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Abstract

Image captioning often requires a large set of training
image-sentence pairs. In practice, however, acquiring suf-
ficient training pairs is always expensive, making the re-
cent captioning models limited in their ability to describe
objects outside of training corpora (i.e., novel objects). In
this paper, we present Long Short-Term Memory with Copy-
ing Mechanism (LSTM-C) — a new architecture that in-
corporates copying into the Convolutional Neural Networks
(CNN) plus Recurrent Neural Networks (RNN) image cap-
tioning framework, for describing novel objects in caption-
s. Specifically, freely available object recognition datasets
are leveraged to develop classifiers for novel objects. Our
LSTM-C then nicely integrates the standard word-by-word
sentence generation by a decoder RNN with copying mech-
anism which may instead select words from novel objects at
proper places in the output sentence. Extensive experiments
are conducted on both MSCOCO image captioning and Im-
ageNet datasets, demonstrating the ability of our proposed
LSTM-C architecture to describe novel objects. Further-
more, superior results are reported when compared to state-
of-the-art deep models.

1. Introduction

Automatically describing the content of an image with

a complete and natural sentence, a problem known as im-

age captioning, has great potential impact for instance on

robotic vision or helping visually impaired people. Inten-

sive research interests from both computer vision and nat-

ural language processing communities have been paid for

this emerging topic. Most of recent attempts on this prob-

lem [4, 23, 26, 29] are Convolutional Neural Networks (CN-

N) plus Recurrent Neural Networks (RNN) based sequence

learning methods, which are mainly inspired from the ad-

vances by using RNN in machine translation [21]. The ba-

Figure 1. An example of object recognition and image captioning.

The input is an image, while the output is the detected objects and

a natural sentence, respectively. (upper row: the detected objects

in the image; middle row: the sentence generated by LRCN [4]

image captioning approach; bottom row: the sentence generated

by our LSTM-C model.)

sic idea is an encoder-decoder mechanism for translation.

Specifically, a CNN is employed to encode image content

and then a decoder RNN is exploited to generate a natu-

ral sentence. While encouraging performances are report-

ed, the sequence learning methods learn directly from im-

age and sentence pairs, which fail in their ability to describe

the objects out of the training data, i.e., novel objects. Take

the image in Figure 1 as an example, the output sentence

generated by a popular image captioning method Long-term

Recurrent Convolutional Networks (LRCN) [4] is unable to

describe “suitcase” as this object is non-existent in the train-

ing corpora. More importantly, manually labeling a large-

scale image captioning dataset is an intellectually expensive

and time-consuming process.

We demonstrate in this paper that the above limitations

could be mitigated by incorporating the knowledge from ex-

ternal visual recognition datasets, which are freely available

for developing object detectors. Specifically, we present

a novel Long Short-Term Memory with Copying Mecha-

nism (LSTM-C) framework to generate words by integrat-

ing “copying mechanism.” Copying mechanism is origi-

nated from human language communication and refers to

the mechanism that locates a certain segment of the input

sequence and directly puts the segment in the output se-

quence [7]. The spirit behind is the rote memorization in

language processing of human being, which needs to refer
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to sub-sequences of the input. We extend the copying idea

here to select novel objects learnt from external sources and

put them at proper places in the generated sentence. The

overview of LSTM-C framework is illustrated in Figure 2.

Given an image, a CNN is utilized to extract visual features,

which will be fed into LSTM at the initial time step for sen-

tence generation. Meanwhile, the objects of the input image

are also predicted by object detectors pre-trained on recog-

nition dataset. A copying layer is devised at the top of the

whole architecture to accommodate the generative model of

LSTM and copying mechanism from the detected objects.

By integrating copying mechanism into image captioning,

the word “suitcase” is copied from detected objects and out-

put in the sentence generated by our LSTM-C as shown in

Figure 1. The whole architecture is trained end-to-end.

The main contribution of this work is the proposal of

LSTM-C framework by incorporating the knowledge from

external sources to address the issue of predicting novel ob-

jects in image captioning task. This issue also leads to an

elegant view of how to accommodate both generative model

and copying mechanism from detected objects for sentence

generation, which is a problem not yet fully understood.

2. Related Work

We briefly group the related works into two categories:

image captioning and novel object captioning. The first cat-

egory reviews the research in sentence generation for im-

ages, while the second investigates a variety of recent mod-

els which attempt to describe novel objects in context.

2.1. Image Captioning

The research on image captioning has proceeded a-

long three different dimensions: template-based method-

s [11, 14, 27], search-based approaches [3, 6, 15], and

language-based models [4, 10, 23, 24, 26, 28, 29].

Template-based methods predefine the template for sen-

tence generation and split sentence into several parts (e.g.,

subject, verb, and object). With such sentence fragments,

many works align each part with visual content (e.g., CRF

in [11] and HMM in [27]) and then generate the sentence

for the image. Obviously, most of them highly depend on

the templates of sentence and always generate sentence with

syntactical structure. Search-based approaches [3, 6, 15]

“generate” sentence for an image by selecting the most se-

mantically similar sentences from sentence pool. This di-

rection indeed can achieve human-level descriptions as al-

l the output sentences are from existing human-generated

ones. The need to collect human-generated sentences, how-

ever, makes the sentence pool hard to be scaled up.

Different from template-based and search-based models,

language-based models aim to learn the probability distri-

bution in the common space of visual content and textual

sentence to generate novel sentences with more flexible syn-

tactical structures. In this direction, recent works explore

such probability distribution mainly using neural network-

s and have achieved promising results for image caption-

ing task. Kiros et al. [10] employ the neural networks to

generate sentence for an image by proposing a multimodal

log-bilinear neural language model. In [23], Vinyals et al.
propose an end-to-end neural networks architecture by uti-

lizing LSTM to generate sentence for an image, which is

further incorporated with attention mechanism in [26] to

automatically focus on salient objects when generating cor-

responding words. More recently, in [24], high-level con-

cepts/attributes are shown to obtain clear improvements on

image captioning task when injected into existing state-of-

the-art RNN-based model. Such high-level attributes are

further utilized as semantic attention in [29] and comple-

mentary representations to visual features in [17, 28] to en-

hance image/video captioning.

2.2. Novel Object Captioning

The novel object captioning is a new problem that has

received increasing attention most recently, which leverages

additional image-sentence paired data [13] or unpaired im-

age/text data [8, 22] to describe novel objects in existing

RNN-based image captioning frameworks. [13] is one of

the early works that enlarges the original limited word dic-

tionary to describe novel objects by using only a few paired

image-sentence data. In particular, a transposed weight

sharing scheme is proposed to avoid extensive retraining.

In contrast, with the largely available unpaired image/text

data (e.g., ImageNet and Wikipedia), Hendricks et al. [8]

explicitly transfer the knowledge of semantically related ob-

jects to compose the descriptions about novel objects in the

proposed Deep Compositional Captioner (DCC). The DC-

C model is further extended to an end-to-end system by

simultaneously optimizing the visual recognition network,

LSTM-based language model, and image captioning net-

work with different sources in [22].

Our model mainly focuses on the latter scenario, that in-

corporates the knowledge learnt from freely available un-

paired object recognition data for novel object captioning.

Different from previous methods which solely rely on the

standard word-by-word sentence generation through a de-

coder RNN, we integrate the regular decoder RNN with

copying mechanism which can simultaneously “copy” the

novel objects to the output sentence and the framework is

trainable in an end-to-end fashion.

3. Image Captioning with Copying Mechanism
The main goal of our Long Short-Term Memory with

Copying Mechanism (LSTM-C) framework is to describe

novel objects in the output sentences by incorporating the

copying mechanism into the decoding stage of image cap-
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Figure 2. The overview of Long Short-Term Memory with Copying Mechanism (LSTM-C) for describing novel objects (better viewed

in color). (a) Wg and Wc are the vocabularies on paired image-sentence dataset and unpaired object recognition dataset, respectively.

(b) The image representation extracted by CNN is injected into LSTM at the initial time for standard word-by-word sentence generation.

Meanwhile, the object classifiers learnt on unpaired object recognition dataset are utilized to detect the object candidates which are addi-

tionally incorporated into LSTM for directly “copying” them into the output sentence, enabling the captioning for novel objects. To better

leverage both generative mechanism for standard word-by-word sentence generation and our adopted copying mechanism, a copying layer

is specially devised to integrate them in an end-to-end trainable architecture.

tioning. The overall training of LSTM-C is similar to regu-

lar CNN plus RNN systems by minimizing the energy loss

which estimates the contextual relationships among the gen-

erated words in the decoding stage. Particularly, we mea-

sure the log probability of target word through not only the

natural generation by generic RNN decoder, but also the

direct “copying” from the detected objects learnt on largely

object recognition datasets, enabling the captioning for nov-

el objects. The framework overview is shown in Figure 2.

In the following, we will first define the representation-

s of images, the sequential words in sentence and the de-

tected objects from images, followed by sequence modeling

in image captioning. Next, to select words from novel ob-

jects and put them at proper places in the output sentence,

we present the copying mechanism for image captioning

from the viewpoint of rote memorization like a human be-

ing. Finally, the overall objective and optimization strategy

of LSTM-C are presented in a CNN plus RNN framework.

Technically, we devise a copying layer at the top of CNN

plus RNN architecture, which incorporates both generative

and copying mechanisms to optimize the whole network.

3.1. Notation

Suppose we have an image I to be described by a textu-

al sentence S, where S = {w1, w2, ..., wNs
} consisting of

Ns words. Let I ∈ R
Dv and wt ∈ R

Dw denote the Dv-

dimensional visual representations of the image I and the

Dw-dimensional textual features of the t-th word in sen-

tence S, respectively. As a sentence consists of a sequence

of words, a sentence can be represented by a Dw ×Ns ma-

trix W ≡ [w1,w2, ...,wNs
], with each word in the sen-

tence as its column vector. The vocabulary for the paired

image-sentence data is denoted as Wg . Furthermore, we u-

tilize the freely available object recognition datasets to train

the object classifiers which will be injected into our CN-

N plus RNN system for novel object captioning. Let Wc

denote the vocabulary for the unpaired object recognition

dataset and the probability of image I containing each ob-

ject wi ∈ Wc is represented as δ(wi). More specifically,

for the external images with single label (e.g., ImageNet

[19]), the standard CNN architecture [20] is adopted to train

the object detectors, while for the image data with multiple

objects (e.g., MSCOCO [12]), we follow [5] and learn the

detectors by using the weakly-supervised approach of Mul-

tiple Instance Learning (MIL).

3.2. Sequence Modeling in Image Captioning

Inspired by the recent successes of probabilistic se-

quence methods leveraged in statistical machine translation

[1, 21], we aim to formulate our image captioning model in

an end-to-end fashion based on RNN model which first en-

codes the given image into a fixed dimensional vector and

then decodes it to the target output sentence consisting of

sequential words. As such, given the image, the problem of

sequence modeling for target sentence we exploit here can

be generally formulated by minimizing the following ener-

gy loss function:

E(I,W) = − log Pr (W|I), (1)

which is the negative log probability of the correct textual

sentence given the visual image.
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Since the model produces one word in the sentence at

each time step, it is natural to apply chain rule to model the

joint probability over the sequential words. Thus, the log
probability of the sentence is given by the sum of the log
probabilities over the word and can be expressed as

log Pr (W|I) =
Ns∑

t=1

log Pr (wt| I,w0, . . . ,wt−1). (2)

By minimizing this loss, the contextual relationship among

the words in the sentence can be guaranteed given the visual

content of image.

We formulate this task as a variable-length sequence

to sequence problem and model the parametric distribu-

tion Pr (wt| I,w0, . . . ,wt−1) in Eq.(2) with LSTM, which

is a widely used type of RNN in image/video captioning

[23, 28, 16, 25]. The vector formulas for a LSTM layer for-

ward pass are given as below. For time step t, xt and ht are

the input and output vector respectively, T are input weight-

s matrices, R are recurrent weight matrices and b are bias

vectors. Sigmoid σ and hyperbolic tangent φ are element-

wise non-linear activation functions. The dot product of two

vectors is denoted with �. Given inputs xt, ht−1 and ct−1,

the LSTM unit updates for time step t are:

gt = φ(Tgx
t+Rgh

t−1+bg), i
t = σ(Tix

t+Rih
t−1+bi),

f t = σ(Tfx
t+Rfh

t−1+bf ), ct = gt�it+ct−1�f t,

ot = σ(Tox
t +Roh

t−1 + bo), ht = φ(ct)� ot,

where gt, it, f t, ct, ot, and ht are cell input, input gate,

forget gate, cell state, output gate, and cell output of the

LSTM, respectively.

As mentioned above, the LSTM model is utilized to pre-

dict each word in the sentence given the image content and

previous words. We inject the embedded image representa-

tion at the initial time to inform the whole memory cells in

LSTM about the visual content. Given the image I and the

corresponding sentence W ≡ [w0,w1, ...,wNs
], the LST-

M updating procedure is as following:

x−1 = TII, (3)

xt = Tswt, t ∈ {0, . . . , Ns − 1} , (4)

ht = f
(
xt) , t ∈ {0, . . . , Ns − 1} , (5)

where De is the dimensionality of LSTM input, and TI ∈
R

De×Dv and Ts ∈ R
De×Dw are the transformation matri-

ces for image representation and textual feature of word,

respectively, and f is the updating function within LST-

M unit. Please note that for the input sentence W ≡
[w0, . . . ,wNs ], we take w0 as the start sign word to infor-

m the beginning of sentence and wNs
as the end sign word

which indicates the end of sentence, both of the special sign

words are included in the existing vocabulary Wg for the

paired image-sentence data. More specifically, at the initial

encoding step, the image representation is transformed as

the input for LSTM, and then in the next decoding steps,

word embedding xt will be input into the LSTM along with

the previous step’s hidden state ht−1.

In the decoding stage, given the LSTM cell output ht at

the t-th time step, the widely adopted method for next word

prediction is the generative mechanism [1] which calculates

the corresponding probability of generating any target word

wt+1 as

Prgt (wt+1) = w�t+1Mgh
t, (6)

where Dh is the dimensionality of LSTM output and Mg ∈
R

Dw×Dh is the transformation matrix for textual features

of word in the generative mechanism. For the standard

word-by-word sentence generation model, a softmax func-

tion is applied after the probabilities measured by generative

mechanism to produce a normalized probability distribution

over all the words in the vocabulary Wg .

3.3. Copying Mechanism

The copying mechanism has been shown effective for se-

quence learning [7] to address the out-of-vocabulary (OOV)

problem in text summarization. The mechanism is regarded

as the rote memorization in language processing of human

being that directly “copying” existing segments in the input

sequence to target sequence. Similar in spirit, we extend the

copying mechanism in image captioning to directly “copy-

ing” the appropriate objects from the detected candidates in

image to compose the output sentence, especially for novel

objects which never appear in paired image-sentence data,

enabling the novel object captioning. Specifically, at the

t-th decoding step, we directly take the similarity between

any word wt+1 in Wc and the corresponding LSTM cell

output ht as the probability for “copying” the target word

wt+1 to the target sentence, which is calculated as

Prct (wt+1) = ϕ
(
w�t+1Mc

)
htδ (wt+1), (7)

where Mc ∈ R
Dw×Dh is the transformation matrix for

mapping textual features of word in the copying mechanis-

m and ϕ is element-wise non-linear activation function. It

is also worth noticing that we additionally incorporate the

object classification score δ (wt+1) into the formulation of

“copying” probability since this classification score reflects

the chance of the object appeared in the image. The under-

lying assumption is that in addition to the effect of LSTM

cell output, the larger the classification score of this word

in the image, the higher the probability for “copying” this

word in the target sentence.

3.4. LSTM with Copying Mechanism

Unlike the existing image captioning approaches which

always model the sequence learning with generative mech-

anism for sentence generation, our proposed LSTM-C ar-

chitecture further incorporates the copying mechanism into
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LSTM at the decoding stage to describe novel objects in

sentence. In particular, given the output of LSTM cell at

each decoding step, we utilize both generative and copying

mechanisms simultaneously to measure the probability of

generating any target word. As the vocabulary Wc of copy-

ing mechanism is derived from external image data, it may

include the words which are not present in the vocabulary

Wg of image-sentence data, making the copying mechanis-

m able to copy such novel objects to the output sentence.

In this case, we directly consider the probability of copying

mechanism in Eq.(7) as the final probability of generating

these novel objects. Similarly, for the words that only be-

long to Wg , the final probabilities of them fully depend on

their corresponding probabilities of generative mechanism

in Eq.(6). In terms of the overlapping words between Wg

and Wc, we linearly fuse the probabilities from both gen-

erative and copying mechanisms as the final output proba-

bilities. Hence, at the t-th decoding step, the final output

probability Prt (wt+1) of any target word wt+1 is defined

as follows:

Prt (wt+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
K ePr

g
t (wt+1), wt+1 ∈ Wg ∩Wc

λ
K ePr

g
t (wt+1) + 1−λ

K ePrct(wt+1), wt+1 ∈ Wg ∩Wc

1
K ePrct(wt+1), wt+1 ∈ Wg ∩Wc

0, otherwise

,

(8)

where λ is the tradeoff parameter between the two mecha-

nisms and K is the softmax normalization term.

Accordingly, we define our energy loss function in train-

ing stage for each image-sentence pair as follows:

E(I,S) = −
Ns−1∑

t=0

log Prt(wt+1). (9)

Let N denote the number of image-sentence pairs in the

training set, we have the following optimization problem:

min
TI ,Ts,Mg,Mc,θ

1
N

N∑
i=1

E(I(i),S(i))

+ ‖TI‖22 + ‖Ts‖22 + ‖Mg‖22 + ‖Mc‖22 + ‖θ‖22
,

(10)

where the first term is the overall energy loss, and the rest

are regularization terms for image embedding, textual em-

bedding for LSTM input, textual embedding in generative

mechanism, textual embedding in copying mechanism, and

LSTM, respectively. Moreover, following [22], we also im-

plicitly integrate the overall energy loss with text-specific

loss on external sentence data for maintaining the model’s

ability to address novel objects among sentences.

To solve the optimization according to overall loss ob-

jective in Eq.(10), we design a copying layer at the top of

LSTM with two textual embedding parameters for genera-

tive and copying mechanisms. During training, this copying

layer measures the output probability for each word consid-

ering both generative and copying mechanisms as defined in

Eq.(8), followed by a softmax normalization operation for

overall optimization.

In the testing stage for sentence generation, we choose

the word among the combination vocabulary of Wg and Wc

with maximum probability at each time step and set its em-

bedded textual feature as LSTM input for the next time step

until the end sign word is outputted.

4. Experiments

We evaluate and compare our proposed LSTM-C with

state-of-the-art approaches by conducting novel object cap-

tioning task on two image datasets, i.e., the held-out Mi-

crosoft COCO Caption dataset (held-out MSCOCO) [8]

which is a subset of MSCOCO dataset [12] and ImageNet

[19], a large-scale object recognition dataset.

4.1. Datasets

Held-out MSCOCO. The held-out MSCOCO consists

of a subset of MSCOCO which excludes all the image-

sentence pairs that contain at least one of eight specific ob-

jects in MSCOCO. It is worth noting that following [8], the

eight specific objects are chosen through the clustering over

all the 80 objects in MSCOCO segmentation challenge and

each cluster excludes one object, resulting in the final eight

novel objects for evaluation: “bottle,” “bus,” “couch,” “mi-

crowave,” “pizza,” “racket,” “suitcase,” and “zebra.” For this

subset, there are five human-annotated descriptions per im-

age. As the annotations of the official testing set are not

publicly available and thus following [8], we split the M-

SCOCO validation set into two: 50% for validation and the

other 50% for testing. For the experiments on held-out M-

SCOCO, the object classifiers for copying mechanism are

trained with all the MSCOCO training images including the

eight novel objects and the LSTM for sequence modeling is

pre-trained with all the sentences in MSCOCO training set,

while the entire CNN plus RNN system are optimized with

the paired image-sentence data only from held-out MSCO-

CO training set. The testing set of held-out MSCOCO is

then utilized to evaluate the ability of our LSTM-C model

to describe the eight novel objects.

ImageNet. We also conduct our experiments on the large-

scale object recognition dataset, i.e., ImageNet, for evalua-

tion. Similar to [22], a subset from ImageNet with 634 dif-

ferent objects which are not present in the MSCOCO dataset

is adopted in our experiments. In particular, about 75% of

images in each class are exploited for training and the rest

are utilized for testing, resulting in the training and testing

set with 493,519 and 164,820 images, respectively. For the

experiments on ImageNet, we train the object classifiers for
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copying mechanism purely on the ImageNet training set and

pre-train the LSTM part with all the sentences in MSCOCO

training set. In terms of the entire CNN plus RNN system, it

is optimized with the paired image-sentence data in MSCO-

CO training set. Since none of the objects in this subset of

ImageNet is addressed in the paired image-sentence data,

we generate sentences for images in the testing set of Ima-

geNet and empirically evaluate the ability of our LSTM-C

model to describe the 634 novel objects.

4.2. Experimental Settings

Features and Parameter Settings. For image represen-

tations, we take the output of 4,096-way fc7 layer from 16-

layer VGG [20] pre-trained on Imagenet ILSVRC12 dataset

[19]. Each word in the sentence is represented as the com-

bined vector of embedded one-hot representation and Glove

[18] representation. For the paired image-sentence data

(e.g., MSCOCO), we select the 1,000 most common word-

s on MSCOCO as the objects and train the corresponding

object classifiers with MIL model [5] purely on the train-

ing data of MSCOCO. The MIL model is mainly designed

based on a Fully Convolutional Network (FCN) extended

from 16-layer VGG. For the unpaired object recognition

data (e.g., ImageNet), 634 object classifiers are trained by

directly fine-tuning the 16-layer VGG pre-trained on Im-

agenet ILSVRC12 dataset. The dimensionality of the in-

put and hidden layers in LSTM are both set to 1,024. The

tradeoff parameter λ leveraging both generative and copy-

ing mechanisms is empirically set to 0.2. The sensitivity of

λ will be discussed later.

Implementation Details. We mainly implement our im-

age captioning models based on Caffe [9], which is one of

widely adopted deep learning frameworks. In particular, the

initial learning rate and mini-batch size is set as 0.01 and

1,024, respectively. The entire CNN plus RNN system in

our LSTM-C is trained for 50 epoches on both datasets or

we stop the training until the performance has no longer im-

provement on the corresponding validation set.

Evaluation Metrics. For quantitative evaluation of our

proposed model on held-out MSCOCO, we adopt the most

common caption metric, i.e., METEOR [2], to evaluate de-

scription quality which computes unigram precision and

recall against all ground truth sentences with some pre-

processing on WordNet synonyms and stemmed tokens.

However, as pointed in [8], it is still possible to achieve

high METEOR scores without mentioning the novel object-

s. Hence, to fully validate the model’s ability of describ-

ing novel objects, F1-score is exploited as another evalu-

ation metric, which determines whether the specific nov-

el object is mentioned in the generated descriptions for the

images containing that novel object. All the metrics above

are computed by using the codes1 released by [8] for fair

comparison. To evaluate our model on ImageNet without

any ground truth sentences, we utilize another two metrics

for novel object captioning task: describing novel objects

(Novel) [22] and Accuracy [22] scores. The Novel score

measures the percentage of all the 634 novel objects men-

tioned in generated descriptions, i.e., for each novel object,

the model should incorporate it into at least one sentence

for the ImageNet image with this object. For the Accura-

cy score of each novel object, it represents the percentage

of images belonging to this novel object which can be de-

scribed correctly by addressing that novel object in the sen-

tences. The Accuracy score is finally averaged over all the

634 novel objects.

4.3. Compared Approaches

To empirically verify the merit of our LSTM-C mod-

el, we compared the following state-of-the-art methods, in-

cluding both regular image captioning and novel object cap-

tioning approaches.

• Long-term Recurrent Convolutional Networks (LRC-

N) [4]: LRCN is one of the basic RNN-based image

captioning models which inputs both visual image and

previous word into LSTM at each time step for sen-

tence generation. As a regular image captioning model

without any mechanism for considering novel object-

s, LRCN is trained only on the paired image-sentence

data without any novel objects.

• Deep Compositional Captioner (DCC) [8]: DCC first-

ly pre-trains lexical classifier and language model with

external unpaired data, and then integrates both two

parts to learn an improved caption model trained with

paired image-sentence data. Finally, DCC explicitly

transfers the knowledge of semantically related objects

to compose the descriptions with novel objects.

• Novel Object Captioner (NOC) [22]: Proposed most

recently, NOC extends DCC by jointly optimizing the

three parts: visual recognition network, LSTM-based

language model, and image captioning network in an

end-to-end manner. Please note that for fair compar-

ison with LRCN and DCC which utilize one hot vec-

tor as their word representations, we include two runs,

i.e., NOC (One hot) and NOC (One hot+Glove) which

are our implementations of NOC. The word represen-

tations in the latter one are the combination of the em-

bedded one hot vector and Glove vector.

• Long Short-Term Memory with Copying Mechanism

(LSTM-C): We design two runs, i.e., LSTM-C (One-

hot) and LSTM-C (One hot+Glove), for our proposed

end-to-end architecture for novel object captioning.

1https://github.com/LisaAnne/DCC
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Table 1. Per-object F1, averaged F1 and METEOR scores of our proposed model and other state-of-the-art methods on held-out MSCOCO

dataset for novel object captioning. All values are reported as percentage (%).

Model F1bottle F1bus F1couch F1microwave F1pizza F1racket F1suitcase F1zebra F1average METEOR

LRCN [4] 0 0 0 0 0 0 0 0 0 19.33

DCC [8] 4.63 29.79 45.87 28.09 64.59 52.24 13.16 79.88 39.78 21

NOC [22]

-(One hot) 16.52 68.63 42.57 32.16 67.07 61.22 31.18 88.39 50.97 20.7

-(One hot+Glove) 14.93 68.96 43.82 37.89 66.53 65.87 28.13 88.66 51.85 20.7

LSTM-C
-(One hot) 29.07 64.38 26.01 26.04 75.57 66.54 55.54 92.03 54.40 22

-(One hot+Glove) 29.68 74.42 38.77 27.81 68.17 70.27 44.76 91.4 55.66 23

4.4. Performance Comparison

We first conduct the experiment on held-out MSCOCO

to examine how our LSTM-C model work on describing the

eight novel objects. Then, to further verify the scalability of

our proposed model, the second experiment is performed on

ImageNet to describe hundreds of novel objects that outside

of the paired image-sentence data.

Evaluation on held-out MSCOCO. Table 1 shows the

performances of compared six models on held-out MSCO-

CO dataset. Overall, the results across two general evalu-

ation metrics (averaged F1 and METEOR scores) consis-

tently indicate that our proposed LSTM-C exhibits better

performance than all the state-of-the-art techniques includ-

ing regular image captioning model (LRCN) and two novel

object captioning systems (DCC and NOC). In particular,

by additionally utilizing external unpaired data for train-

ing, all the latter five novel object captioning models out-

perform the regular image captioning model LRCN on both

description quality and novelty. There is a significant per-

formance gap between DCC and LSTM-C (One hot). Al-

though both runs involve the utilization of external image

data, they are fundamentally different in the way that D-

CC leverages explicit transfer mechanism for recognizing

novel objects and cannot be trained end-to-end, and LSTM-

C (One hot) implicitly addresses the novel objects for sen-

tence generation with copying mechanism in an end-to-end

manner. Moreover, by incorporating copying mechanism to

standard word-by-word sentence generation model, LSTM-

C (One hot) leads to a performance boost against NOC (One

hot), indicating that the generative mechanism and copying

mechanism are complementary and thus have mutual rein-

forcement for novel object captioning. Another observa-

tion is that when combining the word representations from

embedded one hot vector and Glove vector, LSTM-C (One

hot+Glove) further increases the performance.

Table 1 also details the F1 scores for all the eight novel

objects. Among all the novel objects, our proposed LSTM-

C achieves the best performance for describing six novel

objects, followed by DCC and NOC for one object, respec-

tively. The improvements can be generally expected by

additionally incorporating copying mechanism in sequence

Table 2. Novel, F1 and Accuracy scores of our proposed model and

other state-of-the-art methods on ImageNet dataset. All values are

reported as percentage (%).

Model Novel F1 Accuracy

NOC (One hot+Glove) [22]

-MSCOCO 69.08 15.63 10.04

-BNC&Wiki 87.69 31.23 21.96

LSTM-C (One hot+Glove)

-MSCOCO 72.08 16.39 11.83

-BNC&Wiki 89.11 33.64 31.11

learning except “couch” and “microwave” objects. This is

not surprise because such novel objects always have high

visual similarity with other objects (e.g., “bed” for “couch”

and “oven” for “microwave”) and thus are not easy to be de-

tected precisely, making LSTM-C fail to copy them to the

output sentences.

Evaluation on ImageNet. Table 2 summarizes the ex-

perimental results on ImageNet dataset. By only adopting

the MSCOCO as the training data for the CNN plus RNN

system, our LSTM-C (One hot+Glove) makes the relative

improvement over NOC (One hot+Glove) by 4.3%, 4.9%

and 17.8% in Novel, F1 and Accuracy, respectively. The

results basically indicate the advantage of exploiting both

generative and copying mechanisms in the CNN plus RNN

system for novel object captioning, even when scaling into

ImageNet images with hundreds of novel objects. More-

over, following [22], we also include the external unpaired

text data (i.e., British National Corpus and Wikipedia) in

our LSTM-C (One hot+Glove) and performance improve-

ments are further observed.

Qualitative analysis. Figure 3 and Figure 5 shows a few

sentence examples generated by different methods, the de-

tected objects and human-annotated ground truth on held-

out MSCOCO and ImageNet dataset, respectively. From

these exemplar results, it is easy to see that all of these cap-

tioning models can generate somewhat relevant sentences

on both datasets, while our proposed LSTM-C can predict

the novel objects by incorporating copying mechanism for

image captioning. For example, compared to object term

“hydrant” in the sentence generated by LRCN, “bus” in our

LSTM-C is more precise to describe the image content in
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Figure 3. Objects and sentence generation results on held-out M-

SCOCO. The detected objects are predicted by MIL model in [5],

and the output sentences are generated by 1) Ground Truth (GT):

one ground truth sentence, 2) LRCN and 3) our LSTM-C.
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Figure 4. The effect of the tradeoff parameter λ in our LSTM-C

(One hot+Glove) framework on held-out MSCOCO.

the first image on held-out MSCOCO dataset, since the nov-

el object “bus” is among the top object candidates and di-

rectly copied to the output sentence at the decoding stage.

4.5. Analysis of the Tradeoff Parameter λ

To clarify the effect of the tradeoff parameter λ in Eq.(8),

we illustrate the performance curves with different tradeoff

parameters in Figure 4. As shown in the figure, we can see

that the performance curves of F1 and METEOR scores are

both relatively smooth when λ varies in a range from 0 to

Figure 5. Objects and sentence generation results on ImageNet.

GT denotes the ground truth object. The detected objects are pre-

dicted by the standard CNN architecture [20], and the output sen-

tences are generated by 1) LRCN and 2) our LSTM-C.

0.6. Specifically, the best performance is achieved when

λ is about 0.2. Furthermore, when the λ increases more

than 0.6, the F1 score begins to drop significantly, again

demonstrating the importance of copying mechanism in our

LSTM-C for describing novel objects.

5. Discussions and Conclusions
We have presented Long Short-Term Memory with

Copying Mechanism (LSTM-C) framework which lever-

ages external visual recognition for image captioning. Par-

ticulary, we study the problem of predicting novel objects in

image caption by integrating the detected objects with copy-

ing mechanism. To verify our claim, we have devised an

end-to-end architecture to accommodate the standard word-

by-word sentence generation by LSTM and the mechanism

of copying from detected objects. Experiments conducted

on MSCOCO image captioning and ImageNet datasets vali-

date our proposal and analysis. Performance improvements

are clearly observed when comparing to other novel object

captioning techniques.

Our future works are as follows. First, more objects will

be learnt on large-scale image benchmarks, e.g., YFCC-

100M dataset, and integrated into our LSTM-C architecture.

We will further analyze the impact of different sources in-

volved. Second, how to apply our proposal to video domain

is worth trying.
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