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ABSTRACT

Malicious software, or malware, continues to be a problem for com-
puter users, corporations, and governments. Previous research [1]
has explored training file-based, malware classifiers using a two-
stage approach. In the first stage, a malware language model is
used to learn the feature representation which is then input to a sec-
ond stage malware classifier. In Pascanu et al. [1], the language
model is either a standard recurrent neural network (RNN) or an
echo state network (ESN). In this work, we propose several new
malware classification architectures which include a long short-term
memory (LSTM) language model and a gated recurrent unit (GRU)
language model. We also propose using an attention mechanism
similar to [12] from the machine translation literature, in addition
to temporal max pooling used in [1], as an alternative way to con-
struct the file representation from neural features. Finally, we pro-
pose a new single-stage malware classifier based on a character-level
convolutional neural network (CNN). Results show that the LSTM
with temporal max pooling and logistic regression offers a 31.3%
improvement in the true positive rate compared to the best system
in [1] at a false positive rate of 1%.

Index Terms— Malware Classification, Neural Language
Model, LSTM, GRU, CNN

1. INTRODUCTION

Microsoft Corporation receives hundreds of thousands of unknown
files each day which must be classified as either malicious or benign.
These files are submitted by external parties through a sample sub-
mission web site [2]. Signatures for malicious files are then either
manually or automatically created thereby preventing the files from
being installed and executed on a computer running the Microsoft
anti-malware engine.

Recent research has explored using deep neural networks
(DNNs) for malware classification [3, 4, 5, 6]. DNNs for the
static analysis of malware are proposed in [4] and [6]. Similarly, [3]
and [5] train DNNs for the output of malware dynamic analysis.

In [1], Pascanu et al. take a different approach to first learn a
language model for the malware and benign files to construct the
feature representation for each file in the training set. The authors
propose either using a standard recurrent neural network (RNN) [7]
or an echo state network (ESN) [8] as the language model. We note
that the structure of an ESN is similar to that of an RNN, but the
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weights are randomly initialized and are not trained. A logistic re-
gression or multi-layer perceptron (MLP) classifier is then trained
based on the feature representations output by the language model.
In addition, Pascanu et al. propose using temporal max pooling for
both recurrent language models to combine a long sequence of tem-
poral features which helps improve the results.

The best performing architecture in [1] is an ESN with temporal
max pooling for generating the feature representation combined with
a logistic regression classifier. Unfortunately, the authors found that
the RNN failed to learn salient features of the files and has lower
performance compared to the untrained ESN.

The main motivation for this work is to find neural architectures
that yield improved performance. In particular, we use recurrent neu-
ral network architectures that can better capture long-term depen-
dencies than the standard RNN. In this study, we revisit the malware
language model architecture to investigate whether these enhanced
language models lead to improved results for malware classifica-
tion. In particular, we experiment with the long short-term memory
(LSTM) [10] and the gated recurrent unit (GRU) [11] as language
models. We compare all model variants with temporal max pooling
and a recently proposed attention mechanism similar to that in [12].
Finally, we also consider whether the recently introduced character-
level convolutional neural network (CHAR-CNN) can improve the
malware classification performance. In Section 4, we show that the
best performing system in this study employs an LSTM for the lan-
guage model with temporal max pooling and a logistic regression
classifier.

This study makes the following contributions. We propose
several deep learning architectures for classifying malware includ-
ing LSTM- and GRU-based language models and a character-level
CNN. We show that the features learned from an LSTM language
model help improve the performance compared to random-weight
architectures, with the LSTM model and temporal max pooling
outperforming other competing models.

2. DATA

Before presenting the proposed models in the next section, we first
describe the dataset used in our work. A modified version of the
production Microsoft anti-malware engine was used to perform dy-
namic analysis of 75,000 Windows portable executable (PE) format
files equally split between malware and benign files. Our dataset
is further randomly split into three datasets including a training set
with 50,000 files, a validation set with 10,000 files, and a test set
with 15,000 files.



Before a file is allowed to be executed on a Windows com-
puter running the Microsoft anti-malware engine, it is analyzed us-
ing lightweight file emulation by the engine. This emulation is one
type of dynamic analysis and produces the sequence of system calls
executed by the file. This sequence is logged by the modified anti-
malware engine for training and testing our classifier.

The system calls logged by the anti-malware engine are high
level events. For example, there are multiple user mode, kernel
model, and other APIs (e.g. fopen() in C) that can be used to open a
file. All of these different API calls are mapped to a single file open
event by the anti-malware engine.

There are a total of 114 system calls which are found in our
dataset. Each system call event is first converted into a stream of
integers ranging from 0 to 113 where each integer is the index of an
individual system call event. This sequence of integers is then input
into the malware classification system which is described in the next
section.

3. MODELS

In this section, we describe the proposed malware classification
models. Before doing so, we first review the previously proposed
models which we will use for the performance baselines in the fol-
lowing section on Experimental Results. We then present the new,
two-stage malware classification models which utilize a malware
language model to generate the features. Finally, we propose a
single-stage, character-level convolutional neural network for mal-
ware classification.

3.1. Previously Proposed Baseline Models

Previously proposed malware classification using a language model [1]

included an echo state network or a recurrent neural network with
temporal max pooling in the first language model stage and lo-
gistic regression or a multi-layer perceptron (MLP) in the second
classification stage.

ESN and RNN: In its original formulation [8], the ESN has the
same recurrent architecture as the RNN. However the recursive ma-
trix and input matrix weights are randomly initialized for an ESN
but are learned for the RNN. The authors evaluate ten different mod-
els for the feature representations in the first stage. These models
include all combinations of an ESN versus RNN for the standard
model, a leaky model [13], a bi-directional model [14], a half-frame
model [1], and the standard model with temporal max pooling [1].
The classifiers used in [1] include logistic regression trained with the
softmax output and an MLP. The standard ESN with max pooling
outperforms the RNN with max pooling, and both of these models
provide better results than the other eight models. Thus, we only
consider the two max pooling architectures in this study.

Temporal Max Pooling: While max pooling was previously
used for sequences processed with a convolutional neural network
(CNN), Pascanu et al. [1] were the first to propose it for ESNs and
RNNs. In temporal max pooling, the maximum hidden unit is cho-
sen across all hidden states when processing the input sequence. Let
k* be hidden vectors generated from a recurrent language model
for time steps ¢ = 0,...,7 — 1 where each file event sequence
is divided into subsequences of length 7". Temporal max pooling
generates a vector where h]"** = maxco 7_1 hi for index
1t =20,...,D —1, and D is the dimension of ht. We next describe
the newly proposed models for malware classification.
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3.2. Language Model-Based Malware Classification

The new malware language model-based classifiers are depicted in
Figure 1. In the first stage, a malware language model (LM) utilizing
either an LSTM or GRU is initially used to construct the features. In
the second stage, these features are classified with either a single-
hidden layer MLP or logistic regression with softmax.
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Fig. 1. Two-stage, language model-based malware classification sys-
tem.

LSTM Malware Language Model: The first malware classi-
fication model we propose is to use the long short-term memory
model, proposed by Hochreiter and Schmidhuber [10], as the lan-
guage model. The LSTM replaces the RNN or the ESN in [1]. The
LSTM is also a recurrent neural network model which includes state
from the input, output and forgetting gates and has been shown to
increase the memory capacity compared to the standard RNN. We
follow the LSTM implementation described in [15].

GRU Malware Language Model: Similar to the LSTM, Cho et
al. [11] proposed the gated recurrent unit for neural machine transla-
tion. The second new malware classification model proposed in this
paper uses a GRU for the malware language modeling stage. Again,
we follow the implementation of the GRU found in [15].

Attention Mechanism: Bahdanau et al. [12] recently proposed
a new attention mechanism to align the input and output sentences
(i.e. sequences) in the context of neural machine translation. In this
work, we adapt their attention mechanism to serve as an alternative
to the temporal max pooling proposed in [1]. While temporal max
pooling chooses the maximum hidden unit across all of the hidden
vectors in the sequence, the attention mechanism instead first learns
the attention score for each time step and then computes the temporal
average of all hidden vectors. The attention mechanism generates a
vector h*** of length D where

T-1
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and the attention scores a' are calculated from a dense network with
h' as an input. The final vector representation to be used for the LM
classification is the concatenation of (1) the last hidden vector from
the language model 7, (2) the feature vector from temporal max
pooling R™ or the attention mechanism 4%, and (3) the bag-of-
words representation from the one-hot encoding of the input events.

Second Stage Malware Classifier: We train the second stage of
the LM classifier using either logistic regression or a single-hidden
layer, multi-layer perceptron (MLP). Logistic regression was the best
performing classifier in [1], and the single-hidden layer MLP pro-
vided the best classification results in [3]. The MLP uses rectified
linear unit (ReLU) activation functions [16].



Layer Description
1 Conv length = 7, Max Pooling length = 3
2 Conv length = 7, Max Pooling length = 3
3 Conv length =3
4 Conv length =3
5 Conv length =3
6 Conv length = 3, Max Pooling length =3
7 Batch Normalization, Dropout = 0.5
8 Batch Normalization, Dropout = 0.5
9 Batch Normalization

Table 1. Character-level, CNN layer description.

3.3. Character-Level Convolutional Neural Network

The final model we propose in this paper is the character-level convo-
lutional neural network (CHAR-CNN) [17] which is shown in Fig-
ure 2. Unlike the LSTM and GRU language model-based architec-
tures, the CHAR-CNN is a single-stage malware classifier similar
to the more traditional malware classifiers [18]. The CHAR-CNN
employs nine layers which are summarized in Table 1. It takes a
sequence of maximum length 1,014 characters where each charac-
ter is an event. For sequences fewer than 1,014 characters, we pad
the end with eod-of-sequence tokens. The first eight layers use the
rectified linear activation function while the sigmoid activation func-
tion is employed in the final layer for binary classification. The loss
function utilized by this model is the cross entropy loss function.
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Fig. 2. Single-stage, character-level convolutional neural network
malware classification model.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed architectures. All mod-
els are implemented using Keras [15] with the Theano [19] backend
deep learning engine. We first describe the experimental setup. We
then compare the receiver operating characteristic (ROC) curves for
the different model variants.

Experimental Setup: To train the language models, we divide
all files event sequences into smaller subsequences, with length up
to T' = 50. The maximum number of epochs is set to 15, but we em-
ploy early stopping if training additional epochs fails to decrease the
cross entropy loss. We train the language models using a mini-batch
size of 50. The number of hidden units for the language models (D)
and the dimensions of 7% and h™** are all equal to 1,500. Since
the dimension of the one-hot, event embeddings is 114, the final rep-
resentation has dimension 3,114.

We next describe the hyperparameters used for the logistic re-
gression and MLP LM classifiers. After training the language mod-
els, we obtain features of files by scanning sequences up to length
200 for classification because using a sequence length longer than
200 events degraded the performance. We train the classifiers for a
maximum of 20 epochs with early stopping.

The hyperparameters used for the character-level convolutional
neural network are given in Table 1. While the language model clas-
sifiers use a maximum subsequence length of 200, we can use up to
1,014 file events for training the character-level CNN has since it no
temporal memory-loss issue.

Model Performance: We first investigate how the attention
mechanism compares to the temporal max pooling for the ESN and
RNN language model-based architectures with logistic regression
in Figure 3. An echo state, RNN-based network with temporal max
pooling (LR-RNN-ESN-MAX) and RNN with temporal max pool-
ing (LR-RNN-MAX) are the two best performing models in [1], and
thus are the two primary baseline models. This figure also includes
the results for an LR-RNN-based ESN with an attention mechanism
(LR-RNN-ESN-ATT) as well as the RNN with attention (LR-RNN-
ATT). The figure indicates that for the RNN-based architectures,
the LR-RNN-ESN-ATT model clearly outperforms the other three
variants including the two baseline models proposed in [1].

100

S s0- i
2
©
X 60|
[
2
§ 40F -
- e —LR-RNN-ESN-MAX
g o - - LR-RNN-ESN-ATT | |
~—LR-RNN-MAX
------- LR-RNN-ATT
0 ‘ , ‘
0 05 1 15 2

False Positive Rate (%)

Fig. 3. ROC curves for the RNN-based models with a logistic regres-
sion classifier. An untrained RNN-based, echo state network model
with an attention mechanism performs best.

After implementing the baseline systems in Figure 3, we next
evaluated similar architectures based on the LSTM language model
and logistic regression in Figure 4. While the two RNN-based ESNs
(LR-RNN-ESN-ATT and LR-RNN-ESN-MAX) are the best two
performing models in Figure 3, the LSTM-based ESNs (LR-LSTM-
ESN-MAX and LSTM-ESN-ATT) are the two worst performing
LSTM models in Figure 4. The LSTM model with temporal max
pooling (LR-LSTM-MAX) is the best performing LSTM models
overall. LR-LSTM-ATT, the LSTM model with attention, offers
similar true positive rates (TPRs) for false positive rates (FPRs)
above 1.0% but slightly lower performance for lower FPRs.

The performance of the GRU-based language models with logis-
tic regression classification is depicted in Figure 5. The ROC curves
are more tightly clustered compared to the RNN and LSTM-based
models. Similar to the RNN models, the echo state network version
with attention (LR-GRU-ESN-ATT) is the best performing model in
this group. For FPRs greater than 0.80%, the GRU model trained
with attention (LR-GRU-ATT) is the second best model.

In general, the ROC results for the logistic regression classifier-
based architectures are slightly better than the MLP version with the
same language model. For example, Figure 6 depicts the perfor-
mance for the LSTM language models with an MLP classifier. Sim-
ilar to Figure 4, the LSTM with max pooling (MLP-LSTM-MAX)
outperforms the other LSTM language models with an MLP classi-
fier.
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Fig. 4. ROC curves for the LSTM-based, language models with a
logistic regression classifier. The standard LSTM with max pooling
outperforms the other LSTM architectures on this dataset.
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Fig. 5. ROC curves for the GRU-based, language models with a
logistic regression classifier. Similar to Figure 3, the untrained GRU-
based, echo state network with an attention (GRU-ESN-ATT) is the
best performing GRU-based model.

Finally in Figure 7, we compare the ROC curves for the
character-level, convolutional neural network (CHAR-CNN) to
the best performing model in Figures 3- 6 and the two baselines
from [1], LR-RNN-ESN-MAX and LR-RNN-MAX. This figure
indicates that the overall best performing model in this study is the
LSTM trained with temporal max pooling using the logistic regres-
sion classifier (LR-LSTM-MAX). The TPR for LR-LSTM-MAX
is 31.3% higher than the TPR for LR-RNN-ESN-MAX at 1.0%
FPR. The LSTM with temporal max pooling and an MLP classifier
(MLP-LSTM-MAX) offers better performance for low FPRs, but
LR-LSTM-MAX has a slightly better TPR at higher FPRs. The per-
formance of the CHAR-CNN classifier is significantly worse than
all of the other models at low FPRs but eventually becomes the third
best performing model at an FPR of 1.9%.

5. RELATED WORK

Interestingly, the first malware classifier proposed in the literature
employed a neural network [20]. Since this initial work, researchers
have explored many different machine learning models [18, 21, 22].
Employing system calls as features have previously been used for
malware classification [1, 3] and intrusion detection systems [23].
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Fig. 6. ROC curves for the LSTM-based, language models with an
MLP classifier. The standard LSTM with max pooling outperforms
the other LSTM architectures on this dataset.

100
g sor
o
©
€ 60f °
e - ~+CHAR-CNN
= * —LR-LSTM-MAX
8 ——LR-RNN-ESN-ATT |
- <o LR-GRU-ESN-ATT
3 - - MLP-LSTM-MAX | |
= -o LR-RNN-ESN-MAX
LR-RNN-MAX
05 1 15 2

False Positive Rate (%)

Fig. 7. ROC curves for the character-level CNN and the best per-
forming models in Figures 3- 6. The LSTM with max pooling and a
logistic regression classifier is the best performing model.

Our work is most closely related to that of Pascanu et al. [1].
This study extends their system by introducing new malware lan-
guage models including the LSTM and GRU as well as adding the
attention mechanism. We also propose the character-level CNN [12]
as the malware classifier. Deep neural networks have been proposed
for malware classification in [3, 4, 5, 6] as noted in the introduction.

The attention mechanism used in our work has yielded excellent
results for machine translation [12].

6. CONCLUSIONS

Most importantly, our work shows the benefits of semi-supervised
learning for malware classification where we leverage the knowl-
edge from unsupervised learning on a large amount of unlabelled
sequences captured in the neural language model of these file se-
quences. We show that with proper architectures that can handle
long-term dependencies, the representation from the neural language
models can help increase the performance on downstream tasks such
as malware classification. This work is also based on an assumption
that a language model for file stream events exists. The fact that our
learned model performs better than the random weight counterpart
confirms this hypothesis.
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