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Abstract

In the Spoken Dialogue System literature, all studies consider
the dialogue move as the unquestionable unit for reinforcement
learning. Rather than learning at the dialogue move level, we
apply the learning at the design level for three reasons : 1/ to
alleviate the high-skill prerequisite for developers, 2/ to reduce
the learning complexity by taking into account just the relevant
subset of the context and 3/ to have interpretable learning results
that carry a reusable usage feedback. Unfortunately, tackling the
problem at the design level breaks the Markovian assumptions
that are required in most Reinforcement Learning techniques.
Consequently, we decided to use a recent non-Markovian algo-
rithm called Compliance Based Reinforcement Learning. This
paper presents the first experimentation on online optimisation
in dialogue systems. It reveals a fast and significant improve-
ment of the system performance with by average one system
misunderstanding less per dialogue.

Index Terms : Spoken Dialogue Systems, Reinforcement Lear-
ning, Online Learning, Hybrid System

1. Introduction

Spoken Dialogue Systems (SDS) with learning capabilities
have been deeply investigated these last ten years [1]. The pri-
mary goal pursued by these studies is to reduce the development
cost by automating the SDS design. They use Markov Decision
Process (MDP) to learn the best dialogue move according to
the current dialogue state. This approach has led to promising
results but, as some researchers [2] acknowledge, some obs-
tacles are difficult to overcome (Reinforcement Learning skill
prerequisite, simulated users, ...). The high dimensionality of
the dialogue states and actions is the main reason for all these
troubles. As a consequence, reducing this space complexity re-
presents a big part of the scientific effort with for instance hie-
rarchy of states [3] and summary of states [4]. In fact, these
works endeavour to improve the system performance by inser-
ting expert knowledge.

Other studies [5, 6] propose to mix a handcrafted SDS with
an MDP based SDS. The goal is completely different : to op-
timise the dialogue capabilities of a conventional SDS. In sub-
stance, the idea consists in handcrafting almost totally the SDS
so that it provides a small collection of options among which
the MDP based SDS picks the action to generate to the user. We
completely agree with this objective. We endeavour to improve
these previous works by using a novel framework that learns
at the handcrafting design level (which question, which words,
which prosody, ...), instead of the dialogue move level. This
enables to drastically reduce the dimensionality of the learning
and to consequently speed up the convergence [7].

Section 2 gives a detailed description of the problem and
recalls the Compliance Based Reinforcement Learning algo-
rithm [7] that we use for design optimisation. Then, section 3

describes the experimented system and the goal of the experi-
mentation. Next, section 4 presents the experimentation results.
Finally, section 5 concludes the paper with the next steps.

2. Problem Constraints and Theoretical
Resolution

This section first recalls how conventional SDS are de-
signed by developers. Then, it explains why the Markovian
assumption cannot be maintained in this design environment.
Thus, the Module-Variable-Decision Process is introduced. Fi-
nally, the section ends with the presentation of the Compliance-
Based Reinforcement Learning : a reinforcement learning algo-
rithm that does not use the Markovian assumption.

2.1. The conventional SDS design environment

Industry follows the VUI-completeness principle [8] : “the
behaviour of an application needs to be completely specified
with respect to every possible situation that may arise during
the interaction. No unpredictable user input should ever lead
to unforeseeable behaviour”. The SDS developers consider re-
liable the technologies, tools, and methodologies that help them
to reach the VUI-completeness and to control it.

The graphical abstraction used for SDS design conforms to
the general graph representation of finite state automata, with
the difference that global and local variables (or context) en-
able to factorise several system states in a single node. A sys-
tem state is therefore described by the automata node and the
global context aggregating the global context with all the local
contexts. Transitions relate to user inputs or to internal appli-
cation events such as conditions based on internal information
from the current dialogue state, from the back-end, or from the
dialogue history. In that sense, dialogue design in the industry
generally covers more than strict dialogue management, since
its specification may indicate the type of spoken utterance ex-
pected from the user at each stage of the dialogue, up to the pre-
cise speech recognition model and parameter values to use, and
the generation of the system utterance, from natural language
generation to speech synthesis or audio recordings.

2.2. Problem Constraints

Most dialogue moves can be split up into several internal
decisions that are represented by as many automata nodes : type
of feedback, insertion of contextual help or presentation of ad-
ditional information and choices of questions. These internal
decisions are conventionally specified with handcrafted rules
designed from a very localised view of the system state. For
instance, the system’s decision to welcome the user with “good
morning” or “good afternoon” will depend solely on the current
time at the place from where the user calls. Another more com-
plex example : the decision to insert one help message depends



on the expected expertise of the user. It is easy to understand that
this expected expertise depends on the service users’ average
expertise and on the number of errors that occurred during the
current dialogue. However, it is very complex for the developer
to estimate the users average expertise or to design a function
between those context elements and the decision to make. This
is an example where the decision has to be based on statistics.
The developer designs the decision alternatives and the relevant
information to take into account for making this decision. Lear-
ning at a decision level complies with the way developers are
currently designing their application.

Learning at a decisional level is also motivated by the lear-
ning improvement demonstrated on simulated examples in [7].
Indeed, it enables to use for each decision only the precise rele-
vant context, instead of taking into account the whole dialogue
context. This leads to a space reduction and therefore to a faster
convergence.

In addition to providing a tool for experimenting several al-
ternatives and optimising the system’s behaviour, this approach
offers reporting capabilities. In fact, it delivers a usage feed-
back inside the very dialogue automata the developer designed
in the first place. Contrary to MDP-based methods that flourish
in the literature, our method enables the explanation and thus
the understanding of what the system learnt. Then, this inferred
knowledge can be reused in a another context or even another
dialogue application. This ability to generate expert knowledge
acquired with online learning is new in SDS literature.

Unfortunately, in spite of these advantages, our approach
has a strong technical shortcoming : it breaks the Markovian
assumptions. Indeed, at a time ¢, the decision process state s;
is described by the automata node m; and the local context v
taken into account for making the decision. The next decision
process state s¢+1 cannot be forecast because its local context
v¢+1 1s generally not included into s;. As the decision process
is non-Markovian, in a given decision process state, we cannot
assume to be able to anticipate the next reached decision pro-
cess state. As a consequence, we cannot use any bootstrapping
method [9], i.e. any method that updates expectation estimates
on the basis of the estimates of the following decision process
states. The fastest reinforcement learning algorithms use boots-
trapping, such as Dynamic Programming or Temporal Diffe-
rence Learning.

2.3. Module-Variable Decision Process

This subsection recalls a recent framework [7] for learning
at a decision level. Contrarily to MDP that consider the system
state as a whole, in this framework, the system global state is not
represented in the decision process. The decision process states
are the locally relevant subset of the information included in the
system state. Further in this paper, a state refers to the decision
process state and the global system state concept is abandoned.

A module is the terminology we use for an automata node.
For practical purpose, it is a processing unit that can execute an
internal action according to its local context. This leads to the
definition of the Module-Variable Decision Process (MVDP)
framework (M, Var, Anr) where :

— M is the set of modules.

- Vm € M, V,, is the local context used in module m.

- Vm € M, Ay, is the set of possible actions for m.

In our previous example, we called s; the decision process
state at time t. This state is a tuple made of the module m
accessed at time ¢ and its local context v;. Each module has a
policy. The policy governs the choices that are made when rea-

ching the corresponding automata node given a local context. A
policy is a function from the context space into the action space
Tm @ Vm +— Ap. In order to build its policy, the module may
generate a state-action value function Q. : Vi, X Ay — R
which intends to predict the dialogue-term reward given the lo-
cal context and the chosen action. The exploitation policy aims
to maximise the dialogue-term reward expectations after a given
decision d :

ra=Y y* "Ry (1
k

Where v € [0,1] is the discount factor, used in order to
encourage the shortest path to a dialogue success, tq is the time
when decision d has been made and ¢ > t4 is the time when
reward Ry has been received.

2.4. Compliance Based Reinforcement Learning

A decision d has the following features : the module m
where d is made, the local context v reduced to the relevant
information concerning d, chosen action a and timestamp ¢.

d=(m,v,a,t) € M x Vi Xx Apy, xR )

From the reinforcement learning algorithm point of view, an
episode is the chain of decisions and rewards generated during
a dialogue. The CBRL idea consists in avoiding to learn that
an upfront decision is bad because the episode that tried it made
further bad decisions. The basic idea of the algorithm is to avoid
that an episode (dq, dy) where dp, is bad (and thus engendered
a low reward) leads the system to learn that d,, is bad too based
on this episode poor performance. In order to prevent this, the
algorithm rates to what extent each episode is reliable for lear-
ning. Thus, the CBRL may consider that an episode should not
be taken into account for evaluating a decision d, because the
further decisions are considered not good enough. This rating
cr(e) € R is called the compliance of an episode e with the
policy . It represents the deviation of the episode e decisions
from the policy 7 and it is computed as follows :

lel

Cﬂ'(e) = Z’Ytk_to (ka ('Uk,ak) — Sup ka (Ukva)>

b1 aEAmk
(3)

This compliance measures how well a decision has been
evaluated by computing how compliant the further decisions of
the episode are according to the current policy. Once the deci-
sion corpus C' = {my, vk, ak, Tk, ck = cx(ex)} is generated
(ex is the episode after making decision dy), the Monte Carlo
method [9] is adapted to accept weighted average on the returns.
Therefore, () expectation is computed as follows :

Cmv,a = {re,ce} with {m,v,a,rx,cx} € C  (4)

E rie’ k

{rk,ck}€Cm, v,a

Qm(v,a) = ®)

2 : ek

{rk,ck}€Cm,v,a

Where T is a parameter expressing the impact level of the
compliance on the weights.



3. Experimentation Settings

Our experimentation is a proof of concept on a small set of
users before implementing these learning capabilities on a com-
mercial system receiving dozens of thousands calls per month.
In order to observe an improvement of the system after less than
200 calls, we had to reduce the alternative sets to four design
points and also to limit the local context of each point to the
empty set. With these limitations, an MDP system would pro-
bably have performed as well. The goal of this experimenta-
tion was not to show the performance superiority of the CBRL
approach, which has been proven in a previous paper [7]. The
goal was to prove that it was possible to improve dramatically
a system’s performance by optimising it through a simple and
reduced set of alternatives.

We insist that the goal was not to learn a reusable policy
as with batch learning which are trained with simulated users
(even if it’s technically possible). Indeed, our algorithm is desi-
gned for online learning, i.e. learning during runtime and our
experimentation shows how a commercial system would im-
prove during its lifetime, on the basis of its interactions with
real customers.

The experimented system helps the user to install her DSL-
box (called Livebox). The system and the evaluation forms were
in French only, but for an easier understanding, all the informa-
tion is here translated into English.

3.1. Implementation

As carrying out the Livebox installation by phone is a bit
clunky, the system first tries to find another means to help the
user with her Livebox installation. As a result, during the first
part of the service, the system asks whether the user wants a
technician to install her Livebox (if she does, the user is di-
rected to the appointment scheduling service), whether the user
is at home (if not, the user is asked to call again when she is)
and whether the user has access to the internet (if she does, the
system provides her with a URL where she can find the Live-
box installation process). Once the system has checked that it
could not bypass the installation process, the hardware instal-
lation process is described to the user. The installation process
involves the plugging of the power cable, the DSL cable, the
Ethernet cable and the DSL filters.

3.2. Proposed Alternatives

Instead of designing a completely deterministic service, we
experimented several alternatives at four locations (or modules
in the MVDP framework, see section 2.3) in the design. As we
knew that the dialogue corpus would be limited to 160 units,
we decided not to condition on context space V,,. The set of
alternatives A, are the following ones :

Orange Labs state-of-the-art unit selection speech synthe-
sizer' was used with different acoustic inventories of the same
professional female speaker to generate acoustic variants of the
greeting message : neutral, calm and expressive.

Two orders for the bypassing questions were experimented :
1) home/internet/technician and 2) technician/home/internet.

Two natural language generation variants of the “are you at
home” message were tested : a directive variant (“I would like
to know if you are at home now.”) and an interrogative variant
(“Are you now at home ?”). Three speaking style TTS variants
were tested for the interrogative variant : neutral, expressive and

! demonstrator available at http ://tts.elibel.tm.fr
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calm.

During the installation process, there are a lot of infor-
mation to present to the user : how they should plug the po-
wer cable, the DSL cable, the Ethernet cable, the ToIP adap-
ter (which is not used in the installation process) and the DSL
filters. There is no straightforward relevant order for these pro-
cedures. For instance, we have considered that the user might
be more comfortable if the system first ask her to identify each
element, before undertaking the plugging. Eventually, five dif-
ferent strategies have been tested.

4. Evaluation and Analysis

The system evaluation was completed using 40 subjects
each performing four scenarios, corresponding to each three by-
passing questions plus the full installation procedure.

4.1. System Auto-evaluation
4.1.1. Settings

The System auto-evaluation is the metrics used as rewards
for the CBRL. In this experiment, they were task-based as fol-
lows :

— -1 for each ASR/SLU reject or time-out

— -10 for a hang-up or after an unsuccessful Livebox ins-

tallation

— +5 after providing the user with an alternative way to

install her Livebox.

— +10 after a successful Livebox installation

4.1.2. Overall Performance Evolution

The experimental results in figure 1 show that the learning
algorithm choices triggered an overall dialogue performance
improvement through time in a window of 40 dialogues.

The flat performance at the first stage can be explained by
the exploration policy that let the first testers experience an al-
most fully exploration strategy, to be able to rate the fully explo-
ratory policy. Then, around abscissa points [11,50] and [31,70],
there follows a strong performance improvement probably due
to what the learning algorithm learnt. The small decreasing of
the plot around the [81,120] abscissa is probably due to tes-
ters that were performing under average. Similarly, the very
high average rewards obtained at the end of the experimenta-
tion should be put into perspective with the fact that no lear-
ning has been done at this time, and this improvement can only
be explained by users performing over the average. The dotted
curve shows how we can extrapolate the system’s performance
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expectations over time. This results shows that very similar sys-
tems can vary a lot in performance. It also shows that our al-
gorithm significantly improved a handcrafted system in a very
short time.

4.2. Objective Evaluation

In order to prove that reward’s optimisation led to a real ob-
jective improvement of the system, we made two sets of objec-
tive Key Performance Indicators (KPI) : the duration based KPI
such as call duration in seconds and number of dialogue turns,
and the error rate based KPI such as ASR and SLU error rate.
The duration based KPI were obtained automatically, while the
error rate KPI were based on manual dialogue annotations.

Experimentation showed that the duration based KPI are
not significantly connected with the dialogue performance as
defined with the system rewards.

Concerning the error-based KPI, we considered ASR noise
(ASR errors caused by the surrounding noise, the Livebox
manipulation triggered a lot of them), ASR errors, ASR
noise+error (the sum of the two previous KPI) and ASR+SLU
errors (errors after the ASR+SLU chain).

Figure 2 shows that the main KPI to be affected by the sys-
tem’s learning is the ASR noise. That is how the choice of the
best alternative expresses its improvement. To the contrary, the
ASR errors do not look much affected by the learning. The er-
ror rates for ASR and ASR+SLU are directly influenced by the
ASR noise curve and eventually the average number of errors
per dialogue is divided by 2, which constitutes a strong result.

5. Conclusion

This paper presented the first experimentation in a real Spo-
ken Dialogue System optimising online. It recalled the MVDP
framework and the CBRL algorithm that were used for the ap-
plication design. An evaluation on the Livebox installation ap-
plicatin was made : auto-evaluation of the system and objective
evaluation. The auto-evaluation results showed that the break of
the Markovian assumption did not endanger the convergence of
the learning algorithm. The objective evaluation confirmed that
the reward optimisation led to a dialogue error cut, and that the
system really performed better at the end of the experimentation
than at the beginning.

This paper proved the validity of our approach for optimi-
sation in SDS with a significant error reduction along the lear-
ning. In addition, the experimentation showed other less quanti-
fiable advantages of our approach, when compared to dialogue

move optimisation. First, it is easier to implement. The applica-
tive implementation does not require any technical skills. The
developer just has to define the alternatives, the local context
and the rewards, as opposed to dialogue turn based learning that
suppose a summary/hierarchy of the dialogue state set. Second,
although dialogue move learning only provides a general opti-
misation that cannot be interpreted or explained, our approach
provides a valuable usage return for the application designers.
In addition to that, a call flow monitoring tool has been integra-
ted to the design studio, so that the developers or project ma-
nagers can overview how each alternative performed and how
they correlate to key performance indicators.
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