
Multi-Advisor Reinforcement Learning

Romain Laroche∗
Microsoft Maluuba
Montréal, Canada

Mehdi Fatemi
Microsoft Maluuba
Montréal, Canada

Joshua Romoff
Microsoft Maluuba
McGill University
Montréal, Canada

Harm van Seijen
Microsoft Maluuba
Montréal, Canada

Abstract

This article deals with a novel branch of Separa-
tion of Concerns, called Multi-Advisor Reinforce-
ment Learning (MAd-RL), where a single-agent
RL problem is distributed to n learners, called
advisors. Each advisor tries to solve the problem
with a different focus. Their advice is then com-
municated to an aggregator, which is in control of
the system. For the local training, three off-policy
bootstrapping methods are proposed and analysed:
local-max bootstraps with the local greedy action,
rand-policy bootstraps with respect to the random
policy, and agg-policy bootstraps with respect to
the aggregator’s greedy policy. MAd-RL is posi-
tioned as a generalisation of Reinforcement Learn-
ing with Ensemble methods. An experiment is
held on a simplified version of the Ms. Pac-Man
Atari game. The results confirm the theoretical
relative strengths and weaknesses of each method.

1 Introduction

When a person faces a complex and important problem, his
individual problem solving abilities might not suffice. He
has to actively seek for advice around him: he might con-
sult his relatives, browse different sources on the internet,
and/or hire one or several people that are specialised in some
aspects of the problem. He then aggregates the technical,
ethical and emotional advice in order to build an informed
plan and to hopefully make the best possible decision. In
this article, we propose to model this conduct under a novel
multi-agent framework, which we call Multi-Advisor Rein-
forcement Learning (MAd-RL).

Formalised in Section 2, MAd-RL intends to partition a
single-agent Reinforcement Learning [RL, Sutton and Barto,
1998] into a Multi-Agent RL problem [Shoham et al., 2003],
under the widespread divide & conquer paradigm. Unlike

∗ romain.laroche@microsoft.com

Hierarchical RL [Dayan and Hinton, 1993; Parr and Russell,
1998; Dietterich, 2000b], our approach places all agents at
the same level and gives them the role of advisors. This role
consists in providing an aggregator with the local Q-values
for each available action. We position MAd-RL as a gener-
alisation of RL with Ensemble methods [Dietterich, 2000a],
allowing both the fusion of several weak RL learners, and
the decomposition of a single-agent RL problem into con-
current subtasks, by allocating advisors to focus on different
aspects of the problem such as reward channels. Only a few
papers [Wiering and Van Hasselt, 2008; Harutyunyan et al.,
2015; van Seijen et al., 2017] tackled the confluence of RL
and Ensemble methods. All of them follow a method where
agents are trained independently and greedily to their local
optimality, and are aggregated into a global policy by voting
or averaging. This paper is also the first to theoretically
analyse the local greedy bootstrapping method.

Section 3 shows that this method, which we call local-max,
presents the severe theoretical shortcoming of inverting a
max

∑
into a

∑
max into the global Bellman equation.

In practice, this max
∑

inversion causes some states to
become attractors: an attractor is a state where advisors
are pulling in different directions equally and where the
local-max aggregator’s solution is to remain static. Two
novel, attractor-free, off-policy bootstrapping methods are
proposed and analysed: rand-policy bootstrapping method
guarantees the convergence to a fair short-sighted policy, but
also has the drawback to prevent efficient long-term plan-
ning; and agg-policy bootstrapping method optimises the
system with respect to the global optimal Bellman equation,
but without any convergence guarantee in the general case.

van Seijen et al. [2017] showed on a simplified version of
Ms Pac-Man, called Pac-Boy, that a MAd-RL architecture
with local-max significantly speeds up learning and con-
verges to a better solution than several deep RL baselines.
Section 4 extends this effort and provides empirical insights
for MAd-RL by comparing the bootstrapping methods and
confirm their theoretical analyses: local-max gets very unsta-
ble as soon as some noise is introduced, whereas agg-policy
achieves similar scores with robustness to noise.

ar
X

iv
:1

70
4.

00
75

6v
1

 [
cs

.L
G

]
 3

 A
pr

 2
01

7

2 Multi-Advisor Reinforcement Learning

2.1 Markov Decision Process

The Reinforcement Learning (RL) framework is formalised
as a Markov Decision Process (MDP). An MDP is a tuple
〈X ,A, P,R, γ〉 where X is the state space, A is the action
space, P : X ×A → X is the Markovian transition stochas-
tic function, R : X × A → R is the immediate reward
stochastic function, and γ is the discount factor.

A trajectory 〈x(t), a(t), x(t+ 1), r(t)〉t∈J0,T−1K is the pro-
jection into the MDP of the task episode. The goal is to
generate trajectories with high discounted cumulative re-
ward, also called more succinctly return:

∑T−1
t=0 γtr(t). To

do so, one needs to find a policy π : X × A → [0, 1]
which yields optimal expected returns. Formally, this means
finding the policy which maximises the following function:

Qπ(x, a) = Eπ

∑
t′≥t

γt
′−tR(Xt′ , At′)|Xt = x,At = a

 .
2.2 Problem setting

This section defines the Multi-Advisor RL (MAd-RL) frame-
work for solving a single-agent RL problem. The n advisors
are regarded as specialised, possibly weak, learners that
are concerned with a sub part of the problem. Then an
aggregator is responsible for merging the advisors’ recom-
mendations into a global policy. The overall architecture is
illustrated in Figure 1. At each time step, an advisor j sends
to the aggregator its local Q-values for all actions in the cur-
rent state. The aggregator is defined with f : Rn×|A| → A,
which maps the received qj values into an action of A.

Inspired by Section 4.2 of Sun and Peterson [1999], we
review ways to distribute a single-agent RL problem over
several specialised advisors1:

1. State space approximation: each advisor has a lo-
cal state space representation [Böhmer et al., 2015;
Laroche and Féraud, 2017]: Xj ⊆ X .

2. Segmentation of rewards: Separation of Concerns [van
Seijen et al., 2017] assumes that a complex task can
be decomposed into subtasks defined by as many re-
ward channels. Feudal RL [Dayan and Hinton, 1993;
Vezhnevets et al., 2017] learns to assign sub-goals un-
der a recursive hierarchy master-slave. In both cases,
advisor’s reward functions Rj are local.

3. Criterion separation: sometimes, no objective func-
tion can clearly be designed, and the goal is to satisfy
several criteria as much as possible. Multi-criteria

1Items 6. and 7. are not developed further in this paper.

Advisor Advisor...Environment

Figure 1: MAd-RL architecture

RL [Gábor et al., 1998] results in a segmentation of
rewards, but with a specific aggregating policy.

4. Algorithm diversification [Wiering and Van Hasselt,
2008; Laroche and Féraud, 2017]: each algorithm in-
tends to learn a global policy, but with different opti-
misations, hypotheses, regularizers and/or parameters.

5. Randomization: variance control through random-
ization of the learners can be obtained via in-
stance sampling [Breiman, 1996], random initialisa-
tion [Glorot and Bengio, 2010], randomization of algo-
rithms [Breiman, 2001], etc.

6. Sequencing of actions: each advisor is able to handle
different sequences of actions. This is related to the
options used in semi-MDP [Sutton et al., 1999].

7. Factorisation of actions [Laroche et al., 2009]: each
advisor is responsible for a specific action dimension:
for instance a robot might control its legs and its arms
with different advisors.

In summary, each advisor j is defined on a local repre-
sentation φj : X → Xj , and its local state is denoted by
xj = φj(x) ∈ Xj . The advisor aims to find a an opti-
mal evaluation of the state-action space in order to send
the aggregator the most informative communication vector
qj = [Qj(xj , a)]a∈A = [Qj(φj(x), a)]a∈A ∈ R|A|; the
state-action (x, a) values according to advisor j.

2.3 Separation of Concerns

MAd-RL falls within the Separation of Concerns (SoC)
framework proposed in van Seijen et al. [2017]. Separation
of Concerns distributes the responsibilities among several
agents, that may communicate and have complex relation-
ships, such as master-slave or collaborators-as-equal. This
section transcribes under the MAd-RL notations the main
theoretical result: a theorem ensuring, under conditions, that
the advisors’ training eventually converges.

Note that by assigning a stationary behaviour to each of the
advisors, the sequence of random variablesX0, X1, X2, . . . ,
with Xt ∈ X is a Markov chain. To formalize, let µ define a

set of n stationary advisors andM be the space of all such
sets. The following holds for all µ ∈M:

P(Xt+1|Xt, µ) = P(Xt+1|Xt, . . . , X0, µ).

For later analysis, we assume the following.

Assumption 1. All the advisors environments are Markov:

P(Xj,t+1|Xj,t, At) = P(Xj,t+1|Xj,t, At, . . . , Xj,0, A0).

Theorem 1. Under Assumption 1 and given any fixed ag-
gregator, global convergence occurs if all advisors use off-
policy algorithms that converge in the single-agent setting.

Proof. Each advisor can be seen as an independent learner
training from trajectories controlled by an arbitrary be-
havioural policy. If Assumption 1 holds, each advisor’s
environment is Markov and off-policy algorithms can be
applied with convergence guarantees.

Even though, Theorem 1 guarantees convergence, it does not
guarantee the optimality of the converged solution. More-
over, this fixed point only depends on the SoC model and on
the local bootstrapping methods (see Section 3), but not on
the particular optimisation algorithms that are being used.

2.4 Aggregating advisors’ recommendations

Finally, the f function’s role is to aggregate the advisors’
recommendations into a policy. These recommendations are
expressed as their value functions qj . To our best knowl-
edge, these recommendations enable to build any aggrega-
tor function encountered in the Ensemble methods litera-
ture [Dietterich, 2000a]: voting schemes [Gibbard, 1973],
Boltzmann policy mixtures [Wiering and Van Hasselt, 2008]
and of course value-function combinations [Sun and Peter-
son, 1999]. For the analysis, we restrict ourselves to the
linear decomposition of the rewards:

R(x, a) =
∑
j

wjRj(xj , a),

which implies the same decomposition of return if they share
the same γ. We define the global Q-function as follows:

Q(x, a) =
∑
j

wjQj(xj , a).

The aggregator function is then defined in a greedy manner
(during learning, exploration may be added):

f(x) = argmax
a∈A

Q(x, a).

This includes the setting where we have one advisor per
reward channel [van Seijen et al., 2017]: all wj are equal

to 1, and each advisor is specialised with a predefined local
state space relevant to its task. This also models the setting
of the weighting average of several learners on the global
task: all wj sum to 1 Sun and Peterson [1999].

2.5 MAd-RL as Ensemble Learning

MAd-RL can be interpreted as a framework for Ensem-
ble Learning for RL. As such, a detailed positioning to
previous work on this area has to be undertaken. Despite
the widespread interest for Ensemble Learning [Dietterich,
2000a] and RL [Sutton and Barto, 1998], very little stud-
ies on Ensemble RL can be found. We provide their short
survey hereinbelow.

Sun and Peterson [1999] use a boosting algorithm in a RL
framework, but the boosting is performed upon policies, not
RL algorithms. In this sense, this article can be seen as
a precursor to the policy reuse algorithm [Fernández and
Veloso, 2006] rather than Ensemble Learning.

Wiering and Van Hasselt [2008] combine five online RL
algorithms on several simple RL problems and show that
some mixture models of the five experts performs generally
better than any single one alone. Their algorithms were off-
policy, on-policy, actor-critics, etc. Faußer and Schwenker
[2011] continue this effort in a very specific setting where
actions are explicit and deterministic transitions. We show
in Section 3 that the bootstrapping methods have meanings
and that some recommendations can be made in accordance
to the task definition.

In Harutyunyan et al. [2015], while all advisors are trained
on different reward functions, these are potential based re-
ward shaping variants of the same reward function. They
are therefore embedding the same goals. As a consequence,
it can be related to a bagging procedure. The advisors
recommendation are then aggregated under the HORDE
architecture [Sutton et al., 2011], with local greedy off-
policy bootstrapping. Two aggregator functions were tried
out: majority voting and ranked voting. We call this method
local-max and show in Subsection 3.1, that it induces critical
theoretical shortcomings.

Finally, Laroche and Féraud [2017] follow a different ap-
proach in which, instead of boosting the weak advisors
performances by aggregating their recommendation, they
select the best advisor. This approach is beneficial for stag-
gered learning, or when one or several advisors may not find
good policies, but not for variance reduction brought by the
committee, and it does not apply to compositional RL.

We believe that this article lays the theoretical foundation
for Ensemble RL. Although the analysis provided in Sec-
tion 3 is built on the linear composition of value functions,
the same bootstrapping methods can be applied with the
same distinctive features for any aggregator function, eg.
majority/ranking voting, or Boltzmann policy aggregation.

3 Off-policy bootstrapping methods

This section present three different local off-policy boot-
strapping methods. They differ in the policy they intend
to evaluate and therefore intend to optimise different local
Bellman equations. local-max evaluates the local greedy
policy, rand-policy the random policy, and agg-policy the
aggregator’s greedy policy. They are presented and anal-
ysed under the linear composition aggregator presented in
Subsection 2.4, but most considerations are also valid with
other aggregating functions.

3.1 Local-max bootstrapping

An intuitive approach is to learn off-policy by bootstrapping
on the locally greedy action: the advisor evaluates the lo-
cal greedy policy. This bootstrapping method, referred to
hereafter as local-max, has already been employed in Haru-
tyunyan et al. [2015] and van Seijen et al. [2017]. Theorem
1 guarantees for each advisor j the convergence to the local
optimal value function, denoted by Qlmj , which satisfies the
Bellman optimality equation:

Qlmj (xj , a) = E [rj] + γE
[
max
a′∈A

Qlmj (x′j , a
′)

]
,

where the first term is the expectation of the local stochastic
immediate reward function rj = Rj(xj , a), and the second
term is the future return expectation over the local stochastic
transition function Pj(xj , a, x′j). For the sake of simplicity,
we removed the conditioning variables from the expectation
notations hereafter. In the aggregator global view, we get:

Qlm(x, a) =
∑
j

wjQ
lm
j (xj , a),

=
∑
j

E
[
wjrj + γwj max

a′∈A
Qlmj (x′j , a

′)

]
,

= E

∑
j

wjrj

+ γE

∑
j

wj max
a′∈A

Qlmj (x′j , a
′)

 .
By construction, r =

∑
j wjrj , and therefore we get:

Qlm(x, a) = E [r] + γE

∑
j

wj max
a′∈A

Qlmj (x′j , a
′)

 ,
≥ E [r] + γE

[
max
a′∈A

Qlm(x′, a′)

]
.

Local-max suffers from an inversion between the max and∑
operators and it tends as a consequence to overestimate

the state-action values, in particular when the advisors dis-
agree on the optimal action. This flaw has critical conse-
quences in practice. In particular, it creates a lot of attractor
situations. We’ll see in Section 4.2 that these situations are

xx1 x2
a1 a2
r1 r2

a0
r0 = 0

Figure 2: Attractor example.

encountered in the Pac-Boy experiment, and we believe in
most other RL tasks. Before coming to a general definition,
let us explain the attractor phenomenon on the MDP exam-
ple in Figure 2. In the central state, the system has three
possible actions: stay put (action a0), perform advisor 1’s
goal (action a1), or perform advisor 2’s goal (action a2).
Once achieving a goal, the trajectory ends. The Q-function
values for each action are easy to compute:

Qlm(s, a0) = E [r] + γE

∑
j

max
a′∈A

Qlmj (x′j , a
′)

 ,
= 0 + γr1 + γr2,

= γr1 + γr2,

Qlm(s, a1) = r1,

Qlm(s, a2) = r2.

As a consequence, if γ > r1/(r1+r2) and γ > r2/(r1+r2),
the aggregator’s policy after convergence will be to execute
action a0 sine die. This may have some apparent similarity
with the Buridan’s ass paradox [Rescher, 2005]: a donkey
is equally thirsty and hungry and cannot decide to eat or to
drink and dies of its inability to make a decision because
of the determinism of judgement stated in antic philosophy.
Nevertheless, the local-max sub-optimality does not come
from actions that are equally good, nor from the determinism
of the policy, since adding randomness to the system will
not help (see Section 1.6 in Zbilut [2004]). Now, let us
define more generally the concept of attractors.

Definition 1. An attractor x is a state where the following
inequality holds:

max
a ∈A

∑
j

wjQ
lm
j (xj , a) ≤ γ

∑
j

wj max
a∈A

Qlm(xj , a).

An attractor is a state where local-max would lead the aggre-
gator to stay in that state, if it had the chance to. Note that
there is no condition on the existence of actions allowing
the system to be actually static. Indeed, the system might
be stuck in an attractor set, keep moving, but opt to never
achieve its goals. To understand how this may happen, just
replace the middle state x in Figure 2 with an indefinitely
large set of similar attractors: where action a0 performs a
random transition in the attractor set, and actions a1 and a2

respectively achieve tasks of advisors 1 and 2. Moreover, it
may happen that an attractor set is escapable by the lack of
actions keeping the system in an attractor set. For instance,
in Figure 2, if action a0 is not available, the central state
remains an attractor, but an unstable one.

Definition 2. An advisor j is said to be monotonic if the
following condition is satisfied:

∀xj ∈ Xj ,∀a ∈ A, Qlmj (xj , a) ≥ γ max
a′∈A

Qlmj (xj , a
′).

The intuition behind the monotonic property is that no action
is worse than losing one turn to do nothing. In other words,
only progress can be made towards this task, and therefore
noop actions are regarded by this advisor as the worst ones.

Theorem 2. If all the advisors are monotonic, there cannot
be any attractor.

Proof. Let sum Definition 2 over advisors:∑
j

wjQ
lm
j (xj , a) ≥ γ

∑
j

wj max
a′∈A

Qlmj (xj , a
′),

max
a′∈A

∑
j

wjQ
lm
j (xj , a

′) ≥
∑
j

wjQ
lm
j (xj , a),

which proves the theorem.

The condition stated in Theorem 2 is very restrictive. Most
of RL problems do not fall into this category, even for small
γ values. Navigation tasks do not qualify by nature: when
the system goes into a direction that is opposite to some goal,
it gets into a state that is worse than staying in the same po-
sition. As well, Theorem 2 does not apply to RL problems
with states that terminate the trajectory while some goals
are still incomplete. Still, there exist some RL problems
where Theorem 2 can be applied, such as resource schedul-
ing where each advisor is responsible for the progression
of a given task. Note that a MAd-RL setting without any
attractors does not guarantee optimality for local-max. An
attractor-free setting simply means that the system will con-
tinue making progress towards goals as long as there are
any opportunity to do so.

3.2 Rand-policy bootstrapping

For any MAd-RL problem, there exists other off-policy
bootstrapping methods guaranteed to be attractor free. The
advisors need not bootstrap their value function on the ba-
sis of local policies, but rather on a shared reference. A
potential reference policy may be the random policy over
the action set A. This Q-function bootstrapping method is
called rand-policy hereafter. Once again, Theorem 1 guar-
antees the convergence of the local optimisation process to

its local optimal value, denoted by Qrpj , which satisfies the
following Bellman equation:

Qrpj (xj , a) = E

[
rj +

γ

|A|
∑
a′∈A

Qrpj (x′j , a
′)

]
,

Qrp(x, a) = E

r +
γ

|A|
∑
j

wj
∑
a′∈A

Qrpj (x′j , a
′)

 ,
= E

[
r +

γ

|A|
∑
a′∈A

Qrp(x′, a′)

]
.

The local rand-policy optimisation is equivalent to the global
rand-policy optimisation. As such, it does not suffer from
local attractor issue described in Section 3.1. However,
optimising the value function with respect to the random
policy is in general far from the optimal solution to the
global MDP problem.

3.3 Agg-policy bootstrapping

Another solution is to use the aggregator’s policy as the
reference. In this method, referred to as agg-policy, the
aggregator is in control, and the advisors are evaluating the
current aggregator’s greedy policy f with respect to their
local focus. Theorem 1 does not apply here because the ag-
gregator’s policy is dependent on the other advisors, which
means that, even though the environment can still be mod-
elled as an MDP, the training procedure is not. Assuming
that all advisors jointly converge to their respective local
optimal value, denoted by Qapj , it satisfies the following
Bellman equation:

Qapj (xj , a) = E
[
rj + γQapj (x′j , f(x′))

]
,

Qap(x, a) = E

r + γ
∑
j

wjQ
ap
j (x′j , f(x′))

 ,
= E [r + γQap(x′, f(x′))] ,

= E
[
r + γQap(x′, argmax

a′∈A
Qap(x′, a′))

]
,

= E
[
r + γ max

a′∈A
Qap(x′, a′)

]
.

It is interesting to notice that this global Bellman equation
is actually the global Bellman optimality equation. We can
therefore conclude its uniqueness but unfortunately, as afore-
mentioned, this comes with the non-Markovian property of
the aggregator’s policy f at the local learner scope. As a
result, local learners are not guaranteed to converge in the
general case. Nevertheless, it can be proven in a limit-case:

Theorem 3. If, for all advisors j, Xj = X , using
SARSA [Rummery and Niranjan, 1994] update rule for each
advisor with respect to the aggregator’s maximising action

is equivalent to applyingQ-learning [Watkins, 1989] update
rule on the global agent.

Proof. Let āx′ denote the aggegator’s greedy policy action
in state x′. The Q-learning update rule for the global agent
can be decomposed as follows:

Qap(x, a)← (1− α)Qap(x, a) + α [r + γQap(x′, āx′)] ,

= (1− α)
∑
j

wjQ
ap
j (x, a)

+ α

∑
j

wjrj + γ
∑
j

wjQ
ap
j (x′, āx′)

 .
The SARSA update rule for each advisor with respect to the
aggregator’s action āx′ is written as follows:

Qapj (xj , a)← (1− α)Qapj (xj , a) + α
[
rj

+ γQapj (x′j , āx′)
]
.

Since xj = x and x′j = x′ from the theorem’s assumptions,
we notice that the update rule of the global Q-learning algo-
rithm is the sum of the update rule over the local SARSA ad-
visors with respect to the aggregator’s action, which proves
the theorem.

4 Experiment and results

4.1 Pac-Boy

We evaluate a MAd-RL model on a simplified version of
Ms. Pac-Man, which we call Pac-Boy (see Figure 3a). Ms.
Pac-Man is considered as one of the hardest games from the
Atari benchmark set [Mnih et al., 2015].

Pac-Boy navigates in a 11x11 maze with a total of 76
possible positions and 4 possible actions in each state:
A = {N,W,S,E}, respectively for North, West, South
and East. Bumping into a wall simply causes the player
not to move without penalty. Since Pac-Boy always starts
in the same position, there are 75 potential fruit positions.
The fruit distribution is randomised: at the start of each
new episode, there is a 50% probability for each position
to have a fruit. A game lasts until the last fruit has been
eaten, or after the 300th time step. During an episode, fruits
remain fixed until they get eaten by Pac-Boy. As in Ms.
Pac-Man, ghosts are preventing Pac-Boy from eating all
the fruits. However, due to the smaller grid, there are only
two of them and they both move randomly. The state of the
game consists of the positions of Pac-Boy, fruits, and ghosts:
76× 275 × 762 ≈ 1028 states. Hence, no global represen-
tation system can be implemented without using function
approximation. Pac-Boy gets a +1 reward for every eaten
fruit and a −10 penalty when it is touched by a ghost.

(a) Pac-Boy full map

(b) 3 fruits & a wall

(c) No noop action

Figure 3: The Pac-Boy game. On the left, the full map: Pac-
Boy is yellow, the corridors are in black, the walls in grey,
the fruits are the white dots amd the ghosts are in red. On
the right, two examples of attractors in the Pac-Boy domain.

Experiments – Time scale is divided into 50 epochs last-
ing 20,000 transitions each. At the end of each epoch an
evaluation phase is launched for 80 games. Each experimen-
tal result is presented along two dimensional performance
indicators: the averaged non discounted rewards and the
average length of the games. The average non discounted
rewards can be seen as the number of points obtained in a
game. Its theoretical expected maximum is 37.5 and the
random policy average performance is around -80 (being
eaten about 10 times by the ghosts).

MAd-RL Setup – Each advisor is responsible for a specific
source of reward (or penalty). More precisely, we separate
the concerns as follows: we assign an advisor to each pos-
sible fruit location. This advisor sees a +1 reward only if
a fruit at its assigned position gets eaten. Its state space
consists of Pac-Boy’s position, resulting in 76 states. In
addition, we assign an advisor to each ghost. This advisor
receives a -10 reward if Pac-Boy bumps into its assigned
ghost. Its state space consists of Pac-Boy’s position and the
ghost’s position, resulting in 762 states. A fruit advisor is
only active when there is a fruit at its assigned position. Be-
cause there are on average 37.5 fruits, the average number
of advisors running at the beginning of each episode is 39.5.
Each fruit advisor is set inactive when its fruit is eaten.

The learning was performed through Temporal Difference
updates. Due to the small state spaces for the advisors, we
can use a tabular representation. We train all learners in
parallel with off-policy learning, with Bellman residuals
computed as presented in Section 3 and a constant α = 0.1
parameter. The aggregator function sums the Q-values for
each action a ∈ A: Q(x, a) :=

∑
j Qj(xj , a), and uses ε-

greedy action selection with respect to these summed values.
Because ghost agents have exactly identical MDP, we also
benefit from direct knowledge by sharing their Q-tables.

One can notice that Assumption 1 holds in this setting and
that, as a consequence, Theorem 1 applies for local-max
and rand-policy .

Baselines – Our first baseline is a system that uses the exact
same input features as the MAd-RL model. Specifically,
the state of each advisor of the MAd-RL model is encoded
with a one-hot vector and all these vectors are concatenated,
resulting in a sparse binary feature vector of size 17, 252
with about 40 active features per time step. This vector is
used for linear function approximation with Q-learning. We
refer to this setting with linear Q-learning.

We then consider two deep RL baselines. The first is the
standard DQN algorithm [Mnih et al., 2015] with reward
clipping (referred to as DQN-clipped). The second is Pop
Art [van Hasselt et al., 2016], which can be combined with
DQN in order to handle large magnitudes of reward (re-
ferred to as DQN-scaled). The input to both DQN-clipped
and DQN-scaled is a 4-channel binary image, where each
channel is in the shape of the game grid and represents the
positions of one of the following features: the walls, the
ghosts, the fruits, or Pac-Boy.

4.2 Attractors in navigation domains

Regarding the weakness of local-max, an analysis of situa-
tions where attractors occur in the Pac-Boy domain must be
performed. The three-fruit attractor illustrated in Figure 3b
happens when the system is in a state with equal distance
between three fruits and adjacent to a wall, enabling it to per-
form a noop action. Moving towards a fruit, makes it closer
to one of the fruits, but further from the two other fruits,
since diagonal moves are not allowed. Expressing the real
value of each action under local-max gives the following:

Qlm(x, S) = γ
∑
j

max
a∈A

Qlmj (xj , a) = 3γ2,

Qlm(x,N) = Qlm(x,E) = Qlm(x,W) = γ + 2γ3.

That means that, if γ > 0.5, Qlm(x, S) > Qlm(x,N) =
Qlm(x,E) = Qlm(x,W). As a result, the aggregator
would opt to go South and hit the wall indefinitely. This
is a practical example of an attractor as defined in Subsec-
tion 3.1. In the case of Figure 3b, there is a noop action,
and given the number of corridors, it is difficult to find a
Pac-Boy situation without a wall enabling a static action.
Nevertheless, as Section 3.1 predicts, the attractors can be
encountered in navigation tasks even in settings without any
noop action as in Figure 3c, where the player is placed in
a 2x2 square with 8 fruits surrounding it. The action-state
values of the aggregator under local-max are:

Qlm(x,N) = Qlm(x,E) = 2γ + 4γ2 + 2γ3,

Qlm(x, S) = Qlm(x,W) = 1 + γ + γ2 + 3γ3 + 2γ4.

Once again, that means that, if γ > 0.5, Qlm(x,N) =
Qlm(x,E) > Qv(x, S) = Qlm(x,W). After moving
North or East, the system arrives in a state that is sym-
metrically equivalent to the first one. More generally in
a deterministic2 navigation task like Pac-Boy where each
action a in a state x can be cancelled by a new action a-1

x ,
it can be shown that the condition on γ is a function of the
size of the action set A.

Theorem 4. State x ∈ X is guaranteed not to be an attrac-
tor if all these conditions are satisfied:

• ∀a ∈ A,∃a-1
x ∈ A, such that P (P (x, a), a-1

x) = x ,

• ∀a ∈ A, R(x, a) ≥ 0 ,

• and γ ≤
1

|A|−1
.

Proof. Let us denote J xa as the set of advisors for which
action a is optimal in state x. Qlma (x) is defined as the sum
of perceived value of performing a in state x by the advisors
that would choose it:

Qlma (x) =
∑
j∈J x

a

wjQ
lm
j (x′j , a).

Let a+ be the action that maximises this Qlma (x) function:

a+ = argmax
a∈A

Qlma (x).

We now consider the left hand side of the inequality charac-
terising the attractors in Definition 1:

max
a ∈A

∑
j

wjQ
lm
j (xj , a) ≥

∑
j

wjQ
lm
j (xj , a

+),

= Qlma+(x) +
∑
j /∈J x

a+

wjQ
lm
j (xj , a

+),

=Qlma+(x)+
∑
j /∈J x

a+

wj

(
R(x, a+)+γ max

a′∈A
Qlmj (x′j , a

′)

)
.

Since R(x, a+) ≥ 0, and since the a′ maximising
Qlmj (x′j , a

′) is at least as good as the cancelling action
(a+)-1

x , we can follow with:

max
a ∈A

∑
j

wjQ
lm
j (xj , a) ≥ Qlma+(x)

+
∑
j /∈J x

a+

wjγ
2 max
a∈A

Qlmj (xj , a).

2A more general result on stochastic navigation tasks can be
demonstrated. We limited the proof to the deterministic case for
the sake of simplicity.

0 10 20 30 40 50
Epochs

20

10

0

10

20

30

40
Av

er
ag

e
Sc

or
e Agg-Policy

Linear
DQN-Clipped
DQN-Pop-Art
Upper-bound

(a) Avg scores against baselines

0 10 20 30 40 50
Epochs

100

125

150

175

200

225

250

275

300

Av
er

ag
e

St
ep

s

Agg-Policy
Linear
DQN-Clipped
DQN-Pop-Art

(b) Avg episode length against baselines

0 10 20 30 40 50
Epochs

20

10

0

10

20

30

40

Av
er

ag
e

Sc
or

e Agg-Policy-g0.9
LocalMax-g0.4
LocalMax-g0.9
RandomPolicy-g0.9
Upper-bound

(c) Avg scores for different methods

Figure 4: Empirical results in the regular setting comparing MAd-RL with baselines, and different bootstrapping methods.

By comparing this last result with the right hand side of Def-
inition 1, the condition for x not being an attractor becomes:

(1− γ)Qlma+(x) ≥ (1− γ)γ
∑
j /∈J x

a+

wj max
a∈A

Qlmj (xj , a),

Qlma+(x) ≥ γ
∑
a 6=a+

∑
j∈J x

a

wjQ
lm
j (xj , a),

Qlma+(x) ≥ γ
∑
a 6=a+

Qlma (x).

It follows directly from the inequality Qlma+(x) ≥ Qlma (x),
that γ ≤ 1/(|A|−1) guarantees the absence of attractor.

Theorem 4 determines sufficient conditions for not having
any attractor in the MDP. In the Pac-Boy domain, the can-
celling action condition is satisfied for every x ∈ X . As for
the γ condition, it is not only sufficient but also necessary,
since being surrounded by goals of equal value is an attrac-
tor if γ > 1/3. In practice, an attractor becomes stable only
when there is an action enabling it to remain in the attraction
set. Thus, the condition for not being stuck in an attractor
set can be relaxed to γ ≤ 1/(|A|−2). Hence, the result of
γ > 1/2 in examples illustrated by Figures 3b and 3c. It
is still a very restrictive condition, considering that most
navigation problems have at least the four cardinal-point
actions.

Notice that there exists many navigation problems where
the assumption of cancelling actions does not hold. For
instance a car on the top of a hill with two equal goals on
each side of the hill would go faster moving down the hill
than up. As a consequence, even if the car has only three ac-
tions: {left, noop, right}, the local-max aggregator would
be stuck in the attractor, the hill, by repeating the noop
action.

4.3 Results

The results of this experiment are presented in Figures 4a,
4b and 4c. Seven different settings have been compared:
the three baselines linear Q-learning, DQN-clipped, and
DQN-scaled, and four MAd-RL settings: local-max with
γ = 0.4, local-max with γ = 0.9, rand-policy with γ = 0.9,
and agg-policy with γ = 0.9.

Figure 4a shows that linear Q-learning performs the worst.
It benefits from no state space reduction and cannot gener-
alize as well as the Deep RL baselines: DQN-clipped and
DQN-scaled, which perform better but do not progress after
reaching a reward close to 20. Despite their similar results
with respect to performance, Figure 4b reveals that their
learnt policies are in fact very different. DQN-scaled is
much wearier of the high negative reward obtained from
being eaten by the ghosts and thus takes much more time to
eat all the fruits.

MAd-RL settings perform considerably better. The compari-
son between the bootstrapping methods on Figure 4c reveals
that, with small γ value, local-max is very efficient: the best
in our benchmark. However, local-max performs awfully
with γ = 0.9. This is empirical confirmation that the theo-
retical drawbacks obtained in Sections 3.1 and 4.2 are also a
practical issue. Attractors aside, the small γ value does not
have a big impact on the game performance in the Pac-Boy
domain for both fruit collection and ghost avoidance. The
fruit collection problem is similar to the travelling salesman
problem, which is known to be NP-complete [Papadim-
itriou, 1977]. But, the suboptimal small-γ policy consisting
of moving towards the closest fruits is in fact a decent one.
Regarding the ghost avoidance, local-max with small γ gets
an advantage over other settings: the local optimisation
guarantees a perfect control of the system near the ghosts.
On the contrary, in the two other settings, rand-policy and
agg-policy, the ghost advisor is uncertain of the next action
of their bootstrapping policies. As a result, they become

more conservative around the ghosts, especially rand-policy
that considers each future action as equally likely.

Regarding agg-policy, even though its performance remains
near that of local-max, it still suffers from the fact that the
local learners cannot fully make sense of the aggregator’s ac-
tions due to their limited state space representations, which
transgresses Theorem 3’s assumptions. We tested other γ
values for agg-policy and a value close to 0.4 was slightly
better. This is a good trade-off between the long-term hori-
zon and the noise in the Q-function propagated by high
values of γ. More precisely, a smaller γ makes the ghost
advisors less fearful of the ghosts, which is profitable when
collecting the nearby fruits.

4.4 Results with noisy rewards

But, even if using a very small γ does the trick, especially
for local-max in the Pac-Boy game, it can be dangerous in
other environments. The reason is that the objective function
gets distorted and even more importantly the reward signal
diminishes exponentially as a function of the distance to
the goal, which might have critical consequences in a noisy
environment, hence this subsection experiment.

Several levels of Gaussian white noise ησ with standard
deviation σ ∈ {0.01, 0.1} have been applied to the reward
signal: at each turn, each advisor now receives r̂j = rj +ησ
instead. Since the noise is white, the Q-functions remain
the same, but their estimators obtained during sampling is
corrupted by noise variance. We expect that small γ values
cause the reward signal to be overwhelmed by this noise,
and high γ values, while they propagate the noise further,
also propagate the reward signal in such a way that they
should be more robust. Indeed, the amplitude of non-zero
rewards are much bigger than those of the noise terms.

Empirical results displayed in Figure 5 confirm this: agg-
policy performs better than local-max even under noise with
variance σ2 100 times larger. Indeed, the fruit advisors are
only able to perceive the fruits that are in a radius dependent
on γ and σ, a smaller γ implying a smaller radius. Local-
max, incompatible with high γ values, is therefore myopic
and cannot perceive distant fruits. The same kind of limi-
tations are expected to be encountered for small γ values
when the local advisors rely on state approximations, and/or
when the transitions are stochastic. Also, we recall here
that optimising with respect to an artificial γ value might
converge to policies that are largely suboptimal regarding
the true γ value in the objective function.

It is worth mentioning here that hybrid settings with local-
max for the ghost advisors and agg-policy for the fruit advi-
sors achieve very good performance, even with high γ. This
is due to the fact that the stale positions caused by attrac-
tors cannot be encountered with only ghost advisors, which
apply a repulsion mechanism and not a goal in of itself.

0 10 20 30 40 50
Epochs

20

10

0

10

20

30

40

Av
er

ag
e

Sc
or

e

Local-Max-N0.1-g0.4
Local-Max-N0.01-g0.4
Agg-Policy-N0.1-g0.9
Agg-Policy-N0.01-g0.9
Upper-bound

Figure 5: Average performance with noisy rewards

5 Conclusion and future work

This article presented MAd-RL, a novel framework for de-
composing a single-agent RL problem into simpler problems
tackled by learners called advisors. Then, we showed that
the advisors can be trained according to different bootstrap-
pings: local-max bootstraps with the local greedy action. It
is guaranteed to converge but we demonstrate that a

∑
max

inversion causes its optimal policy to be endangered by at-
tractors. Rand-policy bootstraps with respect to the random
policy. It is also guaranteed to converge and is robust to
attractors, but its random bootstrapping prevents the advi-
sors from planning in an efficient way. Finally, agg-policy
bootstraps with respect to the aggregator’s policy. It opti-
mises the system according to the global Bellman optimality
equation, but without any guarantee of convergence.

All bootstrapping methods are compared on the Pac-Boy
domain, where the reward function can be decomposed in
an efficient way. It is shown that the attractors prevent us
from using local-max with high γ values, but that local-
max with small γ values still performs best. Agg-policy is
almost as good and can be employed with high γ values.
We then show that adding noise to the environment disrupts
the training with small γ values, and as a result, agg-policy
performs the best.

As future work, we plan on working on learning the aggre-
gating function in domains that are less straightforwardly
compositional. Also, similarly to McGovern and Barto
[2001] or Vezhnevets et al. [2017] for options, we are in-
terested in discovering the reward function decomposition,
and to then distribute the rewards per independent advisors,
which would infer their own local state space Xi.

References
Wendelin Böhmer, Jost T Springenberg, Joschka Boedecker, Mar-

tin Riedmiller, and Klaus Obermayer. Autonomous learning
of state representations for control: An emerging field aims
to autonomously learn state representations for reinforcement
learning agents from their real-world sensor observations. KI-
Künstliche Intelligenz, 2015.

Leo Breiman. Bagging predictors. Machine learning, 1996.

Leo Breiman. Random forests. Machine learning, 2001.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learn-
ing. In Proceedings of the 7th Annual Conference on Neural
Information Processing Systems (NIPS), 1993.

Thomas G Dietterich. Ensemble methods in machine learning. In
International workshop on multiple classifier systems, 2000.

Thomas G Dietterich. Hierarchical reinforcement learning with
the maxq value function decomposition. Journal of Artificial
Intelligence Research, 2000.

Stefan Faußer and Friedhelm Schwenker. Ensemble methods for
reinforcement learning with function approximation. In Inter-
national Workshop on Multiple Classifier Systems. Springer,
2011.

Fernando Fernández and Manuela Veloso. Probabilistic policy
reuse in a reinforcement learning agent. In Proceedings of
the 5th International Conference on Autonomous Agents and
Multi-Agent Aystems (AAMAS), 2006.

Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-criteria
reinforcement learning. In Proceedings of the 15th International
Conference on Machine Learning (ICML), 1998.

Allan Gibbard. Manipulation of voting schemes: a general result.
Econometrica: journal of the Econometric Society, 1973.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of
the 13th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

Anna Harutyunyan, Tim Brys, Peter Vrancx, and Ann Nowé.
Off-policy reward shaping with ensembles. arXiv preprint
arXiv:1502.03248, 2015.

Romain Laroche and Raphaël Féraud. Algorithm selection of
off-policy reinforcement learning algorithm. arXiv preprint
arXiv:1701.08810, 2017.

Romain Laroche, Ghislain Putois, Philippe Bretier, and Bernadette
Bouchon-Meunier. Hybridisation of expertise and reinforce-
ment learning in dialogue systems. In Proceedings of the 9th
Annual Conference of the International Speech Communication
Association (Interspeech), 2009.

Amy McGovern and Andrew G Barto. Automatic discovery of
subgoals in reinforcement learning using diverse density. 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin
Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 2015.

Christos H Papadimitriou. The euclidean travelling salesman
problem is NP-complete. Theoretical Computer Science, 1977.

Ronald Parr and Stuart Russell. Reinforcement learning with
hierarchies of machines. Proceedings of the 11th Advances in
Neural Information Processing Systems (NIPS), 1998.

Nicholas Rescher. Cosmos and Logos: Studies in Greek Phi-
losophy. Topics in Ancient Philosophy / Themen der antiken
Philosophie. De Gruyter, 2005.

Gavin A Rummery and Mahesan Niranjan. On-line Q-learning
using connectionist systems. University of Cambridge, Depart-
ment of Engineering, 1994.

Yoav Shoham, Rob Powers, and Trond Grenager. Multi-agent
reinforcement learning: a critical survey. Technical report,
Technical report, Stanford University, 2003.

Ron Sun and Todd Peterson. Multi-agent reinforcement learning:
weighting and partitioning. Neural networks, 1999.

Richard S Sutton and Andrew G Barto. Reinforcement Learning:
An Introduction (Adaptive Computation and Machine Learning).
The MIT Press, 1998.

Richard S Sutton, Doina Precup, and Satinder Singh. Between
mdps and semi-mdps: a framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 1999.

Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris,
Patrick M Pilarski, Adam White, and Doina Precup. Horde: A
scalable real-time architecture for learning knowledge from un-
supervised sensorimotor interaction. In Proceedings of the
10th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS). International Foundation for
Autonomous Agents and Multiagent Systems, 2011.

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih,
and David Silver. Learning values across many orders of magni-
tude. In Proceedings of the 29th Advances in Neural Information
Processing Systems (NIPS), 2016.

Harm van Seijen, Mehdi Fatemi, Joshua Romoff, and Romain
Laroche. Separation of concerns in reinforcement learning.
CoRR, abs/1612.05159v2, 2017.

Alexander Vezhnevets, Simon Osindero, Tom Schaul, Nicolas
Heess, Max Jaderberg, David Silver, and Koray Kavukcuoglu.
Feudal networks for hierarchical reinforcement learning. arXiv
preprint arXiv:1703.01161, 2017.

Christopher JCH Watkins. Learning from Delayed Rewards. PhD
thesis, Cambridge University, 1989.

Marco A Wiering and Hado Van Hasselt. Ensemble algorithms in
reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, 2008.

Joseph P Zbilut. Unstable singularities and randomness: Their
importance in the complexity of physical, biological and social
sciences. Elsevier, 2004.

	1 Introduction
	2 Multi-Advisor Reinforcement Learning
	2.1 Markov Decision Process
	2.2 Problem setting
	2.3 Separation of Concerns
	2.4 Aggregating advisors' recommendations
	2.5 MAd-RL as Ensemble Learning

	3 Off-policy bootstrapping methods
	3.1 Local-max bootstrapping
	3.2 Rand-policy bootstrapping
	3.3 Agg-policy bootstrapping

	4 Experiment and results
	4.1 Pac-Boy
	4.2 Attractors in navigation domains
	4.3 Results
	4.4 Results with noisy rewards

	5 Conclusion and future work

