J. Symbolic Computation (1995) 20, 287-297

Efficient Rational Number Reconstruction’

GEORGE E. COLLINS AND MARK J. ENCARNACION?

Research Institute for Symbolic Computation
Johannes Kepler University, A-4040 Linz, Austria

{Received 20 September 1994)

An efficient algorithm is presented for reconstructing a rational number from its regidue
modulo & given integer. The algorithm is based on a double-digit version of Lehmer's mul-
tiprecision extended Buclidean algorithm. While asymptotic complexity remains quad-
ratic in the length of the input, experiments with an implementation show that for small
inputs the new algorithm is more than 3 times faster than the algorithm in common use,
and is more than 7 times faster for inputs that are 100 words long.

1. Introduction

The problem of reconstructing a rational number from its residue modulo a given integer
can be solved using an algorithm based on the extended Euclidean algorithm. Such an
algorithm was presented by Wang (1981) for use in computing polynomial partial fraction
expanstons. The algorithm has since been applied in various contexts including polyno-
mial factorization (Wang, 1983; Collins & Encarnacién, 1995), Grobner basis computa-
tions (Traverso, 1988; Sasaki & Takeshima, 1989), polynomisl interpolation (Kaltofen
et al, 1990), and polynomial ged computations (Encarnacién, 1994).

In the applications just listed, the inputs to Wang's algorithm are typically multi-
precision integers, that is, integers that are too large to be stored in a single computer
word, and hence require more complicated structures, such as lists or arrays, for their
representation. Multiprecision arithmetic is expensive and one would like to minimize its
use. For computing geds this objective has led to the development of several algorithms,
from Lehmer's (1938) classic to more recent ones by Jebelean (1993a, 19936}, Sorenson
(1994), and Weber (1993). Although asymptotically slower than Schénhage’s (1971} al-
gorithm, those algorithms are faster for the integers we usually encounter—say those at
most 100 words long.

Since Wang's algorithmn is the extended Euclidean algorithm equipped with a different
stopping condition, we naturally expect that an efficient extended ged algorithm can be
adapted to reconstruct rational numbers. In this paper we describe how a variant of the
algorithm in Jebelean (19935) can be so adapted.

In Section 2 we review the problem of rational reconstruction and the solution proposed

t This research was supported in part by Austrian FWF project no. PAS72-PHY.
1 Present address: Department of Computer Science, University of the Philippines, Quezon City 1101,
Philippines. E-mail: mje@engg.upd.edu.ph. E-mail: gcollins, mencarnad@risc.umi-linz.ac.at

0747-7171/95/090287 + 11 $12.00/0 © 1995 Academic Press Limited

288 G. E. Collins and M. J. Encarnacién

ALGoriTHM RATCONVERT

INPUT: A modulus M € Z and a residue U € Z/(M).
CutruTs: A pair (A, B} of integers such that A = BU (mod M) and |A4|, B < +/M/2, with
B > 0, if such a pair exists. Otherwise, NIL is returned.

I (A, Ag) = (M, U); (W, V) :=(0,1);
£ while true do

3 if |Va| > +/ M/2 then return NiL;

4 if Az < 4/ M/2 then return (sign(Vz)Az, |V2|),
5 Q:=|A1/Az]; (A1, V1) = (41, V1) — Q(Aa, Vo);
6 SWAP(A;, Az); SWAP(W, 13);

7 end;

Figure 1. Wang’s Algorithm

by Wang, while fixing some notation and terminology along the way. Section 3 describes
a multiprecision Euclidean algorithm for computing geds that will be the basis of our
algorithm. In Section 4 we discuss our algorithm and various details that are essential
for an efficient implementation.

2. Reconstructing rational numbers

Given a rational number R = A/B and a positive integer M relatively prime to B, we
can easily compute U € Z/(M), the integers modulo M, such that R = U (mod M).
What about the reverse direction? That is, given a modulus M and a residue U € Z/(M),
can we compute a rational number R = A/B for which the congruence R = U (mod M)
is satisfied?

What we want is an algorithm that will compute integers 4 and B satisfying

A=BU {mod M), {2.1)
and, because of the intended application, also

0 < |Al, B < V/M/2, B#0. (2.2)

If B and M are relatively prime then B~! exists in Z/(M), and the rational number R =
A/Bissuch that R=U (mod M). Wang (1981) shows that 4 and B, if they exist, are
uniquely determined if we require that they be relatively prime. Wang also observes that
a modification of the extended Euclidean algorithm can be used to produce the desired
output. The algorithm takes as inputs the integers M and U and resurns as output a
pair of integers (A, B} satisfying (2.1) and (2.2}, if such a pair exists. If such a pair
does not exist, then the algorithm so indicates by outputting NiL. Figure 1 gives Wang’s
algorithm, which he calls RATCONVERT in Wang (1981).

In his original paper, Wang (1981) does not prove that his algorithm is correct. Rec-
tifying the situation, Wang et al {1982) use number-theoretic arguments to show that
if the desired rational exists, then it will be produced by the algorithm. Sasaki and
Sasaki (1992) give an elementary proof of the same assertion. However, there seems to
be some confusion about the output of RATCONVERT when the sought-after rational does

Efficient Rational Number Reconstruction 289

not exist. Both Wang et el and Sasaki & Sasaki claim that if RATCONVERT returns the
pair (A, B)—and not NIL—then the desired rational is given by A/B. Unfortunately, this
is not true. As a counterexample, when RATCONVERT is applied to M =12 and U =5 it
will output {4, B) = (—2,2), but we cannot claim that —2/2 =5 (mod 12) since 2 is
not invertible in Z/(12). Also, —1 £ 5 (mod 12). After an exhaustive search, we see
that there is no pair (A, B) that satisfies both conditions (2.1) and (2.2), and for which
B is invertible in Z/(12). Yet RATCONVERT does not return NiL.
The problem, is that the additional condition

ged(B, M) =1, (2.3)

which is equivalent to B being invertible in Z/(Af), was not checked. (By definition,
geds are positive.) This problem was not discussed in the first two papers on the method
(Wang, 1981; Wang et al., 1982), though the problem is mentioned in Wang (1983). How-
ever, subsequent papers that use the method (Traverso, 1988; Sasaki & Takeshima, 1989;
Kaltofen et al, 1990) do not mention that testing (2.3) is necessary in the absence of
other tests. In these papers, the final result {e.g.a Grébner basis) is checked so that erro-
neous rational recovery would be detected anyway. A correct rational recovery algorithm
therefore comprises two parts: the first computes a pair {4, B) of integers that solves the
congruence (2.1) subject to {2.2), and the second checks condition {2.3).

We would also like to point out that the relative primality of M and U is neither
sufficient (as suggested in Sasaki & Takeshima (1989), p. 374) nor necessary (as suggested
in Traverso (1988), p. 131) for satisfying conditions (2.1), (2.2), and (2.3): The example
given above with M = 12 and U = 5 shows that ged(M,U) = 1 is not sufficient, while
the example M = 12 and U = 2 shows that ged(M, /) = 1 is not necessary, since the
pair (A, B) = (2,1) satisfies the three conditions in this case.

A natural question that has not been addressed in the literature is the following: If
the residue U is chosen uniformly at random, what is the probability that there exists
a pair (A, B) such that (2.1}, (2.2), and (2.3) are satisfied? The answer is that the
probability approaches 6/72 ~ 0.6079 as M — oa. This follows from that fact that there
are about M pairs {4, B) satisfying (2.2), of which about (6/7%)M are such that 4 and B
are relatively prime; these are precisely the pairs satisfying the three conditions. (The
probability that two random integers are relatively prime is 6/72; see Knuth (1981),
p. 324.) The proof is completed using the equivalence, in the presence of (2.1), of the
relative primality of A and B with (2.3).

Knowledge of this probability can be useful in the analysis and design of algorithms
that make use of rational reconstruction. For instance, in the application of the rational
reconstruction algorithm described in Encarnacién (1994), attempts are made to recon-
struct rational numbers from the coefficients of certain polynomials with coefficients
in Z/(M), where M is the product of several primes. If these primes are not sufficient
in number, then such rationals are unlikely to exist, and we abort the attempt upon en-
countering any coefficient for which the three conditions cannot be satisfied. To analyze
the algorithm, we would like to know how many coefficients, on the average, we will have
to process before we abort the attempt. If we assume that the polynomial has coefficients
that are chosen uniformly at random from the elements of Z/{M), then we can expect
to process about 1/(1 — 6/72) ~ 2.55 coefficients on the average.

Kaltofen and Rolletschek (1989) discuss a more general congruence relation, in which
the bounds on the numerator and denominator need not be the same—in contrast with
the uniform bound in (2.2). Although using different bounds may sometimes be more

290 G. E. Collins and M. J. Encarnacién

efficient than using a uniform bound, the improvement would not be significant for our
intended applications, so we chose to use a uniform bound for simplicity. In any case, the
algorithm we describe in Section 4 can be modified to work with different bounds if this
happens to be advantageous for the situation at hand.

3. A multiprecision Euclidean algorithm

Even though the numbers to which Euclid’s algorithm is applied may be large, the
quotients that are computed tend to be small. This suggests that we may be able to
compute some of these quotients using only the leading digits of the integers under con-
sideration. Lehmer proposes to compute—using only the leading digits of the integers—a
certain sequence of pairs of quotients whose agreement guarantees that the quotients are
correct (see Lehmer (1938) or Knuth (1981), pp. 328-330). Collins (1980) shows how
computing only a single sequence of quotients suffices. To state Collins’ result we will
need to introduce some notation.

Given positive integers A; and As, with A; > A,, define the quotient and remainder
sequences of A; and Ag to be (@Q1,...,Q,) and (Ay,..., Aryo), respectively, where

Qi = Ai/Aiq], and Aip = A — Qidiy,
fori=1,..., r, and A;y 2 = 0. Define the first and second cosequences of A1 and A, to
be (U1,...,Ursa2) and (Vi,..., Viy2), respectively, where
(Uig2, Viza) == (Ui, Vi) — Qi(Uiy1, Vig1),

fori=1, ..., r, with (U, V1) := (1,0) and (Us, Vo) := (0,1).
Now let @1 and az be the leading digits of A; and As. More precisely, for some h such
that A5 > 2%, let

a1 = [A1/2"] and ax=|A2/2"]. (3.1)

If {(q1,. .., qs) is the quotient sequence of ay and ap, we want a condition that will tell us
when

7i = Qi. (3.2)

Let (uy,...,urp2) and (v1,...,vry2), respectively, be the first and second cosequences of

ay and ag. Collins (1980) shows that
Giy2 = |vigal and @ip1 — @iy 2 |vigr — vigsl (3.3)

implies (3.2), provided all previous quotients were correct, i.e., provided g¢; = @;, for
j < i. Note that condition (3.3) also implies that u; o = U;ys and v; 5 = V19, so that

Aps1 = upp1d1 +vkp1da and Agio = upp2d1 + v, (3.4)

We have the following variant of the Euclidean algorithm for multiprecision input:
From A; and As, compute h so that a; and ap in (3.1) are single-precision integers.
Compute quotients g; and cosequence elements u;12 and v,y as long as condition {3.3)
holds. If & is the largest i for which (3.3) holds, then we can compute Agyy and Agio
by (3.4). We can then repeat the process with A3 and Agys in place of A; and Aj.

To get a half-extended version of this algorithm, that is, one which also computes V;
such that A, =UV; (mod M), we set A; = M, Az = U, compute

Virr = upaVi +op Ve and Viga = ugq2Vy + vpgaVa, (3.5)

Efficient Rational Number Reconstruction 291-

ALCORITHM DDPCC

INPUTS: Non-negative digits a1, ag, b1, and by, with a1 > 3/2, 1 > 0, and & := 018 4+ ap >
b:= g+ bo.

OuTtpuTs: Digits uj, ug, v1, and va. Let A and B be positive integers such that, for some h > 0,
we have a = | 4/2"| and b = | B/2"|, Then, for some k, nearly as large as possible,
Ax = wm A+ v1B and Agyy = ugA + v2B, where A; is the ith term of the remainder
sequence of 4 and B.

1 (‘Ll.l, ul) = (lr O)I (112, U2) = (0) 1):
2 while true do

3 q:= [(a18 + a0)/ (518 + bo} s
4 (e18 + co) i= (a18 + ao) ~ g(b18 + bo);
5 (u3,v3) := (u1,v1) ~ qluz,v2);
[if ¢; = 0 then
7 if co > |vs| and (1B 4+ by) —ep > |v2 ~ w3l then
8 (‘U]_,U1) = (‘U-g,vz); (u2,112) = {u31v3);
9 return(ug, uz, v, v2);
19 if by —¢; €1 then
11 if (b18+ bo) — (e18 + co) < |v2 — va| then
12 return{uy,us,v1,v2);
138 {a1,00) = (b1,bo); (b1,b0) := (c1,ca);
14 {u1,v1) := (u2,v2); (u2,v2) := (us,vs);
15 end;

Figure 2. Double-Digit Partial Cosequence C'omputation

and then use Viy1 and Vg2 in place of V] and V; when we repeat the process.

Jebelean (1993b) observed that restricting @1 and e to be single-precision, i.e.to fit in
a single computer word, makes ug42 and vi4q each about half 2 word long. By allowing
a; and as to be double-precision, we can expect urys and viys to be (almost) full
single-precision. The advantage of allowing a1 and a4 to be double-precision, rather than
single-precision, is that computing the linear combinations in (3.4) and (3.5), which
are the most time-consuming operations, will happen about half as often, yet each will
require about the same amount of time. The disadvantage is that computing with double-
precision integers is, of course, more costly than computing with single-precision integers.
However, the advantage outweighs the disadvantage, as we will see later.

Figure 2 gives algorithm ppPCC, which, given the leading words of two positive mul-
tiprecision integers, computes the «’s and v’s that are needed in (3.4) and (3.5). The
single-precision integer 2 is the base of our number system. For efficiency, we assume
that 8 is a power of 2, i.e8 = 2¢ for some positive integer ¢. Lines 3-5 of DDPCC
compute the sequence elements and lines 6-12 check for termination. DDPCC uses a ter-
mination condition that is a simplification of that in Jebelean (19935). Note that lines 3,
4, 5, 7, and 11 should not be implemented in a straightforward way as this would be
inefficient; bit shifting and subtraction should be used instead.

4. Efficient rational number reconstruction

In this section we discuss an efficient algorithm that, given & modulus M and a resi-
due U, computes a pair (A, B) of integers that solves the congruence (2.1) subject to {2.2),
if such a pair exists. The general idea is to take the multiprecision Euclidean algorithm

292 G. E. Collins and M. J. Encarnacién

ALGoRrITEM DDRPCC

INPUTS: A positive digit m and non-negative digits a1, aop, b1, and dg, with a1 > 5/2, & > 0,
and a:=a18+ap > b:=b18 4 bo.

Ovreurs: Digits uj, ug, v1, and vz. Let A and B be positive integers such that, for some h > 0,
we have o = |A/2"] and b = | B/2"}. Then, for some k, nearly as large as possible,
Ag =u1A+v B and Agqy = upA + va B, where A; is the ith term of the remainder
sequence of A and B. Furthermore, Jup| < mor v <1

Figure 3. Double-Digit Restricted Partial Cosequence Jomputation

described in the previous section and modify it for this purpose. Also discussed are
methods for checking condition {2.3)—a check that has been neglected in the literature.

4.1. SoLvING THE CONGRUENCE

The essential difference between the extended Euclidean algorithm (EEA) and Wang's
RATCONVERT is their termination condition. The EEA termninates when the remainder
becomes zero, while RATCONVERT terminates when either (a) the cosequence element
becomes at least as large as the critical value /M /2, or (b) the remainder becomes less
than this critical value. In effect, DDPCC does several Euclidean steps, so a simple-minded
use of DDPCC in RATCONVERT may cause us to “overshoot” the termination condition:
it may happen that after forming the linear combinations in (3.4) and (3.5), using the
u's and v's computed by DDPCC, we find that Viio > /M/2, and yet there was a
J < k+2such that A; < /M /2 and V; < /M /2. In this case we may wrongly conclude
that (2.1) and (2.2) cannot be satisfied.

Our solution to this problem is as follows. By (3.5), since |ugyz! < |vgye| and |Vy| <
|Va|, we have |Viya| < 2|vg+2Val. Hence

logg [Vita| < logy [vgya| + logg [Vaf + 1.

So we will have |Viya| < /M/2 provided logy |vkte| + logy [Val + 1 < logy /M /2. The
latter is equivalent to logy |vet+2| < logy /M /2 —logs §Va| — 1, and this will hold provided

Livgya) < [log2 \/M/ZJ — L(Va) ~1, (4.1)
where L(x) is the bit length of the integer z. (Note that we have |logy /M /2| =
ilogs |/ |M/2]]].} But vgys is single-precision (L{vky2) < ¢) so whenever the right-
hand side of (4.1} is greater than ¢ we are in no danger of overshooting, and we can use
DDPCC without problems.

Now when the size of V3 increases so that the right-hand side of (4.1) is less than or
equal to ¢, we can opt not to use DDPCC anymore, and compute the next remainders
and cosequence elements as in RATCONVERT. A better alternative would be to have a
version of DDPCC that also ensures that its output vg4o satisfies (4.1}, or more generally
that |vz42] < m, for some specified integer m > 0. Algorithm DDRPCC, for Double-Digit
Restricted Partial Cosequence Computation, whose specifications are given in Figure 3,
ensures that this additional condition on vz holds. For the intended purpose, namely
to avoid overshoot, the restriction jvg;a| < m need not prevent DDRPCC from doing one
step—hence the additional “... or v; < 1” in the output specifications, since »; < 1
exactly when DDRPCC has done at most one step, that is, i = 1 or i = 2.

Efficient Rational Number Reconstruction 293

ALGORITEM ISMC

INPUTS: A modulus M and a residve U € Z/(M). Alzsa M’ := |/M/2]| and m = L(M").
[L(z) is the bit length of «.]

OutruTs: A pair (A, B) of integers such that A = BU {mod M) and |A|, B < /M/2, with
B > 0, if such a pair exists. Otherwise, NIL is returned.

1 (Al,Ag) = (M, U), (V]_,Vz) = (D, 1);
2 while true do
g if |V2| > M' then return NiL;

4 if A2 < M’ then return (sign(Vé)Ag,WgD;

5 ci=m— LK) -1,

6 v =0

7 if L{A;) — L{A2) < ¢ then

8 if L(A;) > 2¢ and ¢ > (/2 then

g = L{A1} - 2(;
10 (a18+ a0) := [A1/2%]; (b1 + bo) = | A2/2"];
11 if ¢ > ¢ then (u;,ug,v1,v2) := DDPCC(ay, ap, b1, bo);
12 else (u1,ug,v1,v2) := DDRPCC(2° !, 81, ag, b1, b0);
13 else if L{A1) > { and L{A;) — L(Az2) < (/2 then
14 k= L{A1} - ¢;
15 ap = |A1/2*]; bo = |A2/2"];
16 if ¢ > ¢/2 then (u1,ug,v1,v2) ;= DPCC{ag, bo};
bl else (uy,us,v1,v;) 1= DRPCC(2°71 ap, bp);
18 if v1 #£ 0 then
19 (A1, A2) = (ur,up}A; + (v1, v2) Ag;
20 (W1, Va) == (1, u2}V1 + (v, v2) V5
21 else -
22 Q= |A1/Az2]; (A1, W) = (A1, W) - Q(A2, Vo);
28 SWAP(A1, A2); SWAP(W, Va);
24 end;

Figure 4. Integer Solution of Modular Congruence

Corresponding to DDPCC and DDRPCC are DPCC (for Digit Partial Cosequence Compu-
tation) and prece (for Digit Restricted Partial Cosequence Computation), which take
single digits rather than double digits as inputs. We omit their specifications as they
would be almost identical to those of the double-digit procedures. These single-digit pro-
cedures are only needed for small integers—those of 4 words or less—since we can use the
double-digit procedures as long as the elements of the remainder sequence are at least
2¢ bits long, and this would always be the case for larger inputs.

The main algorithm of this paper, christened 1SMC for Integer Solution of Modular
Congruence, is given in Figure 4. In the next section we will discuss the efficient imple-
mentation of 1ISMC and its subalgorithms.

4.2, IMPLEMENTATION ASPECTS

We implemented the algorithms using SACLIB (version 2.1, which has not yet been
released), a C library of algebraic algorithms (Collins et al, 1993), which has a word
length of ¢ = 29. The multiprecision integers were represented using arrays, rather than
lists. All our tests were performed on a DECstation 5000/240 running ULTRIX v4.2A, The

294 G. E. Collins and M. J. Encarnacién

source code was compiled using the GNU compiler gee version 2.5.4 with optimization
(using the ‘-0’ option).

In typical situations, 1SMC is applied several times to the same modulus M but to
different residues. This is why we have | /M /2] and L(|/M/2]) as inputs, since these
values do not have to be recomputed each time we apply 1sMC.

The bit lengths of single-precision integers are computed several times during an ap-
plication of IsMC—such computations take place in lines 5, 7, 10, 15, and 22, We imple-
mented a subroutine called nLoG2 (for Digit LOGarithm, base 2) that computes the bit
length of a single-precision integer by a binary search of a table of powers of 2, combined
with bit-shifting. The average computing time of DLOG2 is about 1.4 usec.

The computations in line 10 of 1sMC do not require division. All we need to do is put
the high-order 2¢ bits of A; in a7 and ag (with the higher-order ¢ bits in a;). This can
be easily done by shifting, and in a bounded amount of time independent of the length
of A; since the integers are stored in arrays. Similar remarks apply to Az and to the
computations in line 15.

We already mentioned in Section 3 that pppcc¢ should be implemented using bit-
shifting and subtraction. To measure how much faster a shift-and-subtract implemen-
tation can be, we generated 100000 sets of inputs to DDPCC where a-, ag, and by were
29 bits long, and by was 28 bits long. The total time required by a straightforward imple-
mentation of DDPCC to process these inputs was 72451 msec, while the shift-and-subtract
implementation needed only 4584 msec; this is a speedup ratio of 15.81.

For a comparison of DPCC and DDPCC, we generated 100000 inputs as in the pre-
ceding paragraph, and used a; and b; as inputs to DPCC as well. DPCC did an average
of 7.94 steps, and DDPCC an average of 16.41 steps. The total computing times were
1816 msec for bPCC, and 4584 msec for DDPCC, or an average of 2.29 usec per DPCC step,
and 2.79 psec per DDPCC step. The average length of the output vy was 11.84 bits for
DPCEC, and 26.34 bits for DDPCC.

Forming the linear combinations in lines 19 and 20 can be done in one pass through
the digits of the multiprecision A’s and V’s since we know the signs of the results in
advance: the A’s are all positive while the V’s alternate in sign. Instead of forming the
products separately and then summing, we form the digit-wise products and sums, and
determine the appropriate carries (this is where we need sign information) as we process
each digit of the multiprecision integers.

Another thing to be noticed about lines 19 and 20 is that when exactly one partial
cosequence computation step is successful—as will happen when we are sufficiently near
termination—then uy = 0, ua = 1, v1 = 1, and vg = —¢q, where ¢ = | A1 /A3]. In this case
A1 simply takes the value of A, and only the new value for A5 needs to be computed
(similarly for the V’s).

Table 1 shows the performance of our implementations of RATCONVERT, 1SMC1, and
1sMC applied to several test inputs. 1SMC1 is similar to 1SMC but uses only DPCC, and
not DDPCC, and was implemented to measure the improvement one gets by going from
single digits to double digits in the partial cosequence computations.

The test inputs were generated as follows. For the values of w given in the first column
of Table 1, we generated § random moduli that were w words long, i e.exactly (w = 29w
bits long, and for each modulus we generated T random residues. The values of § and T
are given in the second column of the table. The total computing times required by the
algorithms to process all § x T input pairs are displayed in the columns labelled RATCON-
VERT, 1sMcC1, and 1sSMC. The italicized entries are the speedup ratios RATCONVERT /ISMC

Efficient Rational Number Reconstruction 295

w SxT RATCONVERT ISMC1 ISMC
2 100 x 100 5033 38.32 1783 1.18 1517
3 100 x 100 8050 3.69 2684 1.29 2183
4 100 x.100 11434 4.18 3450 1.26 2733
5 100 x 100 15300 4.50 4516 1.3% 3400
6 100 x 100 19517 4.68 5583 1.34 4167
7 100 x 100 24150 5.01 6900 1.48 4817
8 100 x 100 20284 5.14 8183 1.44 5700
9 100 x 100 34684 5.39 9700 1.51 6433
10 100 x 100 40516 &5.48 11184 1.51 7400
20 10 x 100 12183 6.41 3317 175 1900
30 10 x 100 24333 6.76 6650 1.85 3600
40 10 x 100 40550 6.97 11233 1.98 5817
50 10 x 100 60833 7.14 16800 1.87 8517
60 10 x 100 85384 7.26 23583 2.00 11767
70 10 x 100 113950 7.35 31533 2.08 15500
80 10 x 100 146167 7.41 40633 2.06 19733
90 10 x 100 182883 7.46 50867 2.08 24500
100 10 x 100 222800 7.48 62166 2.09 29784

1000 10 x 10 2119400 8.01 587349 2.22 264617

Table 1. Computing times for solving the congruence (in milliseconds)

and I1SMC1/1SMC, respectively. For inputs that are 100 words long, we see that 1SMC is
more than twice as fast as 1SMC1, and is almost 7.5 times faster than RATCONVERT. The

good speedup ratios even for small inputs is attributable in part to the carefully-crafted
DLOG2 subroutine.

4.3. CHECKING THE DENOMINATOR

The best way to check condition (2.3)—invertibility of the denominator—will depend
on the form of the modulus M, of which we will presently discuss two important special
cases. However, even when M is not known to be of a particular form, we can still
do a little better than computing ged(B, M) directly. Let € = (A — BU)/M. Then
A= BU 4+ CM and ged(B,C) = 1, from which it follows that

ged(A, B) = ged(B, M). (4.2)

Therefore, we ¢can compute ged(A, B) instead of ged(B, M), and this will be more efficient
since both A and B will be at most about half the length of M.

Two particular forms of the modulus M occur frequently—perhaps even exclusively.
In applications that use a Hensel lifting technique, the modulus M will be a power of a
known prime p, and checking condition (2.3) is particularly easy in this case: simply check
whether p divides B. In spplications that use Chinese remaindering, the modulus M
will be a product of distinct known primes, and we now have two possible methods:
either (I) compute ged{A, B) using the algorithm of Section 3, or (II) for each prime
divisor p of M, check whether p divides B, ignoring any remaining primes as soon as
a zero remainder is computed. A theoretical computing time analysis will not reveal
which of these two methods is faster, so an experimental comparison is in order. (The
implementation of method Il whose times are reported in this section exploits the fact
that in our applications each p will be at most 15 bits long.)

296 G. E. Collins and M. J, Encarnacion

¢ I I N
5 617 300 2.06 8
10 1583 767 2.06 9

20 3500 2583 1.86 24
30 5900 5367 1.10 32
40 8467 9200 0.92 44
50 11450 14334 0.80 64
60 14650 20000 0.73 80
70 18184 27083 0.67 84
80 22033 35467 0.62 102
90 26133 44584 0.59 107
100 30683 54534 0.56 121

Table 2. Computing times for checking the denominator {in milliseconds).

For certain values of £ ranging from 5 to 100, we formed the product M of the first
£ 15-bit primes, generated 10000 residues U for each M, and applied 1sMC to get 10000
pairs (A, B) for each value of ¢, discarding and replacing those U’s for which 18MC re-
turned NIL. We then messured the time to apply methods I and II to the 10000 pairs of
inputs for each value of £. Table 2 summarizes the results. The values of ¢ are given in
the first column. The times needed by methods I and IT are given in the second and third
columns. The fourth column gives the ratio of the two times. The column labelled N
gives the number of times that B was non-invertible in Z/(M). Noie¢ that the number
of cases for which the denominator was not invertible is relatively small—less than 1%
for ¢ < 70. Given the table, a reasonable conjecture is that the expected value of the
numbers in column N is 2(6/72).

The table also suggests that method II should be used for smaller inputs, and method I
for larger inputs; in our implementation, both methods took about the same amount of
time for £ = 35 primes. However, if we take the time to apply 1SMC into account, the
speedup we get from using method II for £ < 35 is small. For instance, when £ = 10 the
total time needed to apply 1SMC was 3216 msec so that the speedup we achieved was
(3216 + 1583) /(3216 + 767) ~ 1.2. We feel that such a small speedup does not justify the
extra programming effort needed to use method II for smaller inputs, so we decided to
use method I throughout.

Acknowledgements

We thank the referees for some useful suggestions.

References

Collins, G. E. (1980). Lecture Notes on Arithmetic Algorithms, Madison: University of Wisconsin

Collins, G. E. & Encarnacién, M. J. (1995). Improved techniques for factoring univariate polynomials.
Tech. Rep. 95-19, RISC-Linz, Johannes Kepler University, A-4040 Linz, Austria. Submitted for
publication.

Collins, G. E. et al (1993). SACLIB 1.1 User's Guide. Technical Report 93-19, RISC-Linz, Johannes
Kepler University, A-4040 Linz, Austria.

Encarnacién, M. J. {1994). On a modular algorithm for computing geds of polynomials over algebraic
number fields. In Proceedings of the 199 International Sympesium on Symbolic and Algebraic
Computation, pp. 5865, ACM Press.

Efficient Rational Number Reconstruction 297

Jebelean, T. {1993a). A generalization of the binary ged algorithm. In Proceedings of the 1993 Interna-
tional Symposium on Symbolic and Algebraic Computation, pp. 111-116. ACM Press.

Jebelean, T. (1993b). Improving the multiprecision Euclidean algorithm. In Proceedings of DISCO ‘98,
Lecture Notes in Computer Science 722, pp. 45-58. Springer-Verlag.

Kaltofen, E., Lakshman, Y. N., Wiley, J.-M. (1990). Modular rational sparse multivariate polynomial
interpolation. In Proceedings of the 1990 Internationel Symposium on Symbolic and Algebraic
Computation, pp. 135-139. ACM Press.

Kaltofen, E., Rolletschek, H. {1989). Computing greatest common divisors and factorizations in quadratic
number fields. Mathematics of Computation 53(188), :697-720.

Knuth, D. E. {1981). Seminumerical Algorithms: The Art of Computer Programming 2. Addison-Wesley.

Lehmer, D. H. (1938). Euclid's algorithm for large numbers. American Mathematical Monthly 45(4),
:227-233.

Sasaki, T., Sasaki, M. (1992). On integer-to-rational conversion. SIGSAM Bulletin 26(2}, :19-21.

Sasaki, T., Takeshima, T. (1989}). A modular method for Grébner-basis construction over) and solving
system of algebraic equations. Journal of Information Processing 12(4), :371-379.

Schénhage, A. (1971). Schnelle Berechnung von Kettenbruchentwicklungen, Acta Informatica 1:139-144.

Sorenson, J. (1994). Two fast GCD algorithms. Journal of Algorithms 16(1), :110-144.

Traverso, C. {1988). Grébner trace algorithms. In Proceedings of the 1988 Infernational Symposium
on Symbolic and Algebraic Computation, Lecture Notes in Computer Science 358, pp. 125-138.
Springer-Verlag.

Wang, P. S. (1981). A p-adic algorithm for univariate partial fractions. In Proceedings of the 1976
Symposium on Symbolic and Algebraic Computation, pp. 212-217. ACM Press.

Wang, P. 3. (1983). Early detection of true factors in univariate polynomial factorization. In Proceedings
of the 1983 European Conference on Computer Algebra, Lecture Notes in Computer Science 162,
pp. 225-235. Springer-Verlag.

Wang, P. 8., Guy, M. J. T., Davenport, J. H. (1982). p-adic reconstruction of rational numbers. SIGSAM
Bulletin 16:2-3.

Weber, K. (1993). The accelerated integer ged algorithm. Tech. Rep. ICM-9307-55, Kent State University.
To appear in ACM Transactions on Mathematical Software.

