. Similarly, Scheffé’s
method (Scheffe 1999) studies the contrasts between the vari-
ables, and although its uncertainty bound is expressed in
function of the state, it is only dependent on its distance to
the sampling mean, not on the points density near the point
of interest. Both methods are indeed confidence measures for
the regression, not for the individual points.

Instead, we propose to use the density of neighbours in Ξτ
around the current state to estimate its confidence interval. In
order to have a neighbouring definition, one needs a similarity
measure S (s1, s2) that equals 1 when s1 = s2 and tends
towards 0 when s1 and s2 get infinitely far from each other.
In this article, we use the Gaussian similarity measure relying
on the Euclidean distance in the state space S or its linear
representation Φ(S):

SS(s1, s2) = e−‖s1−s2‖
2/2σ2

, (6)

SΦ(s1, s2) = e−‖Φ(s1)−Φ(s2)‖2/2σ2

, (7)
where parameter σ denotes the distance sensitivity of the
similarity. Once a similarity measure S (s1, s2) has been
chosen, the next step consists in computing the neighbouring
weight in a sample set Ξτ around a state s:

Wτ (s) =
∑

〈τ,sj ,aj ,s′j ,rj〉∈Ξτ

S (s, sj). (8)

Similarly to UCB, UCRL and UCCRL upper confidence,
the confidence interval can be obtained thanks to the neigh-
bouring weight with the following equation:

CIτ (s) = κ

√
log(|Ξτ |)
Wτ (s)

, (9)



where parameter κ denotes the optimism of the agent.
This confidence interval definition shows several strengths:

contrarily to Holm-Bonferroni and Scheffé’s methods, it is
locally defined, and it works with any regression method
computing R̂τ . But it also has two weaknesses: it relies on
two parameters σ and κ, and it does not take into account
the level of agreement between the neighbours. UCRL and
UCCRL set κ values for which theoretical bounds are proven.
Experiments usually show that lower κ values are generally
more efficient in practice. The empirical sensibility to κ and
σ values is evaluated in our experiments. The definition of a
better confidence interval is left for further studies.

The estimates R̂τ of the rewards can be computed with any
regression algorithm, from linear regression to neural nets.
In our experiments, in order to limit computations, we use
linear regression with a Tikhonov regularisation and λ = 1
(Tikhonov 1963), which, in addition to standard regularisa-
tion benefits, enables to find regression parameters before
reaching a number of examples equal or higher to the dimen-
sion d of Φ(S). As in UCRL, the current optimal policy is
updated as soon as the confidence interval in some encoun-
tered state has been divided by 2 since the last update.

Using expert knowledge to cast the reward
function into a simpler discrete state space
Since, in our setting, the optimism principle is only used
for the reward confidence interval, we can dissociate the
continuous linear parametrisation Φ(S) used for learning
the optimal policy and a simpler3 discrete representation
for estimating R̂τ . If R̂τ is estimated by averaging on this
discrete representation, its confidence interval CIτ might be
computed in the same way as UCB or UCRL. Confidence
intervals are defined in the following way:

CIτ (s) = κ

√
log(|Ξτ |)
Nτ (s)

, (10)

where parameter κ denotes the optimism of the learning agent,
and Nτ (s) is the number of visits of the learning agent in
state s under task τ , and therefore the number of received
rewards in this state.

The possibility to use a different state representation for
estimating P and R̃τ is a useful property since it enables to
include expert knowledge on the tasks: structure, bounds, or
priors on Rτ , which may drastically speed up the learning
convergence in practice. In particular, the possibility to use
priors is very interesting when the task distribution is known
or learnt from previously encountered tasks.

4 Experiments and results
We consider a TRLSD navigation toy problem, where the
agent navigates in a 2D maze world as depicted by Figures
1-4. The state representation S is the agent’s real-valued co-
ordinates st = {xt, yt} ∈ (0, 5)

2, and the set of 25 features
Φ(st) is defined with 5*5 Gaussian radial basis functions

3In the sense, that it can be inferred from Φ(S).

placed at sij = {i− 0.5, j− 0.5} for i, j ∈ J1, 5K, computed
with the SS similarity with σ = 0.2:

φij(st) = SS(st, sij). (11)

At each time step, the agent selects an action among
four possibilities: A = {NORTH,WEST, SOUTH, EAST}.
P is defined as follows for the NORTH action: xt+1 ∼
xt + N (0, 0.25) and yt+1 ∼ yt − 1 + N (0, 0.5), where
N (µ, ν) is the Gaussian distribution with centre µ and stan-
dard deviation ν. This works similarly with the other three
directions. Then, wall and out-of-grid events intervene in
order to respect the dynamics of the maze. When a wall is
encountered, a rebound is drawn according to U(0.1, 0.5) is
applied, where U(·, ·) denotes the uniform distribution.

The stochastic reward function Rτij is corrupted with a
strong noise and is defined for each task τij with i, j ∈ J1, 5K
as follows:

Rτij (st) ∼

1 +N (0, 1) if
{
i = dxte,
j = dyte,

N (0, 1) otherwise.
(12)

Transfer Reinforcement Learning experiments
Transfer Learning experiments unfold as follows. First, 25000
transitions are generated with a random policy and stored in
Ξ. After each transition, the trajectory has a 2% chance to be
terminated, then, the next state is reset to a uniformly drawn
state. Those transitions are considered enough to construct a
perfect representation of P . Whatever the reward function has
been used during this data collection, the reward information
is discarded, such that any target task τ would be regarded as
new and undiscovered during the transfer phase.

In the first experiment, Task τ is assumed to be known (i.e.
the reward function Rτ is known). It is the case when the
agent is instructed to perform a specific task. In this setting,
the reward estimator R̂τ equals Rτ and the uncertainty is
null. Therefore, R̃τ = Rτ . An optimal policy can directly
be computed from ΨRτ (Ξ) with Fitted-Q Iteration. Figure 1
shows that the agent immediately follows a rational policy
and heads towards the reward slot.

In the other transfer learning learning experiments, where
Rτ is partially unknown, the transfer learning phase consists
in the gathering of 1,000 transitions on the target task.

In the second experiment, 25 tasks are considered. Two
transition reuse settings are compared: the continuous and
the discrete settings. In the continuous setting, nothing is
assumed to be known about the task τ : state representation
Φ(S) is used to learn Rτ . As explained in the confidence
interval section, we use linear regression with Tikhonov reg-
ularisation and λ = 1. The computation of the confidence
interval CIτ (s) is made according to Equation 9, which is
dependent on two parameters: σ and κ. Figures 2a, 2b, and 2c
show the exploration-exploitation trade-off of typical trajec-
tories in the continuous setting. Initially, the agent is attracted
by unknown areas, but as the task is discovered, it exploits
more and more its knowledge, and exploration is eventually
limited to less visited places when the agents passes by them.
In the discrete setting, it is assumed to be known that task



(1) Reward function is known: 20
first transitions.

(2a) Reward function is unknown:
15 first transitions.

(2b) Reward function is unknown:
after 150 transitions.

(2c) Reward function is unknown:
after 650 transitions.

(3) Rewards are known to be de-
fined by cell: 50 first transitions.

(4a) Rewards are known to be at
the corners: 15 first transitions.

(4b) Rewards are known to be at
the corners: 30 first transitions.

(4c) Rewards are known to be at
the corners: 60 first transitions.

Figures 1-4: Trajectories directed by policies learnt from 25,000 transition samples with various reward function representations.
Some of the policies are motivated by the knowledge of the estimated reward function and some are motivated by curiosity and
optimism. The walls are displayed in black and are constant over tasks, the reward function representation are displayed in green,
the current trajectory is the broken line in blue and the policy at the centre of cells is coarsely exhibited with the red arrows. In
all these screenshots, the real reward function is the one rewarding the bottom left cell.

τ is defined as follows: Rτ : J1, 5K2 → R and the reward
function is cast into this simpler discrete space. The expert
knowledge consists in the model of estimator R̂τ and since
it is discrete, Equation 10, which is dependent on the single
parameter κ, can be used for computing the confidence inter-
vals. Figure 3 shows the first trajectory in the discrete setting,
exploring methodically the 25 slots.

The results of the second experiment are displayed on
Figure 5: it compares the collected rewards averaged on
500 independent runs (i.e. 20 times each task) with the best
parametrisation of continuous and discrete settings, with the
non-optimistic version (i.e. with κ = 0) which corresponds
to the method in (Atkeson and Santamaria 1997), and with
a learning that would not use any transfer. Without transfer,
the time scale (only 1000 transitions) is too short to converge
to any efficient policy because the dynamics are too complex.
The non-optimistic version is better at the very beginning
because it exploits right away what it finds, but also regularly
fails to converge because of this premature exploitation trend.
But the most interesting result that can be observed is the
fact that the continuous setting dominates the discrete one
if the updates are made every time a confidence interval is
divided by 2. Actually, the continuous setting triggers twice
more policy updates (80 vs. 40 on average) than the discrete
setting. By setting the update parameter to 1.2 instead of 2,
the number of updates becomes similar as well as the perfor-

mance curves. After all, the knowledge of the reward function
shape does not help: there is the same number of unknown
values (25), and our continuous version of confidence bounds
demonstrate good properties. Figures 7a and 7b compare the
cumulative rewards after the first 100, first 200, first 500, all
1000, and last 500 episodes for the continuous setting (the
same results are obtained in the discrete setting) according
to their parameter values. One can notice that the best ones
depend on the horizon of the learning, and that the efficiency
is much more sensitive to κ values than to σ values.

In the third experiment, only corner tasks τ11, τ15, τ51, and
τ55 are considered. Once again, we compare the continuous
setting and the discrete setting where it is known that rewards
are exclusively distributed at the four corners. More formally,
task τ is known to be defined as follows: Rτ : {1, 5}2 → R.
It corresponds to the case when strong expert knowledge
may be injected into the system in order to speed up learning.
Figures 4a, 4b, and 4c show that exploration is well targeted
at the corners and that unnecessary exploration is avoided.
Figure 6 compares both settings and one can notice that ini-
tial knowledge boosts significantly early convergence. Once
again, one needs to pay attention that less than 10 updates
on average are realised after the 1000 fist transitions with
the update parameter set to 2, and the performance of on-
line learning gets impaired. The update parameter set to 1.05
reaches 50 updates and a better convergence curve.



(5) 25 tasks: average immediate rewards received in function of tran-
sition index. Comparison of no-transfer learning and non-optimistic
and optimistic in continuous and discrete settings.

(6) 4 tasks (in corners): average immediate rewards received in func-
tion of transition index. Comparison of optimistic in continuous set-
ting and in discrete setting with injection of strong expert knowledge.

(7a) Sensitivity to κ: average re-
ward received at given transition
ranges for several values of κ.

(7b) Sensitivity to σ: average re-
ward received at given transition
ranges for several values of σ.

(8) Multi-Task RL: average immediate rewards received in function of
trajectory index. Comparison of non-optimistic with the two similarity
definitions in Equations 6 and 7 in the continuous setting.

Figures 5-8: Performance plots for Transfer RL and Multi-Task RL experiments under continuous and discrete settings.

Multi-Task Reinforcement Learning experiment
The Multi-Task experiment unfolds as follows. The 25 tasks
are run in turns: one trajectory of 50 transitions of each
task is generated with the current policy and is stored in
Ξτ , until collecting 20 trajectories from each task, i.e. 1,000
transitions from each task and 25,000 in total. In a multi-
task setting, one cannot anymore consider that P is known.
Indeed, P will be learnt at the same time asRτ . Still, in order
to show the efficiency of our approach, the same algorithm
will be applied whatever the size of Ξ, and estimator P̂ is
considered as the true P . The updates of the policies will be
made independently from one task to another, and they will
be entirely driven by the confidence interval reductions, as in
the Transfer RL experiments.

Figure 8 displays the 200-run average performance over
time under the continuous setting. It compares the non-
optimistic version and the two similarity measures defined in
Equations 6 and 7. It reveals that both similarity definitions
are almost equally efficient and that they significantly out-
perform the non-optimistic setting. The regular shape of the
curves is explained by the fact that the task is deterministi-
cally chosen and that some tasks are easier than others.

Unfortunately, comparison with state-of-the-algorithm is
limited to the non optimistic setting. (Barreto et al. 2016) and
(Borsa, Graepel, and Shawe-Taylor 2016) studies apply to
the Multi-Task RL experiment, but direct comparison was

still difficult for the following reasons:
In addition to the shared dynamics, (Barreto et al. 2016) as-

sumes that the reward function parameters are similar among
tasks, which is not an assumption that is made in our experi-
ments. Still, one can notice that their experiment dynamics
were simpler: no wall and reduced action noise, and that
their reward function is deterministic. Despite dealing with
a much easier problem, the reward function changed every
5000 transitions in their most complex setting. Our problem
of 25 tasks is near solved after 300 episodes of 50 transitions
for a total of 15,000 transitions, i.e. 600 transition per task.
Additionally, they needed 30,000 transitions over 6 tasks to
find a good transfer model. It is two times more than our
approach on 25 tasks.

(Borsa, Graepel, and Shawe-Taylor 2016) does not make
any assumption of this kind, but their algorithm cannot be di-
rectly applied to an online learning problem. As for (Barreto
et al. 2016), their experiment is much simpler: deterministic
dynamics and reward functions, and despite this, the required
sample budget was of 500 transitions per task, when we only
need 600 in our very noisy setting.

As a conclusion, our approach to Multi-Task RL with
shared dynamics shows a breakthrough in performance. Its
implementation with UCRL probably satisfies convergence
bounds that are in the same range as UCRL ones, but this
part is left for further studies.
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