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Abstract

Recognizing fine-grained categories (e.g., bird species)

is difficult due to the challenges of discriminative region

localization and fine-grained feature learning. Existing

approaches predominantly solve these challenges indepen-

dently, while neglecting the fact that region detection and

fine-grained feature learning are mutually correlated and

thus can reinforce each other. In this paper, we propose

a novel recurrent attention convolutional neural network

(RA-CNN) which recursively learns discriminative region

attention and region-based feature representation at multi-

ple scales in a mutually reinforced way. The learning at

each scale consists of a classification sub-network and an

attention proposal sub-network (APN). The APN starts from

full images, and iteratively generates region attention from

coarse to fine by taking previous predictions as a reference,

while a finer scale network takes as input an amplified at-

tended region from previous scales in a recurrent way. The

proposed RA-CNN is optimized by an intra-scale classifica-

tion loss and an inter-scale ranking loss, to mutually learn

accurate region attention and fine-grained representation.

RA-CNN does not need bounding box/part annotations and

can be trained end-to-end. We conduct comprehensive ex-

periments and show that RA-CNN achieves the best perfor-

mance in three fine-grained tasks, with relative accuracy

gains of 3.3%, 3.7%, 3.8%, on CUB Birds, Stanford Dogs

and Stanford Cars, respectively.

1. Introduction

Recognizing fine-grained categories by computer vision

techniques (e.g., classifying bird species [2, 34], flower

types [21, 24], car models [14, 19], etc.) has attracted

extensive attention. The task is very challenging as some

fine-grained categories (e.g., “eared grebe” and “horned

grebe”) can only be recognized by domain experts. Differ-

ent from general recognition, the fine-grained image recog-

Figure 1. Two bird species of woodpecker. We can observe the

very subtle visual differences from highly local regions (e.g., head-

s in yellow boxes), which are difficult to learn from the original

image scale. However, the difference can be more vivid and sig-

nificant if we can learn to zoom into the attended regions at a finer

scale. [Best viewed in color]

nition should be capable of localizing and representing the

very marginal visual differences within subordinate cate-

gories, and thus can benefit a wide variety of application-

s, e.g., expert-level image recognition [15, 31], rich image

captioning [1, 12], and so on.

The challenges of fine-grained recognition are main-

ly two-fold: discriminative region localization and fine-

grained feature learning from those regions. Previous re-

search has made impressive progresses by introducing part-

based recognition frameworks, which typically consist of

two steps: 1) identifying possible object regions by an-

alyzing convolutional responses from neural networks in

an unsupervised fashion or by using supervised bounding

box/part annotations, and 2) extracting discriminative fea-

tures from each region and encoding them into compact

vectors for recognition. Although promising results have

been reported, further improvement suffers from the fol-

lowing limitations. First, human-defined regions or the re-

gions learned by existing unsupervised methods may not

be optimal for machine classification [35]. Second, subtle

visual differences existed in local regions from similar fine-
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grained categories are still difficult to learn. We found that

region detection and fine-grained feature learning are mutu-

ally correlated and thus can reinforce each other. As shown

in Figure 1, accurate head localization can promote learning

discriminative head features, which further help to pinpoint

the different colors existed in afterbrain.

To deal with the above challenges, we propose a

novel recurrent attention convolutional neural network

(RA-CNN) for fine-grained recognition without bounding

box/part annotations. RA-CNN recursively learns discrim-

inative region attention and region-based feature represen-

tation in a mutually reinforced manner. The proposed RA-

CNN is a stacked network which takes the input from ful-

l images to fine-grained local regions at multiple scales.

First, the multi-scale networks share the same network ar-

chitecture yet with different parameters at each scale to fit

the inputs with different resolutions (e.g., the coarse scale

and finer scale in Figure 1). The learning at each scale con-

sists of a classification sub-network and an attention propos-

al sub-network (APN), which can ensure adequate discrim-

ination ability at each scale and generate an accurate attend-

ed region for the next finer scale. Second, a finer-scale net-

work dedicated to high-resolution regions takes as input an

amplified attended region for extracting more fine-grained

features. Third, the recurrent network is alternatively opti-

mized by an intra-scale softmax loss for classification and

an inter-scale pairwise ranking loss for attention proposal

network. The ranking loss optimizes the finer network to

generate higher confidence scores on correct categories than

previous prediction.

Since finer-scale networks can be stacked in a recurrent

way, RA-CNN can gradually attend on the most discrimi-

native regions from coarse to fine (e.g., from body to head,

then to beak for birds). Note that the accurate region local-

ization can help discriminative region-based feature learn-

ing, and vice versa. Thus the proposed network can benefit

from the mutual reinforcement between region localization

and feature learning. To further leverage the advantages of

ensemble learning, features from multiple scales are deeply

fused to classify an image by learning a fully-connected fu-

sion layer. To the best of our knowledge, this work repre-

sents the first attempt of proposing a multi-scale recurrent

attention network for fine-grained recognition. Our contri-

butions can be summarized as follows:

• We address the challenges of fine-grained recognition

by proposing a novel recurrent attention convolution-

al neural network architecture that simultaneously en-

ables the accurate detection of discriminative region

and the effective learning of region-based representa-

tion in a mutually reinforced way.

• We propose a pairwise ranking loss to optimize the at-

tention proposal network. Compared with region lo-

calizers with only label supervision, such a design en-

ables network to gradually attend on more fine-grained

regions with the reference of previous scales.

• We conduct comprehensive experiments on three chal-

lenging datasets (CUB Birds, Stanford Dogs, Stanford

Cars), and achieve superior performance over the state-

of-the-art approaches on all of these datasets.

The rest of the paper is organized as follows. Section 2 re-

views the related work. Section 3 introduces the proposed

method. Section 4 provides the evaluation and analysis, fol-

lowed by the conclusion in Section 5.

2. Related Work

The research on fine-grained image recognition proceeds

along two dimensions, i.e., discriminative feature learning

and sophisticated part localization.

2.1. Discriminative Feature Learning

Learning discriminative features is crucial for fine-

grained image recognition. Due to the success of deep

learning, most of the methods depend on the powerful con-

volutional deep features, which have shown significant im-

provement than hand-crafted features on both general and

fine-grained categories [4, 5, 6, 17, 29]. To learn stronger

feature representation, deep residual network [9] scales up

CNN to 152 layers by optimizing residual functions, which

reduces the error rate to 3.75% on ImageNet test set [17].

To better model subtle differences existed in fine-grained

categories, a bilinear structure [19] is recently proposed to

compute the pairwise feature interactions by two indepen-

dent CNNs to capture the image local differences, which

has achieved the state-of-the-art results in bird classifica-

tion [30]. Besides, another method [34] proposes to unify

CNN with spatially weighted representation by Fisher Vec-

tor [23], which shows superior results on both bird [30] and

dog datasets [13].

2.2. Sophisticated Part Localization

Previous works mainly focus on leveraging the extra an-

notations of bounding box and part annotations to localize

significant regions in fine-grained recognition [10, 18, 22,

30, 32, 33]. However, the heavy involvement of manual

annotations make this task not practical for large-scale real

problems. Recently, there have been emerging works aim-

ing at a more general scenario and proposing to use unsuper-

vised approach to mine region attention. A visual attention-

based approach proposes a two-level domain-net on both

objects and parts, where the part templates are learned by

clustering scheme from the internal hidden representations

in CNN [31]. Picking deep filter responses [34] and multi-

grained descriptors [28] propose to learn a set of part detec-

tors by analyzing filter responses from CNN that respond to

specific patterns consistently in an unsupervised way. Spa-

tial transformer [11] takes one step further and proposes a



Figure 2. The framework of recurrent attention convolutional neural network (RA-CNN). The inputs are from coarse full-size images to

finer region attention (from top to bottom). Different network modules for classification (marked in blue) and attention proposal (marked in

red) are alternatively optimized by classification losses Lcls between label prediction Y
(s) and ground truth Y

∗ at each scale, and pairwise

ranking losses Lrank between p
(s)
t and p

(s+1)
t from neighboring scales, where p

(s)
t and p

(s+1)
t denote the probabilities on the correct

category, and s denotes the scale. APN is the attention proposal network, fc represents fully-connected layer, softmax layer matches to

category entries by a fc layer, followed by a softmax operation. +© represents “crop” and “zoom in” operation. [Best viewed in color]

dynamic mechanism that can actively spatially transform an

image for more accurate classification. Whereas, it is still d-

ifficult for existing models to exactly localize subtle regions

due to their small sizes. The most relevant works to ours

come from [20] and [35]. Both of them propose to zoom in

on discriminative local regions to improve the performance

of fine-grained recognition. However, the learning of region

localizers from [20] and [35] relies on either pre-processed

region proposals or category labels, which poses challenges

to accurate region localization.

3. Approach

In this section, we will introduce the proposed recurrent

attention convolutional neural network (RA-CNN) for fine-

grained image recognition. We consider the network with

three scales as an example in Figure 2, and more finer s-

cales can be stacked in a similar way. The inputs are recur-

rent from full-size images in a1 to fine-grained discrimina-

tive regions in a2 and a3, where a2 and a3 takes the input

as the attended regions from a1 and a2, respectively. First,

images at different scales are fed into convolutional layer-

s (b1 to b3) to extract region-based feature representation.

Second, networks proceed to predict both a probability s-

core by fully-connected and softmax layers (c1 to c3) and a

region attention by an attention proposal network (d1, d2).

The proposed RA-CNN is optimized to convergence by al-

ternatively learning a softmax classification loss at each s-

cale and a pairwise ranking loss across neighboring scales.

3.1. Attention Proposal Network

Multi-task formulation: Traditional part-based frame-

work on fine-grained recognition takes no advantages of the

deeply trained networks to mutually promote the learning

for both localization and recognition. Inspired by the recent

success of region proposal network (RPN) [8], in this paper,

we propose an attention proposal network (APN) where the

computation of region attention is nearly cost-free, and the

APN can be trained end-to-end.

Given an input image X, we first extract region-based

deep features by feeding the images into pre-trained con-

volutional layers. The extracted deep representations are

denoted as Wc ∗ X, where ∗ denotes a set of operations

of convolution, pooling and activation, and Wc denotes the

overall parameters. We further model the network at each

scale as a multi-task formulation with two outputs. The first

task is designed to generate a probability distribution p over

fine-grained categories, shown as:

p(X) = f(Wc ∗X), (1)

where f(·) represents fully-connected layers to map convo-

lutional features to a feature vector that could be matched

with the category entries, as well as includes a softmax lay-

er to further transform the feature vector to probabilities.

The second task is proposed to predict a set of box coor-

dinates of an attended region for the next finer scale. By

approximating the attended region as a square with three



parameters, the representation is given by:

[tx, ty, tl] = g(Wc ∗X), (2)

where tx, ty denotes the square’s center coordinates in

terms of x and y axis, respectively, and tl denotes the half

of the square’s side length. The specific form of g(·) can

be represented by two-stacked fully-connected layers with

three outputs which are the parameters of the attended re-

gions. Note that compared with region proposal network

in object detection which uses strong supervision of ground

truth boxes, the learning of the proposed APN is trained in

a weakly-supervised fashion, since the part-level annotation

is often hard to obtain. The specific learning process and

loss functions will be introduced in Sec. 3.2.

Attention localization and amplification: Once the lo-

cation of an attended region is hypothesized, we crop and

zoom in the attended region to finer scale with higher res-

olution to extract more fine-grained features. To ensure

the APN can be optimized in training, we approximate the

cropping operation by proposing a variant of two-dimension

boxcar function as an attention mask. The mask can select

the most significant regions in forward-propagation, and is

readily to be optimized in backward-propagation due to the

properties of continuous functions.

Assume the top-left corner in original images as the ori-

gin of a pixel coordinate system, whose x-axis and y-axis

is defined from left-to-right and top-to-bottom, respectively.

We can adopt the parameterizations of the top-left (denoted

as “tl”) and bottom-right (denoted as “br”) points from the

attended region as following:

tx(tl) = tx − tl, ty(tl) = ty − tl,

tx(br) = tx + tl, ty(br) = ty + tl.
(3)

Based on the above representations, the cropping operation

can be implemented by an element-wise multiplication be-

tween the original image at coarser scales and an attention

mask, which can be computed as:

Xatt = X⊙M(tx, ty, tl), (4)

where ⊙ represents element-wise multiplication, Xatt de-

notes the cropped attended region and M(·) acts as an at-

tention mask, with the specific form as:

M(·) = [h(x− tx(tl))− h(x− tx(br))]

·[h(y − ty(tl))− h(y − ty(br))],
(5)

and h(·) is a logistic function with index k:

h(x) = 1/{1 + exp−kx}. (6)

Theoretically, when k is large enough, the logistic func-

tion can be considered as a step function and the two-

dimensional boxcar function (i.e., M(·)) is zero over the

entire real line along x and y dimensions, except for a single

area (i.e., x ranges from tx(tl) to tx(br), and y ranges from

ty(tl) to ty(br)) where it is equal to one. The advantages for

using the boxcar function are two folds. First, boxcar func-

tion can well-approximate the cropping operation to selec-

t the most significant regions predicted from coarser-scale

networks. Second, boxcar function builds analytical repre-

sentations between the attended region and box coordinates

{tx, ty, tl}, which is necessary when optimizing box param-

eters in backward-propagation.

Although attended regions have been localized, effective

feature representation are sometimes still difficult to be ex-

tracted from the highly-localized regions. Therefore, we

further amplify the region to a larger size by adaptively

zooming. Specifically, we use a bilinear interpolation to

compute the amplified output Xamp from the nearest four

inputs in Xatt by a linear map, which is given by:

X
amp

(i,j) =

1∑

α,β=0

|1− α− {i/λ}||1− β − {j/λ}|Xatt
(m,n), (7)

where m = [i/λ]+α, n = [j/λ]+β, λ is upsampling factor,

which equals the value of enlarged size divided by tl. [·] and

{·} is the integral and fractional part, respectively.

3.2. Classification and Ranking

The proposed recurrent attention CNN is optimized by

two types of supervision, i.e., intra-scale classification loss

and inter-scale pairwise ranking loss, for alternatively gen-

erating accurate region attention and learning more fine-

grained features. Specifically, we minimize an objective

function following a multi-task loss. The loss function for

an image sample is defined as:

L(X) =

3
∑

s=1

{Lcls(Y
(s),Y∗)}+

2
∑

s=1

{Lrank(p
(s)
t , p

(s+1)
t )}, (8)

where s denotes each scale, Y(s) and Y∗ denotes the pre-

dicted label vector from a specific scale and the ground truth

label vector, respectively. Lcls represents classification loss,

which predominantly optimizes the parameters of convolu-

tion and classification layers in Figure 2 (b1 to b3 and c1 to

c3) for ensuring adequate discrimination ability at each s-

cale. The training is implemented by fitting category labels

on overall training samples via a softmax function. Besides,

p
(s)
t from pairwise ranking loss Lrank denotes the predic-

tion probability on the correct category labels t. Specifical-

ly, the ranking loss is given by:

Lrank(p
(s)
t , p

(s+1)
t ) = max{0, p

(s)
t − p

(s+1)
t +margin}, (9)

which enforces p
(s+1)
t >p

(s)
t + margin in training. Such

a design can enable networks to take the prediction from



coarse scales as references, and gradually approach the

most discriminative region by enforcing the finer-scale net-

work to generate more confident predictions. Note that Lcls

and Lrank take effect alternatively for different optimiza-

tion purposes, and details can be found in Sec. 3.4.

3.3. Multi­scale Joint Representation

Once the proposed RA-CNN has been trained at each

scale, we can obtain multi-scale representations from full-

size images to multiple coarse-to-fine region attention. In

particular, the image X can be represented by a set of

multiple-scale descriptors:

{F1, F2, ... FN}, (10)

where Fi denotes the feature descriptor at a specific scale

generated from the fully-connected layers in classification

net (c1 to c3 in Figure 2), and N is total number of scales.

To leverage the benefit of feature ensemble, we first nor-

malize each descriptor independently, and concatenate them

together into a fully-connected fusion layer with softmax

function for the final classification. The application of soft-

max function instead of Support Vector Machine (SVM) [3]

is mainly for the technical consistency for feature extraction

and classification, so that we can integrate the multi-scale

descriptors and classification end-to-end in testing. Besides,

we have verified that softmax and linear SVM can produce

comparable results for classification.

3.4. Implementation Details

Training strategy: To better optimize attention localiza-

tion and fine-grained classification in a mutually reinforced

way, we take the following alternative training strategy.

Step 1: we initialize convolutional/classification layers

in Figure 2 (b1 to b3 and c1 to c3) by the same pre-trained

VGG network [27] from ImageNet.

Step 2: we consider a square (represented by tx, ty, tl)
with the half length of the side of original image. The

square is selected by searching regions in the original im-

age, with the highest response value in the last convolution-

al layer (i.e., conv5 4 in VGG-19). We can further obtain a

smaller square by analyzing convolutional responses at the

second scale in a similar way. These selected squares are

used to pre-train APN to obtain parameters in Figure 2 (d1),

(d2) by learning the transformation from convolutional fea-

ture maps to {tx, ty, tl}.

Step 3: we optimize the parameters in the above two

steps in an alternative way. Specifically, we keep APN

parameters unchanged, and optimize the softmax losses at

three scales to converge. Then we fix parameters in con-

volutional/classification layers, and switch to ranking loss

to optimize the two APNs. The learning process for the t-

wo parts is iterative, until the two types of losses no longer

change. Besides, tl at each scale is constrained to be no less

Figure 3. An illustration of region attention learning. The top-row

indicates two exemplar region inputs at a specific scale and the

bottom-row indicates the derivatives backpropagated into the in-

put layer. The black arrows show the optimization direction of

tx, ty and tl, which are consistent with human perception. De-

tailed analysis can be found in Sec. 3.4.

than one-third of the previous tl at coarse scale, to avoid the

incompleteness of object structures when tl is too small.

Optimization for attention learning: We illustrate the

mechanism of attention learning by calculating the deriva-

tives on tx, ty, tl, and show the effects to region crop-

ping. Since the derivatives of the proposed ranking loss

to tx, ty, tl have similar forms, we take tx as an example

and calculate the derivative by the chain rule in backward-

propagation [25], which is given by:

∂Lrank

∂tx
∝ Dtop ⊙

∂M(tx, ty, tl)

∂tx
, (11)

where ⊙ represents element-wise multiplication, and Dtop

denotes the derivatives backpropagated into the input layer

at a specific scale, which represents the importance of each

pixel with respect to the overall network activation [15].

We simplify the derivative forms in Eqn. (11) to L′

rank(tx)
and M′(tx). In a minimization problem, we have that if

L′

rank(tx)<0, then tx increases, otherwise tx decreases.

We further follow [15] to compute the negative square of

the norm of the derivatives for obtaining a consistent op-

timization direction with human perception. The derivative

map is shown in the bottom-row in Figure 3, with the darker

the point, the larger the absolute value. Each derivative map

corresponds to an input in the top-row with the same di-

mension. Besides, M′(tx) represents the derivative of mask

function to tx, which can be given by a piecewise function

with qualitative evaluation as:

M′(tx) =











<0 x → tx(tl)

>0 x → tx(br)

= 0 otherwise,

(12)

where the symbol “→” represents “approaching to” for x.



Similar form for the derivative to ty is given by:

M′(ty) =











<0 y → ty(tl)

>0 y → ty(br)

= 0 otherwise.

(13)

As M ′(tl) takes positive value on the border and negative

inside, the derivative to tl is given by:

M′(tl) =











>0 x → tx(tl) or x → tx(br)

or y → ty(br) or y → ty(tl)

<0 otherwise.

(14)

Based on the above analysis, we can obtain that L′

rank(tx)
is positive in Figure 3(a) because the black points with neg-

ative value in derivative maps are mainly distributed in the

top-left and M′(tx) also adopts negative value in the left.

Similarly, we can obtain L′

rank(ty) is positive, because

M′(ty) adopts negative value in the top. As the deriva-

tive map is almost zero on the border and negative inside,

L′

rank(tl) is positive. Thus tx, ty and tl will change to be

smaller in the next iteration, which is consistent with human

perception. Optimization in Figure 3(b) can be obtained by

a similar analysis.

4. Experiments

4.1. Datasets and Baselines

Datasets: We conduct experiments on three challenging

fine-grained image recognition datasets, including Caltech-

UCSD Birds (CUB-200-2011) [30], Stanford Dogs [13] and

Stanford Cars [16]. The detailed statistics with category

numbers and data splits are summarized in Table 1.

Baselines: We divide compared approaches into two cat-

egories, based on whether they use human-defined bound-

ing box (bbox) or part annotation. In the following, the first

five methods use human supervision, and the latter eight are

based on unsupervised part learning methods. We compare

with them, due to their state-of-the-art results in both cate-

gories. All the baselines are listed as follows:

• DeepLAC [18]: deep localization, alignment and

classification proposes to use a pose-aligned part im-

age for classification.

• SPDA-CNN [32]: semantic part detection and

abstraction proposes to generate part candidates and

extract features by detection/classification networks.

• Part-RCNN [33]: extends R-CNN [7] based frame-

work by part annotations.

• PA-CNN [14]: part alignment-based method gener-

ates parts by using co-segmentation and alignment.

• PN-CNN [2]: pose normalized CNN proposes to com-

pute local features by estimating the object’s pose.

• PDFR [34]: picking deep filter responses proposes to

find distinctive filters and learn part detectors.

Table 1. The statistics of fine-grained datasets used in this paper.

Datasets # Category # Training # Testing

CUB-200-2011 [30] 200 5,994 5,794

Stanford Dogs [13] 120 12,000 8,580

Stanford Cars [16] 196 8,144 8,041

• MG-CNN [28]: multiple granularity descriptors learn

multi-region of interests for all the grain levels.

• ST-CNN [11]: spatial transformer network learns in-

variance to scale, warping by feature transforming.

• TLAN [31]: two-level attention network proposes

domain-nets on both objects and parts to classification.

• DVAN [35]: diverse attention network attends object

from coarse to fine by multiple region proposals.

• FCAN [20]: fully convolutional attention network

adaptively selects multiple task-driven visual attention

by reinforcement learning.

• B-CNN [19]: bilinear-CNN proposes to capture pair-

wise feature interactions for classification.

• NAC [26]: neural activation constellations find parts

by computing neural activation patterns.

Input images (at scale 1) and attended regions (at scale 2,3)

are resized to 448×448 and 224×224 pixels respectively in

training, due to the smaller object size in the coarse scale.

We use VGG-19 [27] (pre-trained on ImageNet) for bird

and car datasets, and VGG-16 for dogs as the same settings

with baselines. We find that k in Eqn. (6) and the margin

in Eqn. (9) are robust to optimization, thus we empirical-

ly set k as 10 and margin as 0.05. The model has been

made publicly available at https://github.com/

Jianlong-Fu/Recurrent-Attention-CNN.

4.2. Experiments on CUB­200­2011

Attention localization: We show the attended regions

from multiple scales by the proposed attention proposal net-

work for qualitative analysis. In Figure 4, we can observe

that these localized regions at second and third scales are

discriminative to corresponding categories, and are easier

to be classified than the first scale. The results are consis-

tent with human perception that it would be helpful to look

closer for fine-grained categories.

Since the proposed APN is automatically learned by

discovering the most discriminative regions to classifica-

tion, instead of regressing human-defined bounding box,

we conduct quantitative comparison on attention localiza-

tion in terms of classification accuracy. For fair compar-

ison, all compared methods use VGG-19 model, but with

different attention localization algorithms. We take the

second-scale network to produce our results (denoted as

RA-CNN (scale 2)), as attended regions at this scale can

preserve both global bird structure and local visual cues,

as shown in Figure 4. First, we can observe compara-

https://github.com/Jianlong-Fu/Recurrent-Attention-CNN
https://github.com/Jianlong-Fu/Recurrent-Attention-CNN


Figure 4. Five bird examples of the learned region attention at dif-

ferent scales. We can observe clear and significant visual cues for

classification after gradually zooming in the attended regions.

Table 2. Comparison of attention localization in terms of classifi-

cation accuracy on CUB-200-2011 dataset.

Approach Accuracy

FCAN (single-attention) [20] 76.1

MG-CNN (single-granularity) [28] 79.5

RA-CNN (scale 2) w/ initial {tx, ty , tl} 79.0

RA-CNN (scale 2) 82.4

ble results with the methods using human-defined bound-

ing box in Table 3. PA-CNN [14] and MG-CNN (with an-

no.) [28] achieves 82.8% and 83.0% accuracy, respective-

ly. RA-CNN (scale 2) achieves 82.4% accuracy. Second,

we can achieve significant better results compared with ex-

isting unsupervised part learning-based methods. FCAN

[20] and MG-CNN [28] are two relevant works to ours,

which also use feature combination scheme from multiple

scales/granularities. To make fair comparison, we selec-

t single-attention and single-granularity based performance

from [20] and [28], and show the results in Table 2. We

can obtain 8.3% and 3.6% relative improvement compared

with FCAN (single-attention) [20] and MG-CNN (single-

granularity) [28], which shows the superior attention learn-

ing ability of the proposed approach. Besides, the result of

RA-CNN with initialized attended region and without rank-

ing loss optimization is listed in the third row. From this

result, we can know the key role of ranking loss for opti-

mizing region attention.

Fine-grained image recognition: We compare with t-

wo types of baselines based on whether they use human-

defined bounding box (bbox)/part annotations. PN-CNN [2]

uses strong supervision of both human-defined bounding

box and ground truth parts. B-CNN [19] uses bounding box

with very high-dimensional feature representation (250k di-

mensions). As shown in Table 3, the proposed RA-CNN (s-

cale 1+2+3) can achieve comparable results with PN-CNN

[2] and B-CNN [19] even without bbox and part annota-

tion, which demonstrates the effectiveness. Compared with

unsupervised methods PDFR [34] without additional Fish-

Table 3. Comparison results on CUB-200-2011 dataset. Train An-

no. represents using bounding box or part annotation in training.

Approach Train Anno. Accuracy

DeepLAC [34] X 80.3

Part-RCNN [33] X 81.6

PA-CNN [14] X 82.8

MG-CNN [28] X 83.0

FCAN [20] X 84.3

B-CNN (250k-dims) [19] X 85.1

SPDA-CNN [32] X 85.1

PN-CNN [2] X 85.4

VGG-19 [27] 77.8

TLAN [31] 77.9

DVAN [35] 79.0

NAC [26] 81.0

MG-CNN [28] 81.7

FCAN [20] 82.0

PDFR [34] 82.6

B-CNN (250k-dims) [19] 84.1

ST-CNN (Inception net) [11] 84.1

RA-CNN (scale 2) 82.4

RA-CNN (scale 3) 81.2

RA-CNN (scale 1+2) 84.7

RA-CNN (scale 1+2+3) 85.3

er Vector learning, we can obtain a relative accuracy gain

with 3.3% by our full model RA-CNN (scale 1+2+3). We

even surpass B-CNN (w/o anno.) [19] and ST-CNN [11],

which uses either high-dimensional features or stronger in-

ception network as baseline model with nearly both 1.5%
relative accuracy gains. Although FCAN (w/o anno.) [20]

and DVAN [35] propose similar ideas to zoom into attend-

ed regions for classification, we can achieve better accuracy

with 4.1% and 8.0% relative improvement because of the

mutual reinforcement framework for attention localization

and region-based feature learning. Note that RA-CNN (s-

cale 2) outperforms VGG-19 results at scale 1 with clear

margins (5.9% relative gains), which shows the necessity

for “looking closer” on fine-grained categories. Besides,

RA-CNN (scale 3) slightly drop than RA-CNN (scale 2),

because of the missing of structural information existed in

global bird images. By combining features at three scales

via a fully-connected layer, we achieve the best 85.3% accu-

racy. Note that the superior result benefits from the comple-

mentary advantages from multiple scales. The combination

of triple single-scale network with different initial parame-

ters only achieves 78.0%, 83.5%, 82.0% for the first, second

and third scale, respectively. Besides, we extend RA-CNN

to more scales, but the performance saturates as discrimina-

tive information has been encoded into the previous scales.

4.3. Experiments on Stanford Dogs

The classification accuracy on Stanford Dogs dataset are

summarized in Table 4. The VGG-16 at the first scale takes

the original images as input and achieves 76.7% recogni-



Figure 5. Attention localization at the third scale for birds, dogs and cars. The regions (in each row) learned from multiple image samples,

represent consistent attention area for a specific fine-grained category, which are discriminative to classify this category from others.

Table 4. Comparison results on Stanford Dogs dataset without ex-

tra bounding box or part annotation.

Approach Accuracy

NAC (AlexNet) [26] 68.6

PDFR (AlexNet) [34] 71.9

VGG-16 [27] 76.7

DVAN [35] 81.5

FCAN [20] 84.2

RA-CNN (scale 2) 85.9

RA-CNN (scale 3) 85.0

RA-CNN (scale 1+2) 86.7

RA-CNN (scale 1+2+3) 87.3

tion accuracy. Relying on accurate attention localization,

RA-CNN (scale 2) achieves a significant improvement to

recognition accuracy of 85.9%, with 12.0% relative gain.

By combining the features from two scales and three scales,

we can boost the performance to 86.7% and 87.3%, respec-

tively. Comparing with the two most relevant approaches

DVAN [35] and FCAN [20], the relative accuracy gains

are 7.1% and 3.7%, respectively. This improvement main-

ly derives from the accurate attention localization, which

are demonstrated in Figure 5. The figure proves that the at-

tended regions are mostly located on dog heads, which are

consistent with previous research [31, 35].

4.4. Experiments on Stanford Cars

The classification accuracy on Stanford Cars are sum-

marized in Table 5. Different car models are difficult to

be recognized, due to the subtle differences, e.g., different

front and back design. Although VGG-19 at scale 1 only

achieves 84.9% accuracy, the performance can increase to

90.0% after zooming in the discriminative region attention

to finer scales. We obtain the highest recognition accura-

cy of 92.5% by leveraging the power of feature ensemble,

which integrates features from original images, amplified

whole vehicles and the front or back regions. We can an-

alyze from Figure 5 that the proposed attention proposal

network is capable of localizing the representative attend-

ed regions, such as the unique front design for Audi and

Table 5. Comparison results on Stanford Cars dataset. Train Anno.

represents using bounding box or part annotation in training.

Approach Train Anno. Accuracy

R-CNN [7] X 88.4

FCAN [20] X 91.3

PA-CNN [14] X 92.8

VGG-19 [27] 84.9

DVAN [35] 87.1

FCAN [20] 89.1

B-CNN (250k-dims) [19] 91.3

RA-CNN (scale 2) 90.0

RA-CNN (scale 3) 89.2

RA-CNN (scale 1+2) 91.8

RA-CNN (scale 1+2+3) 92.5

Dodge, and the cute back design of Smart. Compared with

the state-of-the-art methods, our full model RA-CNN (s-

cale 1+2+3) surpasses DVAN [35] and FCAN (w/o anno.)

[20] for large margins (6.2% and 3.8% relative gain) un-

der the same settings. We also obtain better results than

the high-dimensional B-CNN [19], and even achieve com-

parable performance with PA-CNN [14], which depends on

human-defined bounding box.

5. Conclusion

In this paper, we propose a recurrent attention con-

volutional neural network for fine-grained recognition,

which recursively learns discriminative region attention and

region-based feature representation at multiple scales. The

proposed network does not need bounding box/part anno-

tations for training and can be trained end-to-end. Exten-

sive experiments demonstrate the superior performance on

attention localization and fine-grained recognition tasks on

birds, dogs and cars. In the future, we will conduct the re-

search on two directions. First, how to simultaneously p-

reserve global image structure and model local visual cues,

to keep improving the performance at finer scales. Second,

how to integrate multiple region attention to model more

complex fine-grained categories.
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