
AMPNet: Asynchronous Model-Parallel Training for Dynamic
Neural Networks

Alexander L. Gaunt, Matthew A. Johnson, Maik Riechert, Daniel Tarlow*,
Ryota Tomioka, Dimitrios Vytiniotis, Sam Webster

Microsoft Research
Cambridge, United Kingdom

June 23, 2017

Abstract

New types of machine learning hardware in development and entering the market hold the promise of revolu-
tionizing deep learning in a manner as profound as GPUs. However, existing software frameworks and training
algorithms for deep learning have yet to evolve to fully leverage the capability of the new wave of silicon. We
already see the limitations of existing algorithms for models that exploit structured input via complex and instance-
dependent control flow, which prohibits minibatching. We present an asynchronous model-parallel (AMP) training
algorithm that is specifically motivated by training on networks of interconnected devices. Through an implementa-
tion on multi-core CPUs, we show that AMP training converges to the same accuracy as conventional synchronous
training algorithms in a similar number of epochs, but utilizes the available hardware more efficiently even for
small minibatch sizes, resulting in significantly shorter overall training times. Our framework opens the door for
scaling up a new class of deep learning models that cannot be efficiently trained today.

1 Introduction

A new category of neural networks is emerging whose common trait is their ability to react in dynamic and unique
ways to properties of their input. Networks like tree-structured recursive neural networks [34, 35] and graph
neural networks (GNNs) [31, 21, 13] defy the modern GPU-driven paradigm of minibatch-based data management.
Instead, these networks take a tree or a graph as input and carry out a computation that depends on their individual
structures. We refer to this new class of models with dynamic control flow as dynamic neural networks.

Modern neural network frameworks are certainly capable of expressing dynamic networks. TensorFlow [1]
introduces cond, while_loop, and other higher order functional abstractions, while Chainer [36], DyNet [25], and
PyTorch [26] dynamically construct the computation graph using the control flow of the host language. However,
training these networks with existing software frameworks and hardware can be painfully slow because these
networks require highly irregular, non-uniform computation that depends on individual instances. This makes
batching impractical or impossible, thus causing the cost of matrix-vector product to be dominated by the cost
of loading the weights from DRAM – typically orders of magnitude slower than the peak compute on both CPUs
and GPUs 1. Moreover, these frameworks are not typically optimized with single instance batch size in mind.
Dynamically unfolding the computation graph, for example, is a concern when there are not enough instances to
amortize the cost for it. 2

With limited batching, we show in this paper that a way to scale up dynamic models is by exploiting an extreme
form of model parallelism, amenable to distributed execution on a cluster of interconnected compute devices. By
model parallelism, we not only mean computing disjoint parts of the computational graph in parallel, but also
computing sequential operations in the graph in a pipeline-parallel fashion [see e.g., 7].

*Currently at Google Brain
1 For example, the TitanX GPU performs 1013 FLOPS but only 1011 floats/s can be brought into the chip due to memory bandwidth (480

GB/s).
2Recently proposed TensorFlow Fold [22] mitigates these issues with dynamic batching. (Section 7)

1

ar
X

iv
:1

70
5.

09
78

6v
3

 [
cs

.L
G

]
 2

2
Ju

n
20

17

1

1

1 1

1

1

(a) Pipelined execution (#inflight 1)

Time
M

ac
h

in
es

1 2 3 4

1 2 3 4

1 21

15 6 2 7 3

1

3 42 3 4

2 5 3 6

(c) Asynchronous model parallelism

Time

M
ac

h
in

e
s

1 2 3 4

1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 4

1 2 3 4 5 6 7 8

5 6 7 8

5 6 7 8

(b) Pipelined parallel execution (#inflight 4)

Time

M
ac

h
in

es

2

2

2 2

2

2

… ……

Figure 1: Gantt charts comparing pipelined synchronous model parallelism and asynchronous model parallelism.
Orange, blue, and yellow boxes correspond to forward, backward, and parameter update operations, respectively.
The numbers in the boxes indicate instance IDs.

Conventional (pipeline) model parallelism, however, can only maximize device utilization if we can keep the
pipeline full at all times. Unfortunately, as we show in Figure 1, keeping a conventional pipeline full is at odds
with convergence speed due to a decreased parameter update frequency; compare Figure 1 (a) and (b). This is
analogous to the trade-off we face in batching. To overcome this problem, we propose asynchronous model-parallel
(AMP) training, where we allow asynchronous gradient updates to occur, whenever enough gradients have been
accumulated; see Figure 1 (c). With this design we aim for both high device utilization and update frequency.

In this setting, however, model parameters may be updated between the forward and the backward computation
of an instance, introducing gradient “staleness”. Despite staleness, we show that AMP training can converge fast
with good hardware utilization. Specifically, our contributions are:

• We present the AMPNet framework for efficient distributed training of dynamic networks.

• We present an intermediate representation (IR) with explicit constructs for branching and joining control flow
that supports AMP training. Unlike previous work that considers static computation graphs for static control
flow (e.g., Caffe), and dynamic computation graphs for dynamic control flow (e.g., Chainer), our IR encodes
a static computation graph to execute dynamic control flow3. As a consequence, training becomes easy to
distribute and parallelize. Further, IR nodes can process forward and backward messages from multiple
instances at the same time and seamlessly support simultaneous training and inference.

• We show that, thanks to explicit control flow constructs, our IR can readily encode replicas, a form of data
parallelism (see Sec. 5). In addition, our IR includes operators for data aggregation which recover forms of
batching. These features can further improve efficiency, even on CPUs.

• We show that AMP training converges to similar accuracies as synchronous algorithms but often significantly
faster. (Sec. 6) For example on the QM9 dataset [30, 27] our implementation of gated graph sequence
neural network (GGSNN) [21] on a 16 core CPU runs 9x faster than a (manually optimized) TensorFlow CPU
implementation and 2.1x faster than a TensorFlow GPU implementation on the TitanX GPU, because it can
better exploit sparsity. Though we do not aim to compete across-the-board with mature frameworks such as
TensorFlow, our evaluation proves that AMPNet is particularly beneficial for dynamic networks.

In summary, our work demonstrates the benefits of AMP training and gives a novel way to design and deploy
neural network libraries with dynamic control flow. Together these contributions open up new ways to scale up
dynamic networks on interconnected compute devices. Inspired by the increasing investment and innovation in
custom silicon for machine learning (i.e., FPGAs [11, 5] and ASICs [18]), we perform a simple calculation on the
QM9 dataset that shows that AMPNet on a network of 1 TFLOPS devices can be 10x faster than our CPU runtime
requiring only 1.2 Gb/s network bandwidth (Sec. 8).

2 Neural networks with complex and dynamic control flow

Below we highlight three models with dynamic control flow, which will be studied in depth in this paper:

3Our IR bears similarity to TensorFlow but we discuss differences in Section 7.

2

LookupTable
(embed)

Phi

Concat

Isu inc dec
inc(s) = s{t=s.t+1}
dec(s) = s{t=s.t-1}
isDone(s) = (s.t==s.T) Cond isDone

Linear-2Loss

ReLU

Linear-1

Controller h0

label

data

Parameterized payload transform

Non-parameterized payload transformControl flow

State transform

(Dis-)Aggregation

Figure 2: Variable-length RNN in IR and pseudocode (colors denote IR node types)

Variable-length RNNs iterate over the tokens of variable-length sequences. Pseudo-code for a simple RNN is
given in Figure 2. The linear layer can be substituted with a more sophisticated unit such as a gated recurrent
unit [9]. Though each instance has a different length, it is possible to add padding to enable batching. However this
may lead to limited speedup due to variability in sequence lengths.

Tree-structured neural networks are powerful models used for parsing of natural language and images, semantic
representation, and sentiment analysis [33, 4, 34, 35]. They require evaluation of (potentially multiple) trees with
shared parameters but different topology for each instance. Even if one only needs to evaluate a single computational
tree per instance as in [34, 35], the tree is instance-specific and batching requires nontrivial planning [22]. A simple
form of tree neural network performs a bottom up traversal of the instance, starting from an embedding of the
leaves. At each level the values from the child nodes are concatenated and sent through a specialized unit (e.g.
LSTM). The result is then propagated further up the tree. Backpropagation over the tree structure is known as
backpropagation through structure [14].

Graph neural networks [31, 21, 13] combine both the temporal recurrence in variable length RNN and recurrence
over the structure in tree RNN. GNNs can be seen as performing aggregation/distribution operations over a general
graph structure with shared parameters.

Apart from the models above, there exist many recently proposed models with flexible control flow (e.g. hierar-
chical memory networks [6], neural programmer interpreters [29], adaptive computation networks [15, 12], and
networks with stochastic depth [16]), to which our framework can be applied.

3 Asynchronous model-parallel training

The basic idea behind AMP training is to distribute a computation graph across compute nodes and commu-
nicate activations. For training, the nodes of the computation graph exchange forward or backward messages.
Parameterized computations (e.g. fully-connected layers) can individually accumulate gradients computed from
backwards messages. Once the number of accumulated gradients since the last update exceeds a threshold
min_update_frequency, a local update is applied and the accumulator gets cleared. The local parameter update
occurs without further communication or synchronization with other parameterized computations. The staleness
of a gradient can be measured by the number of updates between the forward and backward computation that
produces the gradient. Small min_update_frequency may increase gradient staleness. On the other hand, large
min_update_frequency can reduce the variance of the gradient but can result in very infrequent updates and
also slow down convergence. In addition, max_active_keys controls the maximum number of active instances
that are in-flight at any point in time. By setting max_active_keys= 1 we restrict to single-instance processing.4

More in-flight messages generally increase hardware utilization, but may also increase gradient staleness. We have
implemented an AMPNet runtime for multi-core CPUs, the details of which are given in Appendix A. Section 6
demonstrates the effects of these parameters.

4Note this is usually, but not always, equivalent to synchronous training. For example, a single instance can be comprised of a stream of
messages (e.g. tree nodes in a tree RNN) and depending on the model some updates may occur asynchronously, even if all the messages in-flight
belong to a single instance.

3

4 A static intermediate representation for dynamic control flow

Overview Motivated by the need to distribute dynamic networks on networks of interconnected devices and apply
AMP training, we have designed a static graph-like intermediate representation (IR) that can serve as a target of
compilation for high-level libraries for dynamic networks (e.g. TensorFlow or our own frontend), and can itself
admit multiple backends (e.g. the multi-core CPU runtime that we consider in detail in this paper, or a network of
accelerators). The key feature of our IR is that it is a static graph, but can execute dynamic and instance-dependent
control flow decisions.

A neural network model is specified by (i) an IR graph, and (ii) a specialized controller loop that pumps instances
and other data – e.g. initial hidden states – and is responsible for throttling asynchrony.

Each IR node can receive and process either forward messages (from its predecessor in the IR graph) or backward
messages (from its successors). During training, forward propagation is carried out by passing forward messages
through the IR graph. Each message consists of a payload and a state. The payload is typically a tensor, whereas the
state is typically model-specific and is used to keep track of algorithm and control flow information. For example, in
a variable-length RNN the state contains the instance identifier, the current position in the sequence, and the total
sequence length for the instance. The final loss layer initiates the backward propagation through the IR graph. An
invariant of our IR is that for every forward message that is generated by a node with a specific state, this node will
eventually receive a backward message with the same state. Depending on max_active_keys (Section 3) multiple
forward or backward messages can be in-flight, from one or more instances.

In the rest of this section we discuss the most important IR nodes along with their operational semantics, and
show how they are used in the example models from the previous section.

Payload transformations Parameterized payload transform (PPT) nodes can be used to encode, for instance, fully
connected layers. They apply a transform in the forward pass, but also record the activation in order to use it to
compute gradients in the backward pass. An activation is recorded by keying on the state of the message, and hence
this state must include all necessary information to allow the node to process multiple messages from potentially
different instances without conflating the activations. We require specifications of the forward and the backward
transformation, the operation to produce a new gradient, as well as the state keying function to be used. A PPT node
may decide to independently apply accumulated gradients to update its parameters. For transformations that do
not involve parameters (e.g. ReLUs) our IR offers a simpler non-parameterized payload transform.

Loops, state, and control flow A condition node (Cond f) is parameterized by a function f that queries the state
(but not the payload) of the incoming message and, based on the response, routes the input to one of the successor
nodes. A join node (Phi) propagates the messages it receives from each of its ancestor nodes but records the
origin so that in the backward pass it can backpropagate them to the correct origin. Like PPT nodes, a Phi node
must be parameterized over the keying function on the state of the incoming message. An invertible state update
node (Isu f f −1) is parameterized by two functions f and f −1 that operate on the state of a message, and satisfy
f −1(f (x)) = x.

Figure 2 shows how to encode an RNN. The controller pumps sequence tokens into a lookup table – just a PPT
node, where the parameter is the embedding table and is also being learned. The controller also pumps labels to
the loss layer (dashed boxes are compound graphs whose details we omit), and an initial hidden state h0 for every
sequence. Message states contain the sequence time-step. Following the embedding, messages are concatenated
(Concat node, see next paragraph) with the hidden state, and the result goes into a linear node followed by a ReLU
activation. The Isu node increments the time-step, and the conditional node tests whether the end of the sequence
has been reached. Depending on the answer it either propagates the hidden state back to Phi, or pushes the hidden
state to the final linear and loss layers. In backward mode, the gradient is propagated inside the body of the loop,
passes through the Isu (which decrements the time-step), and reaches the Phi node. The Phi node will (based on
information from the forward phase) either backpropagate to the Cond node, or to the controller. Hence the loop is
executed in both the forward and backward direction.

Aggregation and disaggregation Our IR offers several constructs for aggregation and disagreggation; the most
important ones are outlined below, and their behavior is summarized in Figure 3. Concat, Split, and Bcast

perform concatenation, partition, and broadcast of incoming messages as their names suggest. Group can group
together several incoming messages based on their state. The output message contains a tensor composed of the

4

Concat

s p1 ; p2s p1 ; p2s p1 ; p2

Group

s1 p1s1 p1

s2 p2s2 p2

s p1 ; p2s p1 ; p2

Group

s1 p1

s2 p2

s p1 ; p2

Ungroup

s1 p1s1 p1

s2 p2s2 p2

s p1 ; p2s p1 ; p2

Ungroup

s1 p1

s2 p2

s p1 ; p2

Flatmap

s ps p

s1 ps1 p

s2 ps2 p

Flatmap

s p

s1 p

s2 p

Group

s1 g1s1 g1

s2 g2s2 g2

s g1;g2s g1;g2

Group

s1 g1

s2 g2

s g1;g2

Ungroup

s1 g1s1 g1

s2 g2s2 g2

s g1 ; g2s g1 ; g2

Ungroup

s1 g1

s2 g2

s g1 ; g2

Flatmap

s g1+g2s g1+g2

s1 g1s1 g1

s2 g2s2 g2

Flatmap

s g1+g2

s1 g1

s2 g2

Forward mode Backward mode

s1 p1s1 p1 s2 p2s2 p2

Bcast

s ps p

s ps p s ps p

Bcast

s p

s p s p

Split

s p1 ; p2s p1 ; p2

s p1s p1 s p2s p2

Split

s p1 ; p2

s p1 s p2

Concat

s g1 ; g2s g1 ; g2s g1 ; g2

s1 g1s1 g1 s2 g2s2 g2

Bcast

s g1+g2s g1+g2

s g1s g1 s g2s g2

Bcast

s g1+g2

s g1 s g2

Split

s g1; g2s g1; g2

s g1s g1 s g2s g2

Split

s g1; g2

s g1 s g2

Figure 3: (Dis-)aggregation combinators (forward mode, left; backward mode, right)

LookupTable

Cond isDone

LinearLoss

Bcast

RNNCell

Isu inc dec

Phi

sum

Cond edgeType

Linear-1 Linear-M...

Phi

Group (by target node)

Ungroup

Flatmap (outgoing eges)

Group (by edgeType)

Ungroup

Group
(by instance, timestep)

Controller data

label

(a) Gated Graph Sequence Neural Network. RNNCell is a placeholder
for a recurrent structure (e.g. GRU, LSTM), the details of which we
omit.

LookupTable
Phi

Concat

Isu inc dec

Cond isDoneLinear-2

Loss

ReLU

Controller h0

label
Linear-1/R0

Cond modId

Phi

Linear-1/R1 Linear-1/R2

data

(b) IR graph for an RNN with replicas.

Figure 4: IR graphs for Gated Graph Sequence Neural Network and RNN with replicas.

input payloads, whereas the state is a function of the incoming states. In forward mode Group (and also Concat)
must key on this new state to cache the states of the original messages, so as to restore those in the backward phase.
Ungroup is a symmetric version of Group. Flatmap creates a sequence of outgoing messages per incoming message,
with replicated payload and new states given by a state generation function that is a parameter of the node. The
node keys on the outgoing states and caches the incoming state and number of expected messages, so as to sum all
the gradients and restore the original state in backward mode.

Figure 4(a) describes a GNN that combines aggregation on the structure of a graph instance with an outer
iteration. The iteration controls in effect the locality of information propagation. The controller pumps data, as
before, to a lookup table and labels for this instance to the loss layer. The lookup table emits payloads that are
matrices where each row corresponds to the embedding of an instance node, and states that contain the current
iteration counter, the instance id, and a reference to the graph structure. The messages are broadcast and ungrouped
so that each outgoing message corresponds to each node of the graph instance. Next, each message is goes through
a Flatmap node that replicates the payload for each outgoing edge and creates states that record the incoming node,
outgoing node, and type of that edge, resulting in a stream of messages, one for each edge in the graph. Next, all
edges are grouped by edge type and each group is sent to a designated linear layer. Each group is then dismantled
back and edges are re-grouped by their target node. Each group is passed through a non-parameterized payload
transformation that sums together all payloads. The result is a stream of messages where each message contains

5

an aggregated value for a graph node. Finally, we group back all these aggregated values and send the result to the
RNNCell for another outer iteration. We note that this constitutes a form of batching – the information about all
nodes is batched together before been sent to the RNNCell.

5 Interaction with data parallelism and replicas

Pipeline-style parallelism can often be augmented with forms of data parallelism. Consider the RNN in Fig. 2. The
only heavy operation (Linear-1) in the body of the loop is going to act as a bottleneck for computation. One solution
is to split the linear layer into smaller tiles and compute them in parallel. This is expressible in our IR but the linear
operation needs to be large enough to benefit from tiling in this way. Another approach is to replicate the linear
layer in full. Fortunately this requires only minimal new machinery – we can replicate the linear layer and place the
replicas inside Cond and Phi nodes as in Figure 4(b). Different instances or messages from the same instance but
with different position in the sequence can be processed in an (pipeline-)parallel fashion using 3 replicas in this
case. To enable parameters to be shared among the replicas, we have implemented infrequent end-of-epoch replica
synchronization (averaging) to keep the communication cost negligible, as well as a message-passing protocol
asynchronous trigger of whole-replica group synchronization, but found that infrequent synchronization was
sufficient for fast convergence.

6 Experiments

We evaluate AMPNet using the dynamic models introduced in Section 2. For completeness, we additionally consider
a simple multi-layer perceptron (MLP) as an example of a static network with instances that are easy to batch. For
each model we select a dataset and compare the throughput and convergence profile of AMPNet against traditional
training schemes implemented in TensorFlow.

MLP: MNIST As preliminary task, we train a 4-layer perceptron with ReLUs on MNIST [20]. We choose 784-
dimensional hidden units, and we affinitize the 3 linear operations on individual workers (or threads; see Appendix
A). Both AMP runtime and TensorFlow use SGD with learning rate 0.1 and batch size of 100.

RNN: List reduction dataset As a starting point for experiments on networks with complex control flow we use a
synthetic dataset solved by a vanilla RNN. Specifically, we train an RNN to perform reduction operations on variable
length lists of digits. Each training instance is a sequence of at most 10 tokens: The first token indicates which of 4
reduction operations 5 is to be performed, and the remaining tokens represent the list of digits. The output is the
result of the calculation rounded modulo 10. The dataset consists of 105 training and 104 validation instances.

We present this task as a classification problem to a vanilla RNN with ReLU activation and a hidden dimension
of 128. All parameterized operations are affinitized on individual workers. We bucket training instances into batches
of 100 sequences (in the baseline and in AMPNet).

Tree-LSTM: Stanford Sentiment Treebank As a non-synthetic problem, we consider a real-world sentiment
classification dataset [34] consisting of binarized constituency parse trees of English sentences with sentiment
labels at each node. Following Tai et al. [35], we use 8,544 trees for training, 1,101 trees for validation, and 2,210
trees for testing.

We use a Tree LSTM for this classification task based on the TensorFlow Fold [22] benchmark model. Both
the AMP and Fold models are trained following [35] with the additional architectural modifications proposed by
[22, 32]. Furthermore, we split our Tree-LSTM cell into Leaf LSTM and Branch LSTM cells. This does not affect the
expressiveness of the model because the LSTM cell receives either zero input (on branch) or zero hidden states (on
leaves); i.e., the two cells do not share weights except for the bias parameters, which are learned independently in
our implementation. We compare the time to reach 82 % fine grained (5 classes) accuracy (averaged over all the
nodes) on the validation set.

5The operations considered in our toy dataset act on a list L and are expressed in python syntax as: mean(L),
mean(L[0::2])-mean(L[1::2]), max(L)-min(L) and len(L).

6

Table 1: Time to convergence to target validation accuracy. The time to convergence can be broken down into
number of epochs and the throughput (instances/s). The target accuracy is shown inside parentheses next to
each dataset. mak is a short-hand for max_active_keys defined in Sec. 3; mak = 1 corresponds to synchronous
training for MNIST and minimal asynchrony arising from just one in-flight instance for other models with recursive
structures.

AMP TensorFlow
mak time (s) epochs inst/s time (s) epochs inst/s

MNIST (97%) 1 130 4 1949
4 44 (3x) 4 5750 34.5 3 5880

List reduction (97%) 1 82.9 9 12k
4 69.7 (1.2x) 9 14k
16 64.9 (1.3x) 9 14k

(2 replicas) 4 33.7 (2.5x) 10 32k
(4 replicas) 8 23.9 (3.5x) 14 66k 46 7 18k
Sentiment (82%) 1 305 3 88

4 230 (1.3x) 3 117
16 201 (1.5x) 3 133 208 5 265

bAbI 15 (100%) 1 12.2 7 319
16 5.8 (2.1x) 6 662 6.3 5 350

QM9 (4.6) 4 29k 93 400
16 14k (2.1x) 69 640 129k 59 58

GNN: Facebook bAbI 15 & QM9 datasets We verify our GNN implementation using a toy logic deduction bench-
mark (bAbI task 15 [37]) and study a real-world application for GNNs: prediction of organic molecule properties
from structural formulae in the QM9 dataset [30, 27]. GNNs have previously been applied to these tasks in [21] and
[13] respectively.

For the bAbI 15 dataset we inflate each graphs from the default 8 nodes to 54 nodes to increase the computational
load, but we preserve the two-hop complexity of the deduction task. The architecture of the model follows [21] with
a hidden dimension of 5, and 2 propagation steps.

For the QM9 dataset we concentrate on prediction of the norm of a molecule’s dipole moment using a regression
layer build on the propagation model from [21] (corresponding to the simplest setting in [13]). We use a hidden
dimension of 100 and 4 propagation steps, initializing the graph nodes (atoms) following [13]. The molecules
contain up to 29 atoms and in a TensorFlow baseline we bucket molecules into batches of 20 with atom counts
differing by at most 1 within a batch. Following [13], we report regression accuracies in multiples of a target accuracy
from the chemistry community.

Results On MNIST, Table 1 shows 3x speedup from synchrony (max_active_keys= 1) to asynchrony (max_active_keys=
4). This is almost ideal as the first three linear layers are the heaviest operations. As we can see in the fourth column
of the table, mild asynchrony has negligible effect on the convergence while greatly improving throughput and time
to convergence.

The list reduction dataset demonstrates the power of replicas. As there is only one heavy operation (Linear-
1, Figure 2), the speedup from asynchrony is mild (1.3x). However we get 2.5x and 3.5x speedup for 2 and 4
replicas, respectively, which is nearly ideal. Again, the # of epochs to convergence is not affected by increasing
max_active_keys. The slowdown in convergence for 4 replicas is due to the increased effective minibatch size –
also commonly observed in data parallel training.

Next the sentiment tree-RNN dataset shows that our runtime is competitive without batching to TensorFlow
Fold [22] using dynamic batching of batch size 100. It is worth mentioning that our runtime allows us to specify
different min_update_frequency parameter for each parameterized operation. We set this parameter to 1000 for
the embedding layer, which is initialized by Glove vectors, and 50 for all other layers. This greatly reduced gradient
staleness in the embedding layer.

Finally bAbI 15 (54 nodes) and QM9 datasets demonstrates the importance of sparsity. Note that the TensorFlow
implementation of GGSNN [21] implements the message propagation and aggregation over the input graph as a
dense N H ×N H matrix multiplication where N is the number of nodes and H is the hidden state dimension. Since
each input graph has a unique connectivity, this matrix needs to be constructed for each instance. By contrast, we
handle this by message passing and branching as we described in Section 4. As a result we get roughly 9x speedup
on QM9 against TensorFlow implementation on CPUs with the same number of threads. Our runtime was also

7

faster than a GPU TensorFlow implementation by 2.1x. AMPNet and TensorFlow implementation were comparable
on the small bAbI 15 (54 nodes) dataset.

Figure 5: Performance of an 8-replica RNN model on
the as a function of asynchrony hyperparameters. Solid
gray lines show constant convergence time trajectories.
muf stands for min_update_frequency.

Asynchrony The degree of asynchrony is controlled by
hyperparameters min_update_frequency and
max_active_keys. In Fig. 5 we use an 8-replica RNN
model on the list reduction dataset to investigate how
these parameters affect the data and time required to
converge to 96% validation accuracy. We find, in anal-
ogy with minibatch size in traditional systems, that
min_update_frequency must neither be too large nor
too small. Increasing max_active_keys (increasing asyn-
chrony) monotonically increases performance when the
number of keys is similar to the number of individually
affinitized heavy operations in the model 8 in this case).
Increasing max_active_keys significantly beyond this
point produces diminishing returns.

7 Related Work

Chainer [36], DyNet [25], and PyTorch [26] belong to a new class of deep learning frameworks that define the
computation graph dynamically per-instance by executing the control flow of the host language (e.g. Python) that
can limit cross-instance parallelism and has a cost that is difficult to hide when the minibatch size is small[see 25].
By contrast our IR graph is static so it is easier to distribute, optimize, and pipeline-parallelize across instances.

Theano [2] and TensorFlow (TF)[1] provide powerful abstractions for conditional execution (ifelse in Theano
and cond in TF) and loops (scan and while_loop, respectively); TF also provides higher-order functions, such as
map, foldl, foldr, and scan. The main difference between AMPNet and the above frameworks is that AMPNet
is streaming and asynchronous whereas Theano is non-streaming and synchronous. Although not designed for
streaming, TF can support streaming programmatically as it exposes first-class queues, as well as data prefetching
with so called input pipelines. In our IR, all the queuing is implicit and stream-based execution is the default. TF
additionally does support static description of dynamic control flow and state update, but we depart from the
classic dataflow architecture that TF follows [3]: First, instead of having nodes that represent mutable reference
cells, we encapsulate the state with which a message should be processed through the graph in the message itself.
Second, because we encapsulate algorithmic state in the messages, we do not introduce the notion of control
dependencies (which can be used to impose a specific execution order on TF operations). Our choices complicate
algorithmic state management from a programming point of view and make the task of designing a high-level
compiler non-trivial, but allow every node to run asynchronously and independently without a scheduler and
without the need for control messages: For example, nodes that dynamically take a control flow path or split the data
simply consult the state of the incoming message, instead of having to accept additional control inputs. For “small”
states (e.g. nested loop counters or edge and node ids) this might be preferable than out-of-band signaling. Our IR
can implement loops by simply using state-update, conditional, and phi nodes, because the state accompanies the
payload throughout its lifetime, whereas TF introduces specialized operators from timely dataflow [24] to achieve
the same effect.

TensorFlow Fold (TFF) [22] is a recent extension of TensorFlow that attempts to increase batching for TF dynamic
networks and is an interesting alternative to our asynchronous execution. TFF unrolls and merges together (by
depth) the computation graphs of several instances, resulting in a batch-like execution. TFF effectiveness greatly
depends on the model – for example, it would not batch well for random permutations of a sequence of operations,
whereas our IR would very succinctly express and achieve pipeline parallelism through our control-flow IR nodes.

Asynchronous data parallel training [28, 10, 8] is another popular approach to scale out optimization by removing
synchronization, orthogonal to and combinable with model-parallel training. For example, convolutional layers
are more amenable to data-parallel training than fully connected layers, because the weights are smaller than the
activations. Moreover, when control flow differs per data instance, data parallelism is one way to get an effective
minibatch size > 1, which may improve convergence by reducing variance. The impact of staleness on convergence

8

[28] and optimization dynamics [23] have been studied for data parallelism. It would be interesting to extend those
results to our setting.

Jaderberg et al. [17], like us, aim to to train different parts of a model in a decoupled or asynchronous manner.
More precisely, their goal is to approximate a gradient with a synthetic gradient computed by a small neural network
that is locally attached to each layer. Hence, the local gradient calculation becomes independent of other layers
(except for the training of the gradient predictor network) and allows asynchronous parameter updates. This would
be especially useful if the evaluation of the local network is cheaper than the computation of the real gradient; for
example, if the computation of the real gradient required communication of forward/backward messages between
devices.

8 Conclusion and Outlook

We have presented an asynchronous model-parallel SGD algorithm for distributed neural network training. We
have described an IR and multi-core CPU runtime for models with irregular and/or instance-dependent control
flow. Looking forward, we aim to deploy our system on specialized hardware. To give an idea of performant FPGA
implementations of AMPNet, we perform a simple estimate of the peak throughput on the QM9 dataset running
on a network of 1 TFLOPS FPGAs (see Appendix C for details). Our calculation shows that we achieve 6k graphs/s
(10x compared to our CPU runtime) on the QM9 dataset with 200 hidden dimensions and 30 nodes per graph on
average. This only requires a very reasonable 1.2 Gb/s network bandwidth. Equally importantly, we plan to build a
compiler that automatically deduces the information to be placed in the states and generates state keying functions
from a higher-level description of the models. By unlocking scalable distributed training of dynamic models, we
hope to enable exploration of this class of models that are currently only on the horizon but may become more
mainstream in the future.

Acknowledgements

We would like to thank Eric Chung, Doug Burger, and the Catapult team for continued discussions and feedback
from the early stage of our work. We would also like to thank Krzysztof Jozwik for discussions on FPGAs, Stavros
Volos for discussions on various memory architectures, Miguel Castro for discussions on data parallelism vs. model
parallelism, John Langford for a discussion on asynchrony and reproducibility, and Frank Seide for discussions on
dynamic networks.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. TensorFlow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] R. Al-Rfou, G. Alain, A. Almahairi, C. Angermueller, D. Bahdanau, N. Ballas, F. Bastien, J. Bayer, A. Belikov, et al. Theano: A
python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688, 2016.

[3] Arvind and D. E. Culler. Dataflow architectures. Annual Review of Computer Science, 1(1):225–253, 1986. URL http:
//csg.csail.mit.edu/pubs/memos/Memo-261-1/Memo-261-2.pdf.

[4] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts. A fast unified model for parsing and sentence
understanding. arXiv preprint arXiv:1603.06021, 2016.

[5] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, et al. A
cloud-scale acceleration architecture. In Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium
on, pages 1–13. IEEE, 2016.

[6] S. Chandar, S. Ahn, H. Larochelle, P. Vincent, G. Tesauro, and Y. Bengio. Hierarchical memory networks. arXiv preprint
arXiv:1605.07427, 2016.

[7] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide. Pipelined back-propagation for context-dependent deep neural networks. In
Interspeech, pages 26–29, 2012.

9

http://csg.csail.mit.edu/pubs/memos/Memo-261-1/Memo-261-2.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-261-1/Memo-261-2.pdf

[8] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project Adam: Building an efficient and scalable deep learning
training system. In OSDI, volume 14, pages 571–582, 2014.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555, 2014.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed
deep networks. In Advances in neural information processing systems, pages 1223–1231, 2012.

[11] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Akselrod, and S. Talay. Large-scale FPGA-based convolu-
tional networks. Scaling up Machine Learning: Parallel and Distributed Approaches, pages 399–419, 2011.

[12] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhutdinov. Spatially adaptive computation time
for residual networks. arXiv preprint arXiv:1612.02297, 2016.

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. arXiv
preprint arXiv:1704.01212, 2017.

[14] C. Goller and A. Kuchler. Learning task-dependent distributed representations by backpropagation through structure. In
Neural Networks, 1996., IEEE International Conference on, volume 1, pages 347–352. IEEE, 1996.

[15] A. Graves. Adaptive computation time for recurrent neural networks. arXiv preprint arXiv:1603.08983, 2016.

[16] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks with stochastic depth. In European Conference on
Computer Vision, pages 646–661. Springer, 2016.

[17] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves, and K. Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. arXiv preprint arXiv:1608.05343, 2016.

[18] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014. URL http://arxiv.
org/abs/1412.6980.

[20] Y. LeCun and C. Cortes. The MNIST database of handwritten digits, 1998.

[21] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493,
2015.

[22] M. Looks, M. Herreshoff, D. Hutchins, and P. Norvig. Deep learning with dynamic computation graphs. arXiv preprint
arXiv:1702.02181, 2017. Sentiment Tree Bank example: https://github.com/tensorflow/fold/blob/master/
tensorflow_fold/g3doc/sentiment.ipynb.

[23] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré. Asynchrony begets momentum, with an application to deep learning. arXiv
preprint arXiv:1605.09774, 2016.

[24] D. G. Murray, F. McSherry, M. Isard, R. Isaacs, P. Barham, and M. Abadi. Incremental, iterative data processing with timely
dataflow. Commun. ACM, 59(10):75–83, Sept. 2016. ISSN 0001-0782.

[25] G. Neubig, C. Dyer, Y. Goldberg, A. Matthews, W. Ammar, A. Anastasopoulos, M. Ballesteros, D. Chiang, D. Clothiaux, T. Cohn,
et al. Dynet: The dynamic neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

[26] PyTorch core team. PyTorch. URL http://pytorch.org/.

[27] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry structures and properties of 134 kilo
molecules. Scientific Data, 1, 2014.

[28] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages 693–701, 2011.

[29] S. Reed and N. De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279, 2015.

[30] L. Ruddigkeit, R. Van Deursen, L. C. Blum, and J.-L. Reymond. Enumeration of 166 billion organic small molecules in the
chemical universe database gdb-17. Journal of chemical information and modeling, 52(11):2864–2875, 2012.

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/sentiment.ipynb
https://github.com/tensorflow/fold/blob/master/tensorflow_fold/g3doc/sentiment.ipynb
http://pytorch.org/

[31] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE Transactions
on Neural Networks, 20(1):61–80, 2009.

[32] S. Semeniuta, A. Severyn, and E. Barth. Recurrent dropout without memory loss. arXiv preprint arXiv:1603.05118, 2016.

[33] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natural language with recursive neural networks.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages 129–136, 2011.

[34] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, C. Potts, et al. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language
processing (EMNLP), volume 1631, page 1642, 2013. Dataset: https://nlp.stanford.edu/sentiment/treebank.html.

[35] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured long short-term memory
networks. arXiv preprint arXiv:1503.00075, 2015.

[36] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open source framework for deep learning. In
Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural
information processing systems (NIPS), 2015.

[37] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. van Merriënboer, A. Joulin, and T. Mikolov. Towards ai-complete question
answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

11

https://nlp.stanford.edu/sentiment/treebank.html

A AMPNet runtime implementation

We have implemented an AMPNet runtime for multi-core CPUs. Our runtime spawns multiple workers each
associated with a hardware thread and hosting one or more IR nodes – in a more general setting each worker
corresponds to a compute device. To remain faithful to a distributed environment communication is only through
message passing. Each worker is equipped with a multiple-producer single-consumer queue that can accept
messages for any IR node hosted on that worker.

The main worker loop periodically offloads messages from the concurrent queue to a worker-local priority queue
that assigns higher priority to backward messages. Backward prioritization is designed for situations when multiple
IR nodes with a dependency on the IR graph end up hosted on the same worker. As a consequence, backpropagation
can complete faster and new instances can be pumped in by the controller. We dequeue the top message and invoke
the forward or backward method of the target IR node. These methods may update internal IR node state (such as
cache the state of the incoming message and wait for more messages) or post new forward or backward messages.

How to update the parameters using the gradients is a configuration option that selects amongst a range of
optimization algorithms. We have implemented runtime configuration options for selecting several well-known
schemes such as (momentum-)SGD and Adam [19], and for controlling the training hyper-parameters.

B Details of the experimental results

We provide more details of the experiment and analysis in this section. All experiments were carried out on machines
with 16 cores and 112 GB of RAM. The validation curves were averaged over at least 20 independent runs. The
time/epoch to reach a target accuracy was calculated as median of the time an algorithm takes to reach the target
accuracy over the repetitions. We found this approach to be more reliable than reporting the time/epoch when the
averaged accuracy reaches the target. Table 2 show both the training and validation throughputs we obtained with
AMPNet and our TensorFlow baselines.

B.1 MNIST

Figure 6(a) shows the validation accuracy vs. time, validation accuracy vs. epochs, and throughputs of synchronous
and asynchronous versions of AMPNet as well as TensorFlow. The throughput greatly increases from synchronous
(max_active_keys= 1) to asynchronous (max_active_keys= 4) while the speed of convergence (middle panel)
is hardly affected for mild amount of asynchrony. Taking higher max_active_keys= 8 increase throughput only
very little (because there is no more work) and seems to rather make the convergence more unstable. This is due to
the fact that our current scheduler is greedy and pumps in a forward message whenever the first layer is unoccupied,
which leads to large gradient staleness. Clearly a better scheduling will remove this sensitivity.

B.2 List reduction dataset

Similarly Figure 6(b) shows the validation accuracy vs. time and the number of epochs, and throughputs of the
methods we discussed in the main text on the list reduction dataset. We first notice that increasing the asynchrony
from synchronous (max_active_keys=1) to max_active_keys= 4 and max_active_keys= 16 affects the con-
vergence very little at least in average. However, there is also very little speedup without introducing replicas as we
discussed in the main text. Increasing the number of replicas increases the throughput almost linearly from 15k
sequences/s (synchronous) to 30k sequences/s (2 replicas) and over 60k sequences/s (4 replicas). Convergence
is almost unaffected for 2 replicas. This was rather surprising because the parameters of the replicas are only
synchronized after each epoch as we described in Sec. 5. A slight slow-down in convergence can be noticed for 4
replicas. Since even max_active_keys= 16 has almost no effect on the convergence without replicas, this is not
due to asynchrony. We also tried to synchronize more frequently but this did not help. Thus we believe that the
slow-down is due to the increase in the effective minibatch size resulting in reduced number of updates per epoch,
which is commonly observed in data parallel training.

12

Table 2: Training and validation throughputs.

number of instances AMP TensorFlow
train valid mak train inst/s valid inst/s train inst/s valid inst/s

MNIST (97%) 1 1948 6106
60k 10k 4 5750 19113 5880 8037

List reduction (97%) 1 12k 41k
4 14k 53k
16 14k 53k

(2 replicas) 4 32k 99k
(4 replicas) 100k 10k 8 66k 181k 18k 43k
Sentiment (82%) 1 88 326

4 117 568
8511 1101 16 133 589 265 1583

bAbI 15 (100%) 1 319 733
1006 1000 16 662 1428 350 1093

QM9 (4.6) 4 400 970
117k 13k 16 640 1406 57.5 104

B.3 Sentiment Tree Bank dataset

Figure 6(c) shows the averaged fine grained validation accuracy for the tree RNN model with differentmax_active_keyson
the Stanford Sentiment Tree Bank dataset. Interestingly although TensorFlow Fold achieves higher throughput,
AMPNet converges faster (in terms of the number of epochs). This speedup is mainly due to the fact that we are not
batching and updating whenever we have accumulated 50 gradients (except for the lookup table node that updates
every 1000 gradients); 50 gradients correspond to roughly 2 trees. The reason for the lower throughput compared
to TensorFlow Fold is that we are only grouping the leaf operations and not the branch operations. Grouping the
branch operations is possible by extending our IR nodes and we are actively working on it.

Figure 6(d) shows the same information for fixedmax_active_keys= 16 and differentmin_update_frequency.
We can see that as we increase min_update_frequency from the originally used 50 to larger values, the peak of
the validation accuracy shifts later and lower becoming closer to the curve obtained by TensorFlow Fold. This
is consistent with the parallels between min_update_frequency and minibatch size we drew in Section 6. The
min_update_frequency parameter has marginal influence on the training throughput.

B.4 bAbI 15 (54 nodes) and QM9 dataset

Figures 6(e) and 6(f) show that GGSNN can tolerate relatively large max_active_keys= 16. In particular, on the
more challenging QM9 dataset taking max_active_keys = 16 increased the throughput significantly from 152
graphs/s (synchronous) to 640 graphs/s.

C Throughput calculation for the GGSNN model for QM9

Suppose that the hidden dimension H is sufficiently wide so that the speed of matrix-vector product dominates the
throughput of the system compared to element-wise operations, such as sigmoid and tanh; we take H = 200 in the
calculation below.

In an idealized scenario, pipeline parallel execution of the network consists of roughly 3 stages per time step. In
the first stage, all four H ×H linear nodes corresponding to different edge types execute in parallel. In the second
stage, the two 2H ×H linear nodes (#9 and #12) inside the GRU cell corresponding to update and reset gates execute
in parallel (see Fig. 7,). Finally, the last 2H × H linear node in the GRU cell immediately before the Tanh node
executes. We would need at least 7 devices that executes these linear nodes in a pipelined parallel fashion. The
memory requirement for each device is 4 times the size of the H ×H or 2H ×H weight matrix, which consists of the

6We sample 100 fresh samples for every epoch.

13

parameter, gradient buffer, and two slots for the statistics that need to be accumulated in the Adam optimizer. This
would be 1.2MB for H = 200 and float32.

The throughput of training this model is either limited by the speed of the GRU block or that of the linear nodes
corresponding to edges. The number of operations in the forward and backward passes per time step can thus be
estimated as

fwdop = 2 ·max(2N H 2,E H 2/C),

bwdop = 6 ·max(2N H 2,E H 2/C),

where N and E are the average number of nodes and edges per instance, respectively and C is the number of edge
types, which is 4 in this task. We assume that the backward operation is 3 times more expensive than the forward
operation because it requires matrix transpose, matrix multiplication, and gradient accumulation.

Moreover, in an idealized scenario, we can expect that each neural network node alternates between forward
and backward (we thank Vivek Seshadri for pointing this out).

Thus we can estimate the throughput of training this model on a network of 1 TFLOPS devices (e.g., Arria 10) as

throughput (samples/s) = 0.5 · 1012

(fwdop+bwdop) ·4
,

where the last 4 is the number of propagation time steps and 0.5 accounts for all the other operations and communi-
cation overhead we ignored in the calculation.

For H = 200, N = E = 30 and C = 4 we obtain

throughput (samples/s) = 0.5 · 1012

64 ·N H 2 ' 6.5 ·103 (samples/s).

The network bandwidth required in this scenario is

network bandwidth (bits/s) = 32 · throughput ·max(N ,E) ·H = 1.2 ·109 (bits/s).

14

(a) MNIST dataset

(b) List reduction dataset

(c) Sentiment Tree Bank (min_update_frequency= 50)

15

(d) Sentiment Tree Bank (max_active_keys= 16)

16

(e) bAbI 15 (large) dataset

(f) QM9

Figure 6: Convergence plots.

17

Figure 7: GGSNN IR graph for QM9.

18

	1 Introduction
	2 Neural networks with complex and dynamic control flow
	3 Asynchronous model-parallel training
	4 A static intermediate representation for dynamic control flow
	5 Interaction with data parallelism and replicas
	6 Experiments
	7 Related Work
	8 Conclusion and Outlook
	A AMPNet runtime implementation
	B Details of the experimental results
	B.1 MNIST
	B.2 List reduction dataset
	B.3 Sentiment Tree Bank dataset
	B.4 bAbI 15 (54 nodes) and QM9 dataset

	C Throughput calculation for the GGSNN model for QM9

