J. Symbolic Computation (1995) 20, 299-313

Computing GCDs of Polynomials
over Algebraic Number Fields'

MARK J. ENCARNACIONt

Research Institute for Symbolic Computation
Johannes Kepler University, A-4040 Linz, Austria

{Received 21 September 1994)

Modular methods for computing the ged of two univariate polynomials over an algebraic
number field require a priori knowledge about the denominators of the rational num-
bers in the representation of the ged. A multiplicative bound for these denominators is
derived without assuming that the number generating the field is an algebraic integer.
Consequently, the ged algorithm of Langemyr and McCallum [J. Symbolic Computation
8, 425448, 1989] can now be applied directly to polynomials that are not necessarily
represented in terms of an algebraic integer. Worst-case analyses and experiments with
an implementation show that by avoiding & conversion of representation the reduction
in computing time can be significant. A further improvement is achieved by using an
algorithm for reconstructing a rational number from its modular residue so that the
denominator bound need not be explicitly computed. Experiments and analyses suggest
that this is a good practical alternative,

(©1995 Academic Press Limited

1. Introduction

The modular algorithm presented by Langemyr and McCallum (1989) for computing the
ged of two univariate polynomials over an algebraic number field is a successful appli-
cation to number fields of methods developed by Brown and Collins for the rationals.
Langemyr (1990) shows that a probabilistic version of the algorithm is in a certdin sense
asymptotically close to optimal. However, in both of these papers the authors required
the representations of the polynomials to be in terms of an algebraic integer. We will show
that this requirement is not necessary. This is an important observation since the repre-
sentations in terms of an algebraic integer will be larger than the original representations,
and this will have a detrimental effect on the computing time.

More generally, we will derive a multiplicative bound for the denominators of the
rational numbers in the representation of any monic divisor of & given univariate polyno-
mial over the field without assuming that the number generating the field is an algebraic

t This research was supported in part by Austrian FWF project no. P8572-PHY.
1 Present address: Department of Computer Science, University of the Philippines, Quezon City 1101,
Philippines. E-mail: mjeQengg.upd.edu.ph

0747-7171/95/090299 + 15 $12.00/0 © 1995 Academic Press Limited

300 M. J. Encarnacién

Having the new bound, we also propose a modification of the Langemyr-McCallum
algorithm that avoids the explicit computation of the bound by using an algorithm for re-
constructing a rational number from its moduiar residue (Wang, 1981; 'Wang et al, 1982;
Collins and Encarnacién, 1994). This modification works better in practice, as will be
demonstrated by experiments.

Our interest in this problem was sparked by our experiences with an implementa-
tion of cylindrical algebraic decomposition-based quantifier elimination (Collins, 1975;
Hong, 1990; Collins and Hong, 1991), in which certain ged computations over algebraic
extensions of the rationals were taking an exorbitant amount of time, Without the sug-
gestions provided by several examples, we would not have conjectured the new result.

The organization of the paper is as follows. In Section 2 we introduce the notation that
we will be using, and also state some basic results from algebraic number theory. Section 3
is devoted to proving the main result of this paper. We describe how the new bound can
be used in connection with pelynomial gcd computations in Section 4, which also presents
our modification of the Langemyr-McCallum algorithm as well as complexity analyses
and experimental computing times.

2. Preliminaries

In this section we introduce the notation that will be used and give some basic defi-
nitions and results that will be needed. We refer the reader interested in more details to
the books by Cohen (1993), Hecke (1981}, and Marcus (1977).

Lowercase Greek letters (except ¢) will denote algebraic numbers. For each number a,
there is a unique M € Z[t] such that M is a primitive, irreducible polynomial with
positive leading coefficient having o« as a root. The polynomial M is called the minimal
polynomial of @. Throughout the paper we will fix a given minimal polynomial M, and
talk about the field K = Q(a) obtained by extending the rationals by a root o of M. The
degree of M, assumed to be at least 2, will be denoted by n = deg(M) and its leading
coefficient by £ = ldef(M).

A number is an elgebraic integer if its minimal polynomial is monic. The ring of all
algebraic integers will be denoted by o, and the subring comprising the algebraic integers
in K will be denoted by 0.

Lowercase italic letters will denote non-zero rational integers, unless indicated other-
wise. Define

Z[a] = {ao-i—ala’ + - +an—lan_1 tag € Z}’

and (1/a)Z[e] = {(1/e)d : § € Z[e]}. Note that if @ is not an algebraic integer, then
Z[a] will not be closed under multiplication since we require the elements of Z[a] to be
in “reduced form”, and reduction modulo M may introduce fractions. For instance, if
@ = 4/1/2, then a(a + 1) = a + 1/2 ¢ Z{a].

Let # denote an arbitrary element of X. Evidently, 8 will be in {1/5)Z{a] for some b,
with b as small as possible; 8 is then said to have denominator b. The denominator is not
intrinsically related to g, i.e., it also depends on . When F € (1/7)Z|a|[z], we say that
r is a multiplicative bound for the denominators of F. We will often omit the qualifier
and speak simply of a bound when the intention is patent.

The n (not necessarily distinct} conjugates of # in K will be distinguished by super-
scripts, viz. 89, ..., 8™ with g = A say.

GCDs of Polynomials over Number Fields 30t

Write res(A, B) for the resultant of A, B € Z[t]. We will sometimes refer to res(M, 8),
which we define by res(M, #) = res(M, B), where # = B(c) and deg(B) < n.
The discriminant of M is

disc(M) = (~1)"" D/ 2~ Lres (a1, M),

M’ being the derivative of M. We will use D to denote disc(M), and 4 to denote the
largest integer whose square divides D. The discriminant of o, denoted by A%(a), is the
square of the determinant A{a) = det(V) of the Vandermonde matriz:

1 o 0 . Lor?

1 a@ @ ... @
V=

1 a® om2 . gt

We have the relationship D = £2=1DA2(q).
By the ged of F, G € K|[z], we mean the monic ged, which we denote by ged(F, G).
The following two lemmas, along with their proofs, may be found in Hecke (1981},
which also gives an introduction to ideals and fractional ideals in number fields.

LEMMA 2.1. If P(z) = 6(z — p1)(z — p2) - (& — pm) is e polynomial with coefficients
in o, then §p1po---pr €0, fork=1,..., m.

In particular, taWal® ... 4k ¢ o,fork=1,...,n.

LEMMA 2.2. Let F, G, H € og|z] be such that F = GH. If {, g, and) are the ideals
in o0x generated by the coefficients of F, 7, and H, respectively, then § = gh.

Although it may not be immediately apparent, Lemma 2.2 is yet another rendition of
Gauss's ubiguitous lemma.

3. Determining denominators

This section answers the question: Given F € Z[«][z], what is a bound for the monic
divisors of F over K7 The situation is well understood when o € 0, so let us first assume
that this is the case. Then F, the monic associate of F, will be in (1/f)Z[e][z], where
f =res (M, ldcf(F)). The other monic divisors of F are handled by the following theorem
due to Weinberger and Rothschild (1976).

THEOREM 3.1. Let o be an algebraic integer, and F € Zla][z]. If G is o monic divisor
of F over K, then G € (1/fd)Zixa][z].

The purpose of this section is to show that we may drop the hypothesis that « be an
algebraic integer. Rather than give the proof in one fell swoop, we will state intermediate
results that we feel are of independent interest as separate lemmas. The idea of the proof
is to look at the fractional ideals generated by the coefficients of the polynomials involved,
and then to derive a bound for the elements of these ideals.

Our first problem is to determine the denominators of the monic associate F. Let
B8 = 1dcf(F), so that F = 8~1F, Write 8 = B{a), where B € Z[t] and ¢ = deg(B) < n.

302 M. J. Encarnacién

If ¢ =0, then the rational integer 8 will be a bound for f‘ Otherwise, ¢ > 0, and since
B is relatively prime to M, we can find polynomials M, B € Z[t], with deg(M) < ¢ and
deg(B) < n, such that

MM +BB = {,
where f= res(M, B) # 0. If we define B = B(a), then 87! = B/f. We will then have
fF = pF and ldef(fF) = f. Now consider any coefficient & of F. If & is an algebraic
integer, then Z[a] is closed under multiplication, and the product 86 will be in Z[a]. In
this case, f will be a bound for F. When « is not an algebraic integer, then £ > 1, and

one would think that reduction of 3§ modulo M would introduce powers of ¢ into the
denominator. The following lemma says that this will not happen.

LEMMA 3.1. If F is the monic associate of F € Zla|[z], then F € (1) f)Z{a][z], where
f= res(M,]dcf(F)).

Proof. With the notation already introduced in the preceding paragraph, we may form
the equation

Mi(t)M (t) + Bi(t)B(t) = ft*,
fork=0,...,n+q—1, where My, By € Z[t] with deg(M}) < ¢ and deg(B:) < n (see

Hodge & Pedoe (1947}, p. 148). Dividing this equality through by B(t), and substituting
e for t, we get

Brla) = Ba*,
which will be in Z[a] since deg(By) < n. It follows that if § is any coefficient of F, then
A6 € Z{a], and hence that fF € Z{o|[z].]

The next lemma is an easy generalization of Lemma 2.2.

LEMMA 3.2. Let F, G, H € K|[x] be such that F = GH. If f, g, and b are the fractional
ideals in K generated by the coefficients of F, G, and H, respectively, then f= gh.

Proof. Choose integers v, n € ox such that vg and nb are integral icleals. Then ynF,
¥G, nH € ok|z] and ynF = yGnH. By Lemma 2.2, we have ynf = ygnh, which implies
that f = gh.]

LEMMA 3.3. With the notation of Lemma 8.2, if F, G, and H are monic, then g C |
and h C f. '

Proof. Since H is monic, we have 1 € , from which g C gh = {. Similarly, b C §. O

We would like to remark that Lemma 3.3 is a stronger version of Lerama 7.1 in Wein-
berger and Rothschild (1976}, which says that if f C (1/a)og, then g C (1/a)ox and
hC{l/a)og.

Qur problem now is to determine the denominators of the members of a fractional ideal
whose generators are given. This problem reduces to that of determining the possible
denominators of products of the form #a®, where # € ox and 0 < ik < n. The next
lemma provides a solution.

GCDs of Polynomials over Number Fields 303

LEMMA 3.4. If8 € ox and 0 < k < n, then 8a* € (1/d)Z[al.

Proof. We employ techniques used by Marcus (1977), p. 29. I we write
fa* =a; +asa +--- +ana™ 1, a; € Q,
then the conjugate equations form a linear system b = Va, where
b= (6Ma®* . oma™*T and a=(ay,...,an)7

Apply Cramer’s rule to get a; = §;/A(a), where §; is the determinant of the matrix
obtained from V by replacing column j with b. Since D = £2®~1A2(a), we can write

(e"=1A(a)) (e 145}
a; =
D
We will first show that Daj; € o, which, since Daj is rational, will imply that De; € Z.
Evidently, £*1A(a) = VD is in 0. To show that =15, € o, write

tﬂ—lé-j - g"—l(ie(l)a(l)kflj £+ 9(")a(")k§nj),

where £;; is the determinant of the submatrix obtained from V by deleting the ith
row and the jth column. By assumption, each 8(*) is in og, so it will be enough to
show that each 8“‘1a(")k§ij is in 0. Now £;; is a sum of terms, each of which is of
the form +aM® .. ~a(“)e", where 0 < ¢ < nforf =1, ..., n. Since &; will not in-
volve any elements from the ith row of V, we must have ¢; = 0. We can thus express

nk n . ‘e
a® g (M) ag g product vy - vp-1, Where each v is a product of distinct con-
Jjugates of a. Then

gk e men _ (81) -+ - {Evn_1)

will be in 0 by Lemma 2.1. Since f"_la(‘)kfij is a sum of algebraic integers, it must itself
be an algebraic integer. Therefore, E"'léj € 0, which implies that De; € 0. Accordingly,
Daj is a rational integer, which we will dencte by &;.

To show that da; € Z, observe that 67/D = (£7716;)? so that b3/D is an algebraic
integer that is also rational: it is a rational integer. Consequently, a; = b;/D = ¢;/d,
where ¢; € Z.

Setting k = 0 in the previous lemma yields the interesting inclusion ox C (1/d)Z[«],
which, for o an algebraic integer, is familiar to students of algebraic numbers.
We are now ready to state and prove the main theorem of this paper.

THEOREM 3.2. Let F € Ziu|[z]. If G is o monic divisor of F over K, then
G € (1/fd)Z[a]ls],
where f = res(M,}dcf(F)) and d? divides the discriminant D.
Proof. By Lemma 3.3, the coefﬁc_:ients of G will be contained in f, the fractional ideal
generated by the coefficients of F. According to Lemma 3.1, the coefficients of F will

be elements of (1/f)Z[e]. Since each element of § will be an ox-linear combination of
elements of (1/f)Z[e], it follows from Lemma 3.4 that f C (1/7d)Z[a]. O

304 M. I. Encarnacién

4, Computing GCDs

The results of the previous section apply to the problem of computing the ged of
two univariate polynomials over an algebraic number field using modular methods. In
this section we shall discuss this application. The following notation will be fixed for
the rest of the paper: F and G, elements of Z[a][z] with deg(F) > deg(G), will be the
two polynomials whose ged H = ged(F,G) we wish to compute; the monic associate
of F will be denoted by F; the resultant of the leading coefficients will be denoted by
f= res(M, ldcf(F)) and g = res(M, 1def(G)); we will use the bound h = ged(f, g)D for
the denominators of the ged (cf. Corollary 4.1 below).

We. begin with a brief description of the the Langemyr-McCallum ged algorithm, re-
ferring the reader to Langemyr & McCallum (1989) for the details. Another approach to
computing geds is discussed by Smedley (1989), although he concludes that an efficient
implementation of the Langemyr-McCallum algorithm is superior to his method.

For a given rational prime p, define M, = M mod p and R, = ¥, [t]/(M,), where
F, is the Galois field with p elements. Let ¢, : Z[a] — R, be the ring homomorphism
defined by ¢, : B(a) — (B(t) mod p) mod M,. The homomerphism fromn Z{e][z] to Rp[z]
induced by ¢, will also be denoted by ¢,, and the homomorphic images of the input
polynomials will be denoted by Fp = ¢,(F)} and G, = ¢,(G).

The Langemyr-McCallum algorithm proceeds by computing the ged H, of Fp, and Gp
over Ry, using the monic Euclidean polynomial remainder sequence (prs) algorithm for
sufficiently many p, none of which divide h. It then reconstructs the associate hH from
its homomorphic images by Chinese remaindering; this associate of H is guaranteed to
be in Z[a][z].

For a given p, it may not be possible to compute H, in the manner described since
R, will not in general be a field, and we may need to invert a zero-divisor. It may also
happen that the prs computation is successful, but that h,H,, where h;, = h mod p, is
not a homomorphic image of h . Fortunately, for any particular set of input polynomials
there are only finitely many of these unlucky primes, each of which can be detected and
discarded if it happens to be used.

To prove the correctness of their algorithm, Langemyr and McCallura (1989) assumed
that e is an algebraic integer. Upon studying their proofs, one will see that this assump-
tion is necessary only for finding a bound for the denominators of the ged. Provided we
stipulate that p not divide the leading coefficient ¢, the map ¢, will still be a homomor-
phism, this time from the subring of K generated by Z[a] to R,. (If £ > 1, then Z[a] will
not be closed under multiplication, and will not itself be a ring.) Wish this additional
condition on the primes we use, the following immediate corollary of Theorem 3.2 allows
us to drop the assumption that o be an algebraic integer.

COROLLARY 4.1. Let F, G € Z[a][z]. If H = ged(F, G), then H € (1/b}Z]a][z], where
b= ged(f, g)d.

Of course, the requirement that « be an algebraic integer is not a serious restriction
since we can always find an algebraic integer ¢ generating K, and express the original
inputs in terms of . The easiest way to obtain such an integer is to take # = fo. The
problem with this conversion is that the representations in terms of @ will be larger
than the original representations. We will see later in Sections 4.1 and 4.2 just how
disadvantageous this conversion is.

GCDs of Polynomials over Number Fields 305

When o is an algebraic integer, Corollary 4.1 can be strengthened by replacing d with
the defect of a, which is known to be a divisor of d (Weinberger and Rothschild, 1976).
However, computing either ¢ or the defect is as hard as computing an integral basis for og
(see Pohst (1993), p. 34), so in practice the discriminant D is used instead. (Hence our
definition of & above.) Unfortunately, D tends to be a loose bound. Given the difficulty
of computing a tight bound for the ged, we recommend a modification of the algorithm,
which we will now describe.

The general scheme of things is the same, but rather than reconstruct an associate of
the ged that will be in Z[a[z], we will reconstruct the monic ged, which, however, can
be expected to have fractions in its representation. To deal with this problem, we use an
algorithm for reconstructing a rational number from its modular residue (Wang, 1981,
Wang et al., 1982; Collins and Encarnacién, 1994}.

We compute ged(Fy, Gp) over Ry by the monic Euclidean prs algorithm for sufficiently
many p not dividing £, and for which deg{Fp) = deg(#) and deg{G,) = deg(G). We then
reconstruct H using Chinese remaindering and the rational reconstruction algorithm.

We do not check whether p divides ged(f,g). If p divided ged(f, g), then it would
divide g, which would imply that the leading coefficient of G is a zero-divisor in Ry, and
that the monic prs cannot be computed. Therefore, the check is implicit in the algorithm,
and this has the advantage that we avoid the computation of ged(f, g), which may require
an appreciable amount of time.

The algorithm for reconstructing rationals requires that no p divide the denominator of
any rational we are trying to reconstruct. This will be the case here since no p divides k,
which is a multiple of every denominator. Thus, the algorithm will reconstruct all the
rationals once enough primes p have been processed.

We have not yet said what is meant by “sufficiently many p” in the descriptions of
both the original algorithm and our modification of it. There are (at least) two ways to
decide how many primes to use, either of which will return the correct result: (a) use
as many as required to guarantee that the result of the Chinese remaindering is correct;
(b} when two successive Chinese remainderings (and rational reconstructions, in the
modified algorithm) yield the same result, say H, attempt a trial division of both F and G
by b4 , using more primes if the division is not exact. For want of better names, these will
be called the “play-safe” and “trial-division” methods, respectively.

In the following sections we will be comparing three versions of the algorithm both
theoretically and experimentally. Each of the three versions will have two variants corre-
sponding to the two methods for deciding how many primes to use. The first version—
“version A”—first performs a preprocessing step that converts the inputs to representa-
tions in terms of the algebraic integer £o, and then applies the algorithm in Langemyr
and McCallum (1989) to the converted inputs. The second—“version B"—applies that
same algorithm to the original inputs without converting representations. Both of these
versions compute the bound for the ged and use Chinese remaindering to recover an ele-
ment of Z[a][z]. The third—“version C"—is our modification of the algorithm, which does
not compute the denominator bound, but instead uses the algorithm for reconstructing
rationals.

We concur with Langemyr and McCallum (1989} that the trial-division method should
be used in implementations since unlucky primes are rarely encountered in practice. For
this reason, we implemented trial-division variants of versions A, B, and C, which we
will compare experimentally. Theoretical computing time estimates will also be given for
these variants under the assumption that no unlucky events occur. Though these will

306 M. J. Encarnacién

not be rigorous worst-case bounds, they will model the observed timings more accurately
than analyses based on less-optimistic assumptions.

We will also obtain worst-case complexity bounds, but for this we will be analyzing
play-safe variants of the three versions. To avoid confusion, these will be referred to as
versions AT, Bt, and CT, respectively. The reason for rigorously analyzing these variants,
rather than the trial-division variants that were implemented, is that in the worst case it
is conceivable that the trial-division variants would be attempting unsuccessful divisions
after each prime were processed. This causes the trial-division variants to have worst-case
complexities worse than those of the play-safe variants.

4.1. COMPLEXITY ANALYSIS

Following the lead of Langemyr and McCallum (1989), we will count the number of
word operations needed by the algorithms, and we will assume that arithmetic operations
in F, can be performed in unit time.

We need to define some norms. For polynomials E(z) = ¥ 7_, eiz' € Q(a)[z], where

£ = E;:ol eijal and ei; € Q, define
|Eleo = n:?x{|e,-,-|}.

This definition also applies to elements of Q{e) and of Q[z]. For a matrix M = (p4;), of
order u X v, define

u
Moo = 18X { 21: Iu.-,-l}-
=

For polynomials E as above, define

120 = max { (32 169°) 7).
3=0

the maximum being taken over all conjugates. Again, this definition also applies to ele-
ments of Q(a) and of Q[z].

We will express the various bounds we will be deriving in terms of four parameters: the
degrees m = deg(F) > deg(G) and n = deg(M); and the norms € = max{|F |, |Gloo)
and 1M |co.

The first thing we will do is bound the size of the rational integers appearing in the
monic divisors of F. Like Lenstra (1984), we will follow the approach outlined in Section 8
of Weinberger and Rothachild {(1976); unlike Lenstra, we will allow M to be non-monic.

LEMMA 4.1. If Fy is a monic divisor of F over K, then
|fDFoloo < 2™ " (m + 1)Y3(n + 1)™/2|F|2, | M |22

Proof. By Theorem 4 in Mignotte (1982), if 5 is a coefficient of Fg, then ||p|| < 2™(F||.
Write n = E}';Ol hjod, with h; € Q, and set H= (0, ... 9™ and h = (ho, ..., hn_1).
Then H = hV7T, where VT is the transpose of the Vandermonde matrix. Since VT
is invertible, we have h = HU, where U is the inverse of V. From {n|o = [hlo <
|H|o6|Uloo and [H|w = ||n(< 2™||F||, we can infer that |g]ee < 2™ F|[-{U|w and

|F D Foloo < 2™ £ D|-1F]|*| U] oo- (4.1)

GCDs of Polynomials over Number Fields 307

We need to bound [Ul, and ||F|. Each entry of U is a subdeterminant of V7 of
order n — 1, divided by the determinant of V7. Lenstra (1984) observes that each such
subdeterminant is bounded by

n—1
(n — 1)(n—1)/z(11 |au)|) .
(i) [>1
By Theorem 1 in Mignotte (1974), we know that] 0> lel}| < £71YM||. Recalling
the identity det(V) = v D/, we see that
-1/2 n
[Uloo < D7 2n™ ™. (42)
We will now turn to || F||. Lenstra (1984) notes that

. . n—l ~1/2
IF] < (m+ 1Y Flao (3 el ™)
=0

and Theorem 2 in Mignotte (1982) implies that ||a|} < 2£71|M|o. These two inequalities,
after a little fiddling, give

IE[F < &7 (m + 1)2|F oo M [, (4.3)
Combining (4.1), (4.2), and (4.3) with |M || < (n + 1)}/?|M], we find that
|£D Foloo < 2™ "[DY2(m + 1)3(n + 1372 | f F| o | M |22, (4.4)

We want bounds for |fF|e and |D| in terms of n, [M e, and |F|e. Hadamard’s bound
gives

|D| < 2" "M |20, (4.5)
To bound |fﬁ‘|°c,, recall that we may form the equation
M(t)M (t) + Bi(t)B(t) = ft*,

fork=0,...,n+q~ 1, where M, Bx € Z[t] with deg(ﬂ_?[k) < ¢ and deg(By) < n. Let
M =37 et and B = E?=0~bjtj. The coefficients of By are determinants of certain
submatrices of the Sylvester matriz:

co bo
€1 €g by bo
<p
€1 by
Cn bq bo
Cn by
Cn by /

in which there are ¢ columns of ¢;5 and n columns of bjs. Each of the submatrices
is of order n + ¢ — 1 and has n — 1 columns of b;s. By Hadamard’s bound and the
inequality ¢ < n — 1, each of the subdeterminants, and thus also | Br{0) e = |f8 a0,

308 M. J. Encarnacién

is bounded by ({n+1)|M |eo|F|oo)" " Multiplying this bound by n|F | gives us a bound
for {f87 16|00, where § can be any coefficient of F. Hence

15 Floo < ((n + DIM foofFleo) ™. (4.6)
Finally, (4.4), (4.5), and (4.6} imply the asserted inequality. 0

Given Lemma 4.1, one sees that the ged H satisfies
|hH oo < 2™ " (m + 1)Y3(n + 1)/ 2™ M |20 (4.7)
and consequently also
log |hH |oo = O (m + nlog(nC|M |e)).

With the assumption that o is an algebraic integer, Langemyr and McCallum (1989) use
results of Lenstra (1983) to get a bound of

O(m +logC + nlog(n|M|e)),

which is better than the bound we just gave. However, they assumed the leading co-
efficients of F and G were rational integers, rather than arbitrary elements of Z{a].
Langemyr (1988, 1990) allows general input and comes to the same bound we get here.
Lemma 4.1 establishes that this bound does not depend on « being an algebraic integer.
To get worst-case complexities, we need an upper bound for the number of unlucky
primes. Let k = deg(H), and denote the kth principal subresultant coefficient of F and G
by psc,(F, G}, where F and G are treated as univariate polynomials in z over the ring Z[t].
(Consult Loos {1982) or Mishra (1993) for a definition of psci(F,G).) Define r by

r = TES(M,pSCk(Fy G))!

which will be a rational integer. In the notation used above, let H, = gcd(Fp, G,) where
p does not divide . From Langemyr and McCallum (1989), we know that deg(H,) >
deg(H), with strict inequality if, and only if, p divides r. We know—again from Langemyr
and McCallum (1989)—that if deg(H,) = deg(H), then ¢,(H) = Hp. In other words, if
we successfully compute the prs over R, and p does not divide », then p is not unlucky:
Hp is a legitimate homomorphic image of H. The following lemma provides us with a
bound that will allow us to determine the number of unlucky primes we might encounter.

LEMMA 4.2. Defining r = res(M, pscy(F, G)), we have
Ir| < 22 ((m + 1)(n + 1)*CHM2)™". (4.8)

Proof. Expressing psc,(F, G} as a determinant and applying Proposition 2.19 from Lang-
emyr (1988), we find that

[psci(F, G)Z, < ((m + 1)n%c?)™™.

Since deg(psc,(F, G)) < 2m(n — 1), by Hadamard’s bound we have

|res(M, psc,(F, G'))IZo < ((n + 1)|M[§Q)2mn(

2mn|psc,(F, G)[3,)",
and the desired inequality follows. o

Let p be a common upper bound for the right-hand sides of (4.7) and {4.8). If the

GCDs of Polynomials over Number Fields 309

number of primes used by the algorithm is such that their product is at least 2p, then
the result of the Chinese remaindering will be the true ged {Langemyr and McCallum,
1989). Therefore, the number of primes we will need to use is

O (log p) = O (mnlog(mnC|M |s0)) (4.9)

in the worst case. Notice that since Lemma 4.2 provides a stronger inequality than
Proposition 4.2 in Langemyr and McCallum (1989), this bound on the number of primes
we need is better than the bound given there, namely O (mnlog(mC|M|%)).

We are ready to establish worst-case complexities for the play-safe variants. We will
start with version B*; complexity bounds for versions At and C* will then be derived
from that for B*.

THEOREM 4.1. Version BT of the algorithm computes the ged of F and G in
0 (m4n3 logz(mnC]M|m))

word operations.

Proof. The proof is similar to that of Theorem 5.1 in Langemyr & McCallum (1989).
The difference is that we use the improved bound for the number of unlucky primes given
by (4.9).

Theorem 4.1 improves the worst-case bound
0 (m4n3 log®(mCiM %))

given in Langemyr and McCallum (1989), but this improvement is due solely to the
tighter bound furnished by Lemma 4.2, and is independent of the results of Section 3.

THEOREM 4.2. Version AT of the algorithm computes the gcd of F and G in
] (m4n3 log?(mnC}M|%))

word operations.

Proof. Apply Theorem 4.1 to the converted inputs—call them M* F* and G*. Then
|M*|o = O(|M|2,) and C* = O(C|M|%), where C* = max{}F*|a, |G*|oo}- O

Keeping the parameters other than n fixed, we see that the algorithm would have a
worst-case complexity of O(n®), instead of O(n3log®n), if we convert representations.
The results of Section 3 allow us to avoid this conversion.

THEOREM 4.3. Version Ct of the algorithm computes the ged of F and G in
0 (m4n3 logz(mn61M|w))

word operations.

Proof. The only difference between versions B* and C* that might affect their asymp-
totic behavior is that version C* uses the algorithm for rational reconstruction, which
requires O(i?) time to process inputs of length O(1). The rational reconstruction algo-
rithm is applied once to each of O(mn) sets of inputs of length O(log(mnCIMlm)).
Hence, the worst-case complexities of versions BT and C* are the same. 1]

310 M. J. Encarnacién

If no unlucky primes are used, and the first trial division is successful, then we will say
that we are lucky, We will now give running-time estimates for versions A, B, and C that
will be derived based on the assumption that we are lucky. (Such assumptions were made
in Langemyr and McCallum (1989}, also for the purpose of deriving estimates that more
closely model the observed behavior of the implementations.) These estimates will involve
two additional parameters: G, the maximum of the absolute values of the numerators and
denominators appearing in the ged H and in the cofactors F/H and G/H; and D, the
absolute value of ged(f,g)D. An upper bound for G is given by the right-hand side
of (4.7), while one for D is (2n3|F|e|M|2,)", which may be derived using Hadamard’s
bound.

THEOREM 4.4. If we are lucky, then version B of the algorithm computes the ged of
F and G in

0 (m?*n®(n log?|M|os + log®(mG) + log(D + G)) + mn log®(D + G))

word operations.

Proof. We compute O (log(’D-!-g)) modular geds, each of which costs O (m?n?). The cost
of applying the Chinese remainder algorithm is O (mn log®(D +G)). The trial divisions—
assumed to be successful—will cost the same as a multiplication of H by each of the
cofactors F/H and G/H. It follows from Theorem 3.3.4 in Rubald (1973) that the trial
divisions cost O ({m?n?(nlog’|M | + log?(m@))). Summing up these costs finishes the
proof of the theorem. a

THEOREM 4.5. If we are lucky, then version A of the algorithm computes the ged of
F and G in

0 (m®n?(nlog?|M|oo + log” (mG) + log(D + G)) + mn log* (D' + G)
+m2ntlogl + mnb 10g28)

word operations.

Proof. Let G* and D* be parameters for the converted inputs corresponding to G and D.
Then £~ D-2)p < D* < ¢{n~1)(2n=3)D and ¢ < G* < £*~!G. The result follows from
an application of Theorem 4.4 with these parameters. 0

Again fixing the parameters other than n, we see that an O(n®) algorithm becomes
O(n5) as a result of converting representations.

THEOREM 4.6. If we are lucky, then version C of the algorithm computes the ged of
F and G in

0 (mznz(n 10g2| M |oo + log?(mG)) + mn logsg)

word operations.

Proof. We compute @(log G} modular geds at a cost of O(m%n?log G). The algorithm for
reconstructing a rational from its modular residue is applied O{logG) times to O(mn)
sets of inputs of length O (log G); the total cost for rational reconstruction is O(mn log®G).
Adding the cost for the trial divisions gives the result. 0

GCDs of Polynomials over Number Fields in

n A B C

5 0.56 16.6 044 118 044 100
10 1097 117.8 547 61.0 311 264
15 142.35 550.0 47.81 240.8 13.11 50.4
20 T48.67 1276.4 21435 53718 4191 8290
25 - - 737.58 1022.2 103.71 119.8

Table 1. Computing times for first set of inputs (in seconds)

Comparing Theorems 4.4 and 4.6, we can expect version C to be faster than version B
provided G is small relative to D. This is usually the case in practice. For example,
Bradford (1988) reports that about two-thirds of a certain set of randomly generated
algebraic integers he inspected had defect equal to 1. The bound h = ged(f, ¢)D can be
replaced with ged(f, g) in these cases.

4.2, EMPIRICAL COMPARISON

This section presents experimental evidence to support the claim that, in practice,
version C is faster than version B, and also to further illustrate the undesirability of
having to convert representations.

We implemented versions A, B, and C of the algorithm in SACLIB, a ¢-language library
of algebraic algorithms (Collins et al, 1993), and applied each to several test examples,
the first suite of which was generated as follows. For n = 5, 10, 15, 20, 25, we generated a
random (non-monic} minimal polynomial M of degree n with coefficients at most n bits
long. We then generated three polynomials F, G, H € Z[«][x] where F, G, and H were
each of degree 5, and each of their integer coefficients (thinking of F, G, and H as bivariate
polynomials over Z) was at most 10 bits long. The products F = FH and G = GH,
after clearing denominators, were then used as inputs to each of the three versions.

In the implementation of versions A and B, a partial squarefree factorization of the
discriminant was obtained by trial divisions by each of the primes less than 1,000. This
was easy enough to do, and in some cases reduced the denominator bound used.

Qur timings are summarized in Table 1. The first column gives the degree of M. The
other columns give the timings for versions A, B, and C, where the italicized entries
are the average number of primes used. Each entry is the mean for five different sets
of polynomials of each input size. The times, given in seconds, are exclusive of garbage
collection, and were measured on a DECstation 5000/240.

A list of 1,612 precomputed 15-bit primes was made available to the a.lgorithms.Jr
A dash {-) indicates that this list was exhausted and, hence, that the implementation
was unable to compute the ged. For n = 25, we see that converting the representations to
ones in terms of an algebraic integer has placed otherwise tractable problems beyond the
capabilities of our implementation. We also see from Table 1 that version C outperforms
version B by a wide margin.

Table 2 summarizes the results for a second set of inputs. For m = 2, 3, 4, we generated

T A 32-bit machine was used for the implementations, and these primes were chosen so that the
modular arithmetic could be performed without the costly function calls that would be necessary if
larger primes were used.

312 M. J. Encarnacién

m n A B C

2 8 219 1706 032 404 0.19 21.6
3 18 144.11 1285.0 711 146.0 532 902
4 32 - - 87.43 359.4 T6.78 2458

Table 2. Computing times for second set of inputs {in seconds)

random bivariate polynomials F, G € Z[t, z] that had degree m in each of ¢ and = {hence
F and G had total degree 2m), and whose coefficients were at most 10 bits long. Using
each of the three versions, we then computed the ged of F(a,z) and G(a,z), where o
was & root of the resultant M (t) = resy(F, G). The values of m are given in the first
column. The column labeled n gives the degree of M. Average timings and number of
primes used (in italics) by each of the three versions are given in the reraining columns.
These are averages for five different sets of inputs for each value of m. In all cases the
degree of the gcd was 1. For these examples, version C does not ocutperform version B by
as wide a margin as in the first set of examples. However, the relative difference between
versions A and B is now much larger.

5. Conclusions

We have derived a multiplicative bound for the denominators of the rational numbers
appearing in the monic divisors of a given univariate polynomial over an algebraic number
field without assuming that the number generating the field is an algebraic integer. This
permits us to apply the algorithm of Langemyr and McCallum (198¢) for computing
the ged of two univariate polynomials over the field to inputs that are net necessarily
expressed in terms of an algebraic integer.

While the requirement that the representations be in terms of an algebraic integer
is no loss of generality, expressing the inputs in such a form makes the representations
larger. Analyses and experiments have shown that avoiding this conversion results in a
significant reduction of the computing time, and an increase in the range of problems
that can be solved by our implementation.

Knowing a bound for the denominators in the ged, we also described how an algorithm
for reconstructing a rational number from its modular residue can be used to further
enhance the practical applicability of the ged algorithm. The improved performance is
due to the looseness of the e priori bound; by reconstructing rationals we avoid the
explicit computation of this bound.

1 thank George E. Collins for providing the stimulus for this research, for the support he
has given me, and for keeping me on my toes while writing this paper. Thanks to Li Ziming,
who contributed invaluably to the proof of Lemma 3.1 and carefully read a draft of this paper.
Thanks also go to Jeremy R. Johnson and Heinrich Rolletschek for the discussions I had with
them. An earlier version of this paper was presented at the 1994 Iniernational Symposium on
Symbolic and Algebraic Computation and appears in the proceedings of that conference.

GCDs of Polynomials over Number Fields 313

References

Bradford, R. J. (1988). On the Computation of Integral Bases and Defects of Integrity. Ph.D. thesis,
University of Bath.

Cohen, H. (1993). A Course in Computational Algebraic Number Theory. Springer-Verlag.

Collins, G. E. (1975). Quantifier elimination for the elementary theory of real closed fields by cylindrical
algebraic decomposition. In Autemata Theory end Formal Languages, 2nd GI Conference, Lecture
Notes in. Computer Science 33, 134-183. Springer-Verlag.

Collins, G. E., Encarnacién, M. J. {1994). Efficient rational number reconstruction. Technical Report
94-64, RISC-Linz, Johannes Kepler University, A-4040 Linz, Austria. Submitted for publication.

Collins, G. E., Hong, H. (1981). Partial cylindrical algebraic decomposition for quantifier elimination.
J. Symbolic Computation 12, 200-328.

Collins, G. E. et al. (1993). SACLIB 1.1 User’s Guide. Technical Report 93-19, RISC-Linz, Johannes
Kepler University, A-4040 Linz, Austria.

Hecke, E. (1981). Lectures on the Theory of Algebraic Numbers. Springer-Verlag.

Hodge, W. V. D., Pedoe, D. {1947). Methods of Algebraic Geometry, Vol. I. Cambridge University
Press. Reissued in the Cambridge Mathematical Library, 1994.

Hong, H. (1990). Fmprovements in CAD-based Quentifier Elimination. Ph.D. thesis, The Ohio State
University.

Langemyr, L. (1988). Computing the GCD of two Polynomials Over an Algebraic Number Field. Ph.D.
thesis, NADA, Royal Institute of Technology, Stockholm, Sweden.

Langemyr, L. (1990). An asymptotically fast probabilistic algorithm for computing polynomial ged's
over an algebraic number field. In AAECC-8, Lecture Notes in Computer Science 508, 222-233.
Springer-Verlag.

Langemyr, L., McCallum, S. (1989). The computation of polynomial greatest common divisors over an
algebraic number field. J. Symbolic Computation 8, 429-448.

Lenstra, A. K. (1983). Factoring polynomials over algebraic number fields. In Proceedings of the 1988
European Conference on Computer Algebra, Lecture Notes in Computer Science 162, 245-254,
Springer-Verlag.

Lenstra, A. K. (1984). Polynomial-time Algorithms for the Factorization of Polynomials. Ph.D. thesis,
Universiteit van Amsterdam.

Loos, R. (1982). Generalized polynomial remainder sequences. In B. Buchberger, G. E. Collins, and
R. Loos, editors, Computer Algebra—Symbolic and Algebraic Computation, 2nd ed., 115-138.
Springer-Verlag.

Marcus, D. A. {1977). Number Fields. Springer-Verlag.

Mignotte, M. {1974). An inequality about factors of polynomials. Mathematics of Computation 28,
1153-1157.

Mignotte, M. (1982). Some useful bounds. In B. Buchberger, G. E. Collins, and R. Loos, editors,
Computer Algebra—Symbolic and Algebraic Computation, 2nd ed., 259-263. Springer-Verlag.

Mishra, B. {1993). Algorithmic Algebra. Springer-Verlag.

Pohst, M. E. (1993). Computational Algebraic Number Theory. DMV Seminar Band 21. Springer-Verlag,

Rubald, C. M. (1973). Algorithms for Polynomials over a Real Algebraic Number Field. Ph.D. thesis,
University of Wisconsin, Madison.

Smedley, T. J. (1989). A new modular algorithm for computation of algebraic number polynomial geds.
In Proceedings of the 1989 International Symposium on Symbolic and Algebraic Computation, 91—
94. ACM Press.

Wang, P. 5. {(1981). A p-adic algorithm for univariate partial fractions. In Proceedings of 1981 Symposium
on Symbolic and Algebraic Computation, 212-217. ACM Press.

Wang, P.S., Guy, M. J. T., Davenport, J. H. (1982). p-adic reconstruction of rational numbers. SIGSAM
Bulletin 18, 2-3.

Weinberger, P. J., Rothschild, L. P. (1976). Factoring polynomisals over algebraic number fields. ACM
Transactions on Mathematical Software 2, 335-350.

