
ProtoNN: Compressed and Accurate kNN for Resource-scarce Devices

Chirag Gupta 1 Arun Sai Suggala 1 2 Ankit Gupta 1 3 Harsha Vardhan Simhadri 1

Bhargavi Paranjape 1 Ashish Kumar 1 Saurabh Goyal 4 Raghavendra Udupa 1 Manik Varma 1

Prateek Jain 1

Abstract
Several real-world applications require real-time
prediction on resource-scarce devices such as an
Internet of Things (IoT) sensor. Such applica-
tions demand prediction models with small stor-
age and computational complexity that do not
compromise significantly on accuracy. In this
work, we propose ProtoNN, a novel algorithm
that addresses the problem of real-time and accu-
rate prediction on resource-scarce devices. Pro-
toNN is inspired by k-Nearest Neighbor (KNN)
but has several orders lower storage and predic-
tion complexity. ProtoNN models can be de-
ployed even on devices with puny storage and
computational power (e.g. an Arduino UNO
with 2kB RAM) to get excellent prediction accu-
racy. ProtoNN derives its strength from three key
ideas: a) learning a small number of prototypes
to represent the entire training set, b) sparse low
dimensional projection of data, c) joint discrim-
inative learning of the projection and prototypes
with explicit model size constraint. We conduct
systematic empirical evaluation of ProtoNN on
a variety of supervised learning tasks (binary,
multi-class, multi-label classification) and show
that it gives nearly state-of-the-art prediction ac-
curacy on resource-scarce devices while consum-
ing several orders lower storage, and using mini-
mal working memory.

1. Introduction
Real-time and accurate prediction on resource-constrained
devices is critical for several Machine Learning (ML) do-

1Microsoft Research, India 2Carnegie Mellon Uni-
versity, Pittsburgh 3University of Michigan, Ann Arbor
4IIT Delhi, India. Correspondence to: Arun Sai Sug-
gala <asuggala@andrew.cmu.edu>, Prateek Jain <pra-
jain@microsoft.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

mains. Internet-of-things (IoT) is one such rapidly grow-
ing domain. IoT devices have the potential to provide real-
time, local, sensor-based solutions for a variety of areas
like housing, factories, farming, even everyday utilities like
toothbrushes and spoons. The ability to use machine learn-
ing on data collected from IoT sensors opens up a myriad
of possibilities. For example, smart factories measure tem-
perature, noise and various other parameters of their ma-
chines. ML based anomaly detection models can then be
applied on this sensor data to preemptively schedule main-
tenance of a machine and avoid failure.

The question is: how effectively can we do ML on IoT de-
vices? Solutions so far have been limited to cloud-based
ML where large deep learning models are deployed to pro-
vide accurate predictions. The sensors/embedded devices
have limited compute/storage abilities and are tasked only
with sensing and transmitting data to the cloud. Such a so-
lution does not take into account several practical concerns
like privacy, bandwidth, latency and battery issues. For ex-
ample, consider the energy costs of communication if each
IoT device on each machine in a smart factory has to con-
tinuously send data and receive predictions from the cloud.

Consider a typical IoT devices that has ≤ 32kB RAM and
a 16MHz processor. Most existing ML models cannot be
deployed on such tiny devices. Recently, several methods
(Han et al., 2016; Nan et al., 2015; Kusner et al., 2014) have
been proposed to produce models that are compressed com-
pared to large DNN/kernel-SVM/decision-tree based clas-
sifiers. However, none of these methods work well at the
scale of IoT devices. Moreover, they do not offer natural
extensions to supervised learning problems other than the
ones they were initially designed for.

In this paper, we propose a novel kNN based algorithm
(ProtoNN) that can be deployed on the tiniest of devices,
can handle general supervised learning problems, and can
produce state-of-the-art accuracies with just ≈16kB of
model size on many benchmark datasets. A key reason for
selecting kNN as the algorithm of choice is due to its gen-
erality, ease of implementation on tiny devices, and small
number of parameters to avoid overfitting. However, kNN
suffers from three issues which limit its applicability in

ProtoNN: kNN for Resource-scarce Devices

practice, especially in the small devices setting: a) Poor
accuracy: kNN is an ill-specified algorithm as it is not a
priori clear which distance metric one should use to com-
pare a given set of points. Standard metrics like Euclidean
distance, `1 distance etc. are not task-specific and lead to
poor accuracies. b) Model size: kNN requires the entire
training data for prediction, so its model size is too large
for the IoT setting. c) Prediction time: kNN requires com-
puting the distance of a given test point w.r.t. each training
point, making it prohibitive for prediction in real-time.

Several methods have been proposed to address some of
these concerns. For example, metric learning (Weinberger
& Saul, 2009) learns a task-specific metric that provides
better accuracies but ends up increasing model-size and
prediction time. KD-trees (Bentley, 1975) can decrease the
prediction time, but they increase the model size and lead
to loss in accuracy. Finally, recent methods like Stochastic
Neighborhood Compression (SNC) (Kusner et al., 2014)
can decrease model size and prediction time by learning a
small number of prototypes to represent the entire training
dataset. However, as our experiments show, their predic-
tions are relatively inaccurate, especially in the tiny model-
size regime. Moreover, their formulations limit applicabil-
ity to binary and multi-class classification problems (see
Section 2 for a detailed comparison to SNC).

In contrast, ProtoNN is able to address the above-
mentioned concerns by using three key ideas:

a) Sparse low-d projection: we project the entire data
in low-d using a sparse projection matrix that is jointly
learned to provide good accuracy in the projected space.

b) Prototypes: we learn prototypes to represent the entire
training dataset. Moreover, we learn labels for each pro-
totype to further boost accuracy. This provides additional
flexibility, and allows us to seamlessly generalize ProtoNN
for multi-label or ranking problems.

c) Joint optimization: we learn the projection matrix jointly
with the prototypes and their labels. Explicit sparsity con-
straints are imposed on our parameters during the optimiza-
tion itself so that we can obtain an optimal model within the
given model size de-facto, instead of post-facto pruning to
force the model to fit in memory.

Unfortunately, our optimization problem is non-convex
with hard `0 constraints. Yet, we show that simple stochas-
tic gradient descent (SGD) with iterative hard-thresholding
(IHT) works well for optimization. ProtoNN can be im-
plemented efficiently, can handle datasets with millions of
points, and obtains state-of-the-art accuracies.

We analyze ProtoNN in a simple binary classification set-
ting where the data is sampled from a mixture of two well-
separated Gaussians, each Gaussian representing one class.

We show that if we fix the projection matrix and proto-
type labels, the prototypes themselves can be learned op-
timally in polynomial time with at least a constant proba-
bility. Moreover, assuming a strong initialization condition
we observe that our SGD+IHT method when supplied a
small number of samples, proportional to the sparsity of
means, converges to the global optima. Although the data
model is simple, it nicely captures the main idea behind our
problem formulation. Further, our analysis is the first such
analysis for any method in this regime that tries to learn a
compressed non-linear model for binary classification.

Finally, we conduct extensive experiments to benchmark
ProtoNN against existing state-of-the-art methods for var-
ious learning tasks. First, we show that on several bi-
nary (multi-class) problems, ProtoNN with a 2kB (16kB)
memory budget significantly outperforms all the existing
methods in this regime. Moreover, in the binary classi-
fication case, we show that ProtoNN with just ≈ 16kB
of model-size, provides nearly the same accuracy as most
popular methods like GBDT, RBF-SVM, 1-hidden layer
NN, etc, which might require up to 1GB of RAM on the
same datasets. Similarly, on multilabel datasets, ProtoNN
can give 100× compression with ≤ 1% loss in accuracy.
Finally, we demonstrate that ProtoNN can be deployed on
a tiny Arduino Uno device1 and leads to better accuracies
than existing methods while incurring significantly lesser
energy and prediction time costs. We have implemented
ProtoNN as part of an open source embedded device ML
library and it can be downloaded online2.

2. Related Works
kNN is a popular ML algorithm owing to its simplicity,
generality, and interpretability (Cover & Hart, 2006). In
particular, kNN can learn complex decision boundaries and
has only one hyperparameter k. However, vanilla kNN suf-
fers from several issues as mentioned in the previous sec-
tion. A number of methods, which try to address these is-
sues, exist in the literature. Broadly, these methods can be
divided into three sub-categories.

Several existing methods reduce prediction time of kNN
using fast nearest neighbor retrieval. For example Bent-
ley (1975); Beygelzimer et al. (2006) use tree data struc-
tures and Gionis et al. (1999); Weiss et al. (2008); Kulis
& Darrell (2009); Norouzi et al. (2012); Liu et al. (2012)
learn binary embeddings for fast nearest neighbor opera-
tions. These methods, although helpful in reducing the pre-
diction time, lead to loss in accuracy and require the entire
training data to be in memory leading to large model sizes
that cannot be deployed on tiny IoT devices.

1https://www.arduino.cc/en/Main/ArduinoBoardUno
2https://github.com/Microsoft/ELL

ProtoNN: kNN for Resource-scarce Devices

Another class of methods improve accuracy of kNN by
learning a better metric to compare, given a pair of points
(Goldberger et al., 2004; Davis et al., 2007). For example,
(Weinberger & Saul, 2009) proposed a Large Margin Near-
est Neighbor (LMNN) classifier which transforms the input
space such that in the transformed space points from same
class are closer compared to points from disparate classes.
LMNN’s transformation matrix can map data into lower di-
mensions and reduce overall model size compared to kNN,
but it is still too large for most resource-scarce devices.

Finally, another class of methods constructs a set of pro-
totypes to represent the entire training data. In some ap-
proaches (Angiulli, 2005; Devi & Murty, 2002), the pro-
totypes are chosen from the original training data, while
some other approaches (Mollineda et al., 2002) construct
artificial points for prototypes. Of these approaches, SNC,
Deep SNC (DSNC) (Wang et al., 2016), Binary Neighbor
Compression (BNC) (Zhong et al., 2017) are the current
state-of-the-art.

SNC learns artificial prototypes such that the likelihood of
a particular class probability model is maximized. Thus,
SNC applies only to multi-class problems and its extension
to multilabel/ranking problems is non-trivial. In contrast,
we have a more direct discriminative formulation that can
be applied to arbitrary supervised learning problems. To
decrease the model size, SNC introduces a pre-processing
step of low-d projection of the data via LMNN based pro-
jection matrix and then learns prototypes in the projected
space. The SNC parameters (projection matrix, prototypes)
might have to be hard-thresholded post-facto to fit within
the memory budget. In contrast, ProtoNN’s parameters
are de-facto learnt jointly with model size constraints im-
posed during optimization. This leads to significant im-
provements over SNC and other state-of-the-art methods in
the small model-size regime; see Figure 1, 3.

DSNC is a non-linear extension of SNC in that it learns
a non-linear low-d transformation jointly with the proto-
types. It has similar drawbacks as SNC: a) it only applies
to multi-class problems and b) model size of DSNC can
be significantly larger than SNC as it uses a feedforward
network to learn the non-linear transformation.

BNC is a binary embedding technique, which jointly learns
a binary embedding and a set of artificial binary prototypes.
Although BNC learns binary embeddings, its dimensional-
ity can be significantly higher, so it need not result in sig-
nificant model compression. Moreover, the optimization in
BNC is difficult because of the discrete optimization space.

3. Problem Formulation
Given n data points X = [x1,x2, . . .xn]T and the corre-
sponding target output Y = [y1,y2 . . .yn]T , where xi ∈

Rd, yi ∈ Y , our goal is to learn a model that accurately pre-
dicts the desired output of a given test point. In addition,
we also want our model to have small size. For both multi-
label/multi-class problems with L labels, yi ∈ {0, 1}L but
in multi-class ‖yi‖ = 1. Similarly, for ranking problems,
the output yi is a permutation.

Let’s consider a smooth version of kNN prediction function
for the above given general supervised learning problem

ŷ = ρ(ŝ) = ρ

(
n∑
i=1

σ(yi)K(x,xi)

)
, (1)

where ŷ is the predicted output for a given input x, ŝ =∑n
i=1 σ(yi)K(x,xi) is the score vector for x. σ : Y →

RL maps a given output into a score vector and ρ : RL →
Y maps the score function back to the output space. For
example, in the multi-class classification, σ is the identity
function while ρ = Top1, where [Top1(s)]j = 1 if sj is
the largest element and 0 otherwise. K : Rd × Rd → R
is the similarity function, i.e., K(xi,xj) computes similar-
ity between xi and xj . For example, standard kNN uses
K(x,xi) = I[xi ∈ Nk(x)] where Nk(x) is the set of k
nearest neighbors of x in X .

Note that kNN requires entire X to be stored in mem-
ory for prediction, so its model size and prediction time
are prohibitive for resource constrained devices. So, to
bring down model and prediction complexity of kNN, we
propose using prototypes that represent the entire train-
ing data. That is, we learn prototypes B = [b1, . . . ,bm]
and the corresponding score vectors Z = [z1, . . . , zm] ∈
RL×m, so that the decision function is given by: ŷ =

ρ
(∑m

j=1 zjK(x,bj)
)

.

Existing prototype based approaches like SNC, DSNC have
a specific probabilistic model for multi-class problems with
the prototypes as the model parameters. In contrast, we
take a more direct discriminative learning approach that al-
lows us to obtain better accuracies in several settings along
with generalization to any supervised learning problem,
e.g., multi-label classification, regression, ranking, etc.

However, K is a fixed similarity function like RBF kernel
which is not tuned for the task at hand and can lead to in-
accurate results. We propose to solve this issue by learning
a low-dimensional matrix W ∈ Rd̂×d that further brings
down model/prediction complexity as well as transforms
data into a space where prediction is more accurate.That is,
our proposed algorithm ProtoNN uses the following predic-
tion function that is based on three sets of learned param-
eters W ∈ Rd̂×d, B = [b1, . . . ,bm] ∈ Rd̂×m, and Z =

[z1, . . . , zm] ∈ RL×m: ŷ = ρ
(∑m

j=1 zjK(Wx,bj)
)

.

To further reduce the model/prediction complexity, we
learn sparse set of Z,B,W . Selecting the correct simi-

ProtoNN: kNN for Resource-scarce Devices

larity function K is crucial to the performance of the algo-
rithm. In this work we choose K to be the Gaussian ker-
nel: Kγ(x, y) = exp{−γ2‖x − y‖22}, which is a popular
choice in many non-parametric methods (including regres-
sion, classification, density estimation).

Note that if m = n, and W = Id×d, then our prediction
function reduces to the standard RBF kernel-SVM’s deci-
sion function for binary classification. That is, our func-
tion class is universal: we can learn any arbitrary function
given enough data and model complexity. We observe a
similar trend in our experiments, where even with reason-
ably small amount of model complexity, ProotNN nearly
matches RBF-SVM’s prediction error.

Training Objective: We now provide the formal optimiza-
tion problem to learn parameters Z,B,W . Let L(ŝ,y) be
the loss (or) risk of predicting score vector ŝ for a point
with label vector y. For example, the loss function can be
standard hinge-loss for binary classification, or NDCG loss
function for ranking problems.

Now, define the empirical risk associated with Z,B,W as

Remp(Z,B,W) =
1

n

n∑
i=1

L

yi,

m∑
j=1

zjKγ(bj ,Wxi)

 .

In the sequel, to simplify the notation, we denote the risk
at ith data point by Li(Z,B,W) i.e., Li(Z,B,W) =

L
(
yi,
∑m
j=1 zjKγ(bj ,Wxi)

)
. To jointly learn Z,B,W ,

we minimize the empirical risk with explicit sparsity con-
straints:

min
Z:‖Z‖0≤sZ ,B:‖B‖0≤sB ,W :‖W‖0≤sW

Remp(Z,B,W), (2)

where ‖Z‖0 is equal to the number of non-zero entries in
Z. For all our expeirments (multi-class/multi-label), we
used the squared `2 loss function as it helps us write down
the gradients easily and allows our algorithm to converge
faster and in a robust manner. That is, Remp(Z,B,W) =
1
n

∑n
i=1 ‖yi −

∑m
j=1 zjKγ(bj ,Wxi)‖22. Note that the

sparsity constraints in the above objective gives us explicit
control over the model size. Furthermore, as we show in
our experiments, jointly optimizing all the three parame-
ters, Z,B,W , leads to better accuracies than optimizing
only a subset of parameters.

4. Algorithm
We now present our algorithm for optimization of (2). Note
that the objective in (2) is non-convex and is difficult to
optimize. However, we present a simple alternating mini-
mization technique for its optimization. In this technique,
we alternately minimizeZ,B,W while fixing the other two
parameters. Note that the resulting optimization problem

Algorithm 1 ProtoNN: Train Algorithm
Input: data (X,Y), sparsities (sZ , sB , sW), kernel pa-
rameter γ, projection dimension d̂, no. of prototypes m,
iterations T , SGD epochs e.
Initialize Z,B,W
for t = 1 to T do {alternating minimization}

repeat {minimization of Z}
randomly sample S ⊆ [1, . . . n]
Z ← HTsZ

(
Z − ηr

∑
i∈S ∇ZLi(Z,B,W)

)
until e epochs
repeat {minimization of B}

randomly sample S ⊆ [1, . . . n]
B ← HTsB

(
B − ηr

∑
i∈S ∇BLi(Z,B,W)

)
until e epochs
repeat {minimization of W}

randomly sample S ⊆ [1, . . . n]
W ← HTsW

(
W − ηr

∑
i∈S ∇WLi(Z,B,W)

)
until e epochs

end for
Output: Z,B,W

in each of the alternating steps is still non-convex. To opti-
mize these sub-problems we use projected Stochastic Gra-
dient Descent (SGD) for large datasets and projected Gra-
dient Descent (GD) for small datasets.

Suppose we want to minimize the objective w.r.t Z by
fixing B,W . Then in each iteration of SGD we ran-
domly sample a mini-batch S ⊆ [1, . . . n] and update Z
as: Z ← HTsZ

(
Z − η

∑
i∈S ∇ZLi(Z,B,W)

)
, where

HTsZ (A) is the hard thresholding operator that thresholds
the smallest L ×m − sZ entries (in magnitude) of A and
∇ZLi(Z,B,W) denotes the partial derivative of Li w.r.t
Z. Note that GD procedure is just SGD with batch size
|S| = n. Algorithm 1 presents pseudo-code for our entire
training procedure.

Step-size: Setting correct step-size is critical to conver-
gence of SGD methods, especially for non-convex opti-
mization problems. For our algorithm, we select the ini-
tial step size using Armijo rule. Subsequent step sizes are
selected as ηt = η0/t where η0 is the initial step-size.

Initialization: Since our objective function (2) is non-
convex, good initialization for Z,B,W is critical in con-
verging efficiently to a good local optima. We used a
randomly sampled Gaussian matrix to initialize W for bi-
nary and small multi-class benchmarks. However, for large
multi class datasets (aloi) we use LMNN based initializa-
tion of W. Similarly, for multi-label datasets we use SLEEC
(Bhatia et al., 2015) for initialization of W ; SLEEC is an
embedding technique for large multi-label problems.

For initialization of prototypes, we experimented with two
different approaches. In one, we randomly sample training

ProtoNN: kNN for Resource-scarce Devices

data points in the transformed space and assign them as the
prototypes; this is a useful technique for multilabel prob-
lems. In the other approach, we run k-means clustering
in the transformed space on data points belonging to each
class and pick the cluster centers as our prototypes. We use
this approach for binary and multi-class problems.

Convergence: Although Algorithm 1 optimizes an `0 con-
strained optimization problem, we can still show that it
converges to a local minimum due to smoothness of objec-
tive function (Blumensath & Davies, 2008). Moreover, if
the objective function satisfies strong convexity in a small
ball around optima, then appropriate initialization leads to
convergence to that optima (Jain et al., 2014). In fact, our
next section presents such a strong convexity result (wrtB)
if the data is generated from a mixture of well-separated
Gaussians. Finally, our empirical results (Section 6) indi-
cate that the objective function indeed converges at a fast
rate to a good local optimum leading to accurate models.

5. Analysis
In this section, we present an analysis of our approach
for when data is generated from the following generative
model: let each point xi be sampled from a mixture of two
Gaussians, i.e., xi

i.i.d∼ 0.5·N (µ+, I)+0.5·N (µ−, I) ∈ Rd
and the corresponding label yi be the indicator of the Gaus-
sian from which xi is sampled. Now, it is easy to see that
if the Gaussians are well-separated then one can design 2
prototypes b+

∗, b−
∗ such that the error of our method with

W = I and fixed Z = [e1, e2] will lead to nearly Bayes’
optimal classifier; ei is the i-th canonical basis vector.

The goal of this section is to show that our method that
optimizes the squared `2 loss objective (2) w.r.t. prototypes
B, converges at a linear rate to a solution that is in a small
ball around the global optima, and hence leads to nearly
optimal classification accuracy.

We would like to stress that the goal of our analysis is to
justify our proposed approach in a simple and easy to study
setting. We do not claim new bounds for the mixture of
Gaussians problem; it is a well-studied problem with sev-
eral solid solutions. Our goal is to show that our method
in this simple setting indeed converges to a nearly optimal
solution at linear rate, thus providing some intuition for its
success in practice. Also, our current analysis only studies
optimization w.r.t. the prototypes B while fixing projec-
tion matrix W and prototype label vectors Z. Studying the
problem w.r.t. all the three parameters is significantly more
challenging, and is beyond the scope of this paper.

Despite the simplicity of our model, ours is one of the first
rigorous studies of a classification method that is designed
for resource constrained problems. Typically, the proposed
methods in this regime are only validated using empirical

results as theoretical study is quite challenging owing to the
obtained non-convex optimization surface and complicated
modeling assumptions.

For our first result, we ignore sparsity ofB, i.e., sB = 2 ·d.
We consider the RBF-kernel for K with γ2 = 1

2 .
Theorem 1. Let X = [x1, . . . ,xn] and Y = [y1, . . . ,yn]
be generated from the above mentioned generative model.
SetW = I , Z = [e1, e2] and let b+,b− be the prototypes.
Let n → ∞, µ̄ := µ+ − µ−. Also, let ∆+ := b+ − µ+,
∆− := b+ − µ−, and let ∆+

T µ̄ ≥ − (1−δ)
2 ‖µ̄‖2 for some

fixed constant δ > 0, and d ≥ 8(α − δ)‖µ̄‖2 for some
constant α > 0. Then, the following holds for the gradient
descent step b+

′ = b+ − η∇b+R where R = E[Remp],
and η ≥ 0 is appropriately chosen:

‖b+
′−µ+‖2 ≤ ‖b+−µ+‖2

(
1− 0.01 exp

{
−α‖µ̄‖

2

4

})
,

if ‖∆+‖ ≥ 8‖µ̄‖ exp
{
−α‖µ̄‖

2

4

}
.

See Appendix 8 for a detailed proof of this as well as the
below given theorem. The above theorem shows that if the
Gaussians are well-separated and the starting b+ is closer
to µ+ than µ−, then the gradient descent step decreases the
distance between b+ and µ+ geometrically until b+ con-
verges to a small ball around µ+, the radius of the ball is
exponentially small in ‖µ+−µ−‖. Note that our initializa-
tion method indeed satisfies the above mentioned assump-
tion with at least a constant probability.

It is easy to see that in this setting, the loss function decom-
poses over independent terms from b+ and b−, and hence
an identical result can be obtained for b−. For simplicity,
we present the result for n → ∞ (hence, expected value).
Extension to finite samples should be fairly straightforward
using standard tail bounds. The tail bounds will also lead to
a similar result for SGD but with an added variance term.

Next, we show that if the b+ is even closer to µ+, then the
objective function becomes strongly convex in b+,b−.
Theorem 2. Let X,Y, µ̄,∆+,∆− be as given in Theo-
rem 1. Also, let ∆+

T µ̄ ≥ − (1−δ)
2 ‖µ̄‖2, for some small

constant δ > 0, ‖µ̄‖2 ≥ 4
(ln 0.1)δ , and ‖∆+‖2 ≤ 0.5. Then,

R with W = I and Z = [e1, e2] is a strongly convex func-
tion of B with condition number bounded by 20.

Note that the initialization assumptions are much more
strict here, but strong convexity with bounded condition
number provides significantly faster convergence to op-
tima. Moreover, this theorem also justifies our IHT based
method. Using standard tail bounds, it is easy to show
that if n grows linearly with sB rather than d, the condi-
tion number bound still holds over sparse set of vectors,
i.e., for sparse µ+, µ− and sparse b+,b−. Using this re-
stricted strong convexity with (Jain et al., 2014) guarantees

ProtoNN: kNN for Resource-scarce Devices

Figure 1. Model size (kB, X-axis) vs Accuracy (%, Y-axis): com-
parison of ProtoNN against existing compression algorithms on
various datasets. The left two columns show the plots for binary
datasets and the right most column shows the plots for multiclass
datasets. For small model size, ProtoNN is significantly more ac-
curate than baselines.

that with just O(sB log d) samples, our method will con-
verge to a small ball around sparse µ+ in polynomial time.
We skip these standard details as they are orthogonal to the
main point of this analysis section.

6. Experiments
In this section we present the performance of ProtoNN
on various benchmark binary, multiclass and multilabel
datasets with a goal to demonstrate the following aspects:

a) In severely resource constrained settings where we re-
quire model sizes to be less than 2kB (which occur rou-
tinely for IoT devices like Arduino Uno), we outperform
all state-of-the art compressed methods.
b) For model sizes in the range 16 − 32 kB, we achieve
comparable accuracies to the best uncompressed methods.
c) In multiclass and multilabel problems we achieve near
state-of-the-art accuracies with an order of magnitude re-
duction in model size, thus showing our approach is flexible
and general enough to handle a wide variety of problems.

Experimental Settings: Datasets: Table 3 in Ap-
pendix 9.1 lists the binary, multiclass and multilabel
datasets used in our experiments. For binary and multi-
class datasets, we standardize each feature in the data to
zero-mean and unit-variance. For multilabel datasets, we
normalize the feature vector of each data point by project-
ing it onto a unit norm ball which preserves data sparsity.
Hyperparameters: In all our experiments, we fix the no.
of alternating minimization iterations(T) to 150. Each such
iteration does e-many epochs each over the 3 parameters,
W , B, and Z. For small binary and multiclass datasets we
do GD with e set to 20. For multilabel and large multi-
class (aloi) datasets, we do SGD with e set to 5, batch size
to 512. Kernel parameter γ is computed after initializing
B,W as 2.5

median(D) , where D is the set of distances between
prototypes and training points in the transformed space and

is defined as D = {‖bj −Wxi‖2}i∈[n],j∈[m].

ProtoNN vs. Uncompressed Baselines: In this experi-
ment we compare the performance of ProtoNN with un-
compressed baselines and demonstrate that even with com-
pression, ProtoNN achieves near state-of-the-art accura-
cies. We restrict the model size of ProtoNN to 16kB for
binary datasets and to 64kB for multiclass datasets and
don’t place any constraints on the model sizes of baselines.
We compare ProtoNN with: GBDT, RBF-SVM, 1-Hidden
Layer Neural Network (1-hidden NN), kNN, BNC and
SNC. For baselines the optimal hyper-parameters are se-
lected through cross-validation. For SNC, BNC we set pro-
jection dimensions to 100, 1280 respectively and compres-
sion ratios to 16%, 1%. For ProtoNN, hyper-parameters
are set based on the following heuristics which ensure that
the model size constraints are satisfied: Binary: d̂ = 10,
sZ = sB = 0.8. m = 40 if sW = 1.0 gives model larger
than 16kB. Else, sW = 1.0 and m is increased to reach
16 kB model. Multiclass: d̂ = 15, sZ = sB = 0.8.
m = 5/class if sW = 1.0 gives model larger than 64kb.
Else, m is increased to reach 64 kB model. CUReT which
has 61 classes, requires smaller sZ to satisfy model size
constraints.
We use the above parameter settings for all binary, multi-
class datasets except for binary versions of usps, charac-
ter and eye which require 5-fold cross validation. Table 1
presents the results on binary datasets and Table 2 presents
the results on multiclass datasets. For most of the datasets,
ProtoNN gets to within 1−2% accuracy of the best uncom-
pressed baseline with 1− 2 orders of magnitude reduction
in model size. For example on character recognition, Pro-
toNN is 0.5% more accurate than the best method (RBF-
SVM) while getting ≈ 400× compression in model size.
Similarly, on letter-26, our method is within 0.5% accuracy
of RBF-SVM while getting ≈ 9× compression. Also note
that ProtoNN with 16kB models is still able to outperform
BNC, SNC on most of the datasets.

ProtoNN vs. Compressed Baselines: In this experiment
we compare the performance of ProtoNN with other state-
of-the-art compressed methods in the 2-16kB model size
regime: BudgetRF (Nan et al., 2015), Decision Jungle
(Shotton et al., 2013), LDKL (Jose et al., 2013), Tree Prun-
ing (Dekel et al., 2016), GBDT (Friedman, 1999), Bud-
get Prune (Nan et al., 2016), SNC and NeuralNet Prun-
ing (Han et al., 2016). All baselines plots are obtained
via cross-validation. Figure 1 presents the memory vs.
accuracy plots. Hyper-parameters of ProtoNN are set as
follows: Binary: sB = sZ = 0.8. For [2, 4, 8, 16]

kB, d̂ = [5, 5, 10, 15]. sW , m are set using the same
heuristic mentioned in the previous paragraph. Multiclass:
sB = 0.8. For [16, 32, 64, 128] kB, d̂ = [10, 15, 15, 20].
sW , sZ , m are set as defined in the previous paragraph.
ProtoNN values obtained with the above hyper-parameters

ProtoNN: kNN for Resource-scarce Devices

Table 1. Comparison of ProtoNN with uncompressed baselines on binary datasets. Model size is computed as #parameters×4 bytes;
sparse matrices taking an extra 4 bytes for each non-zero entry, for the index. For BNC it is computed as #parameters/8 bytes. GBDT
model size is computed using the file size on disk.

Dataset ProtoNN kNN SNC BNC GBDT 1-hidden NN RBF-SVM

character recognition model size (kB)
accuracy

15.94
76.14

6870.3
67.28

441.2
74.87

70.88
70.68

625
72.38

314.06
72.53

6061.71
75.6

eye model size (kB)
accuracy

10.32
90.82

14592
76.02

3305
87.76

1311.4
80.61

234.37
83.16

6401.56
90.31

7937.45
93.88

mnist model size (kB)
accuracy

15.96
96.5

183750
96.9

4153.6
95.74

221.35
98.16

1171.87
98.36

3070
98.33

35159.4
98.08

usps model size (kB)
accuracy

11.625
95.67

7291
96.7

568.8
97.16

52.49
95.47

234.37
95.91

504
95.86

1659.9
96.86

ward model size (kB)
accuracy

15.94
96.01

17589.8
94.98

688
96.01

167.04
93.84

1171.87
97.77

3914.06
92.75

7221.75
96.42

cifar model size (kB)
accuracy

15.94
76.35

78125
73.7

3360
76.96

144.06
73.74

1562.5
77.19

314.06
75.9

63934.2
81.68

Table 2. Comparison of ProtoNN with uncompressed baselines on
multiclass datasets. First number in each cell refers to the model
size in kB and the second number denotes accuracy. Refer to
Table 1 for details about calculation of model size.

Dataset ProtoNN
(64kB) kNN SNC BNC GBDT 1-hidden

NN
RBF
SVM

letter-26 63.4
97.10

1237.8
95.26

145.08
96.36

31.95
92.5

20312
97.16

164.06
96.38

568.14
97.64

mnist-10 63.4
95.88

183984.4
94.34

4172
93.6

220.46
96.68

5859.37
97.9

4652.34
98.44

39083.7
97.3

usps-10 63.83
94.92

7291.4
94.07

568.8
94.77

51.87
91.23

390.62
94.32

519.53
94.32

1559.6
95.4

curet-61 63.14
94.44

10037.5
89.81

513.3
95.87

146.70
91.87

2382.81
90.81

1310
95.51

8940.8
97.43

are reported for all datasets, except usps and character
recognition which require 5-fold cross validation. ProtoNN
performs significantly better than the baselines on all the
datasets. This is especially true in the 2kB regime, where
ProtoNN is ≥ 5% more accurate on most of the datasets.

ProtoNN on Multilabel and Large Multiclass Datasets:
We now present the performance of ProtoNN on larger
datasets. Here, we experimented with the following
datasets: aloi dataset which is a relatively large multi-
class dataset , mediamill, delicious, eurlex which are small-
medium sized multilabel datasets.
We set the hyper-parameters of ProtoNN as follows. d̂
is set to 30 for all datasets, except for eurlex for which
we set it to 100. Other parameters are set as fol-
lows: sW = 1, sB = 1, sZ = 5/L for aloi and
sZ = 2(avg. number of labels per training point)/L for
multilabel datasets, m = 2 · L for multilabel datasets.
For aloi, we compare ProtoNN with the following base-
lines: 1vsA L2 Logistic Regression (1vsA-Logi), RBF-
SVM, FastXML: a large-scale multilabel method (Prabhu
& Varma, 2014), Recall Tree: a scalable method for large
multiclass problems (Daume III et al., 2016). For 1vsA-
Logi, Recall Tree we perform cross validation to pick the
best tuning parameter. For FastXML we use the default pa-
rameters. For RBF-SVM we set γ to the default value 1/d

and do a limited tuning of the regularization parameter.
Left table of Figure 2 shows that ProtoNN (with m =
5000) gets to within 1% of the accuracy of RBF-SVM with
just (1/50)th of its model size and 50 times fewer floating
point computations per prediction. For a better compari-
son of ProtoNN with FastXML, we set the number of pro-
totypes (m = 1500) such that computations/prediction of
both the methods are almost the same. We can see that Pro-
toNN gets similar accuracy as FastXML but with a model
size 2 orders of magnitude smaller than FastXML. Finally,
our method has almost same prediction cost as Recall-Tree
but with 10% higher accuracy and 4× smaller model size.
Right table of Figure 2 presents preliminary results on mul-
tilabel datasets. Here, we compare ProtoNN with SLEEC,
FastXML and DiSMEC (Babbar & Shölkopf, 2016), which
learns a 1vsA linear-SVM in a distributed fashion. Pro-
toNN almost matches the performance of all baselines with
huge reduction in model size.
These results show that ProtoNN is very flexible and can
handle a wide variety of problems very efficiently. SNC
doesn’t have such flexibility. For example, it can’t be natu-
rally extended to handle multilabel classification problems.

ProtoNN vs. BNC, SNC: In this experiment, we do a thor-
ough performance comparison of ProtoNN with BNC and
SNC. To show that ProtoNN learns better prototypes than
BNC, SNC, we fix the projection dimension d̂ of all the
methods and vary the number of prototypes m. To show
that ProtoNN learns a better embedding, we fix m and vary
d̂. For BNC, which learns a binary embedding, d̂ is cho-
sen such that the #parameters in its transformation ma-
trix is 32 times the #parameters in transformation ma-
trices of ProtoNN, SNC. m is chosen similarly. Figure 3
presents the results from this experiment on mnist binary
dataset. We use the following hyper parameters for Pro-
toNN: sW = 0.1, sZ = sB = 1.0. For SNC, we hard
threshold the input transformation matrix so that it has spar-
sity 0.1. Note that for small m our method is as much as

ProtoNN: kNN for Resource-scarce Devices

Figure 2. Left Table: ProtoNN vs baselines on aloi dataset. For Recall Tree we couldn’t compute the avg. number of computations
needed per prediction, instead we report the prediction time w.r.t 1vsA-Logi. Right Table: ProtoNN vs baselines on multilabel datasets.
For SLEEC and FastXML we use the default parameters from the respective papers. Both the tables show that our method achieves
similar accuracies as the baselines, but often with 1− 2 orders of magnitude compression in model size. On aloi our method is at most
2 slower than 1-vs-all while RBF-SVM is 115× slower.

Method Accuracy Model Size(MB) computations/prediction
w.r.t 1vsA-Logi

1vsA-Logi 86.96 0.512 1
RBF-SVM 94.77 38.74 115.7
FastXML 89.86 254.53 0.752

Recall Tree 85.15 3.69 2.89*
ProtoNN

(m = 1500) 89.6 0.315 0.792

ProtoNN
(m = 5000) 94.05 0.815 2.17

Dataset FastXML DiSMEC SLEEC ProtoNN
mediamill
n = 30993
d = 120
L = 101

model size
P@1
P@3
P@5

7.64M
83.65
66.92
52.51

48.48K
87.25
69.3
54.19

57.95M
86.12
70.31
56.33

54.8K
85.19
69.01
54.39

delicious
n = 12920
d = 500
L = 983

model size
P@1
P@3
P@5

36.87M
69.41
64.2

59.83

1.97M
66.14
61.26
56.30

7.34M
67.77
61.27
56.62

925.04K
68.92
63.04
58.32

eurlex
n = 15539
d = 5000
L = 3993

model size
P@1
P@3
P@5

410.8M
71.36
59.85
50.51

79.86M
82.40
68.50
57.70

61.74M
79.34
64.25
52.29

5.03M
77.74
65.01
53.98

Model Size
10 20 30 40

A
c
c
u

ra
c
y

84

86

88

90

92

94

96

98

d̂ = 15

d̂

5 10 15

A
c
c
u

ra
c
y

65

70

75

80

85

90

95

100

m = 40

ProtoNN
SNC
BNC

Figure 3. Comparison of ProtoNN with BNC, SNC on mnist bi-
nary dataset with varying projection dimension d̂ or number of
prototypes m.

20% more accurate than SNC, 5% more accurate than BNC
and reaches nearly optimal accuracy for small d̂ or m.

Remark 1. Before we conclude the section we provide
some practical guidelines for hyper-parameter selection in
ProtoNN. Consider the following two cases:
a) Small L (L / 0.1d): In this case, parameters d̂ and
sW govern the model size. Given a model size constraint,
fixing one parameter fixes the other, so that we effectively
have one hyper-parameter to cross-validate. Choosing m
such that 10 ≤ m/L ≤ 20 typically gives good accuracies.
b) Large L (L ' 0.1d): In this case, sZ also governs the
model size. sZ , sW and d̂ can be selected through cross-
validation. If the model size allows it, increasing d̂ typically
helps. Fixing m/L to a reasonable value such as 3-10 for
medium L, 1-2 for large L typically gives good accuracies.

7. Experiments on tiny IoT devices
In the previous section, we showed that ProtoNN gets better
accuracies than other compressed baselines at low model
size regimes. For small devices, it is also critical to study
other aspects like energy consumption, which severely im-
pact the effectiveness of a method in practice. In this sec-
tion, we study the energy consumption and prediction time
of ProtoNN model of size 2kB when deployed on an Ar-
duino Uno.The Arduino Uno has an 8 bit, 16 MHz At-
mega328P microcontroller, with 2kB of SRAM and 32kB

Figure 4. Prediction time and energy consumed by ProtoNN
(2kB) and its optimized version against baselines. The accuracy
of each model is on top of its prediction time bar.

of read-only flash. We compare ProtoNN with 3 baselines
(LDKL-L1, NeuralNet Pruning, L1 Logistic) on 4 binary
datasets. Figure 4 presents the results from this experiment.
ProtoNN shows almost the same characteristics as a simple
linear model (L1-logistic) in most cases while providing
significantly more accurate predictions.
Further optimization: The Atmega328P microcontroller
supports native integer arithmetic at ≈0.1µs/operation,
software-based floating point arithmetic at≈6µs/operation;
exponentials are a further order slower. It is thus desirable
to perform prediction only using integers. We implemented
an integer version of ProtoNN to leverage this. We factor
out a common float value from the parameters and round
the residuals by 1-byte integers. To avoid computing the
exponentials, we store a pre-computed table of approxi-
mate exponential values. As can be seen in Figure 4, this
method loses only a little accuracy, but obtains ≈ 2× re-
duction in energy and prediction cost.

ProtoNN: kNN for Resource-scarce Devices

References
Angiulli, Fabrizio. Fast condensed nearest neighbor rule.

In ICML, 2005.

Babbar, Rohit and Shölkopf, Bernhard. Dismec-distributed
sparse machines for extreme multi-label classification.
In arXiv preprint arXiv:1609.02521, Accepted for Web
Search and Data Mining Conference (WSDM) 2017,
2016.

Bentley, Jon Louis. Multidimensional binary search trees
used for associative searching. Commun. ACM, 18:509–
517, 1975.

Beygelzimer, Alina, Kakade, Sham, and Langford, John.
Cover trees for nearest neighbor. In ICML, 2006.

Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma,
Manik, and Jain, Prateek. Sparse local embeddings for
extreme multi-label classification. In NIPS, pp. 730–738,
2015.

Blumensath, Thomas and Davies, Mike E. Iterative thresh-
olding for sparse approximations. Journal of Fourier
Analysis and Applications, 14:629–654, 2008.

Cover, T. and Hart, P. Nearest neighbor pattern classifica-
tion. IEEE Trans. Inf. Theor., 13:21–27, 2006.

Daume III, Hal, Karampatziakis, Nikos, Langford, John,
and Mineiro, Paul. Logarithmic time one-against-some.
arXiv preprint arXiv:1606.04988, 2016.

Davis, Jason V., Kulis, Brian, Jain, Prateek, Sra, Suvrit, and
Dhillon, Inderjit S. Information-theoretic metric learn-
ing. In ICML, 2007.

Dekel, O., Jacobbs, C., and Xiao, L. Pruning decision
forests. In Personal Communications, 2016.

Devi, V Susheela and Murty, M Narasimha. An incremen-
tal prototype set building technique. Pattern Recogni-
tion, 35, 2002.

Friedman, Jerome H. Stochastic gradient boosting. Compu-
tational Statistics and Data Analysis, 38:367–378, 1999.

Gionis, Aristides, Indyk, Piotr, Motwani, Rajeev, et al.
Similarity search in high dimensions via hashing. In
VLDB, volume 99, pp. 518–529, 1999.

Goldberger, Jacob, Roweis, Sam T., Hinton, Geoffrey E.,
and Salakhutdinov, Ruslan. Neighbourhood components
analysis. In NIPS, 2004.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. In ICLR, 2016.

Jain, Prateek, Tewari, Ambuj, and Kar, Purushottam. On it-
erative hard thresholding methods for high-dimensional
m-estimation. In NIPS, pp. 685–693, 2014.

Jose, Cijo, Goyal, Prasoon, Aggrwal, Parv, and Varma,
Manik. Local deep kernel learning for efficient non-
linear SVM prediction. In Proceedings of the 30th Inter-
national Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, pp. 486–494, 2013.

Kulis, Brian and Darrell, Trevor. Learning to hash with
binary reconstructive embeddings. In Advances in neural
information processing systems, pp. 1042–1050, 2009.

Kusner, Matt J., Tyree, Stephen, Weinberger, Kilian, and
Agrawal, Kunal. Stochastic neighbor compression. In
ICML, 2014.

Liu, Wei, Wang, Jun, Ji, Rongrong, Jiang, Yu-Gang, and
Chang, Shih-Fu. Supervised hashing with kernels. In
Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, pp. 2074–2081. IEEE, 2012.

Mollineda, Ramón Alberto, Ferri, Francesc J, and Vidal,
Enrique. An efficient prototype merging strategy for
the condensed 1-nn rule through class-conditional hier-
archical clustering. Pattern Recognition, 35:2771–2782,
2002.

Nan, F., Wang, J., and Saligrama, V. Feature-budgeted ran-
dom forest. In ICML, 2015.

Nan, F., Wang, J., and Saligrama, V. Pruning random
forests for prediction on a budget. 2016.

Norouzi, Mohammad, Fleet, David J, and Salakhutdinov,
Ruslan R. Hamming distance metric learning. In Ad-
vances in neural information processing systems, pp.
1061–1069, 2012.

Prabhu, Yashoteja and Varma, Manik. Fastxml: A fast,
accurate and stable tree-classifier for extreme multi-label
learning. In KDD, 2014.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J.,
and Criminisi, A. Decision jungles: Compact and rich
models for classification. In NIPS, 2013.

Wang, Wenlin, Chen, Changyou, Chen, Wenlin, Rai,
Piyush, and Carin, Lawrence. Deep metric learning
with data summarization. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, pp. 777–794. Springer, 2016.

Weinberger, Kilian Q. and Saul, Lawrence K. Distance
metric learning for large margin nearest neighbor classi-
fication. J. Mach. Learn. Res., 10:207–244, 2009.

ProtoNN: kNN for Resource-scarce Devices

Weiss, Yair, Torralba, Antonio, and Fergus, Robert. Spec-
tral hashing. In NIPS, pp. 1753–1760. Curran Asso-
ciates, Inc, 2008.

Zhong, Kai, Guo, Ruiqi, Kumar, Sanjiv, Yan, Bowei,
Simcha, David, and Dhillon, Inderjit. Fast Classifi-
cation with Binary Prototypes. In Singh, Aarti and
Zhu, Jerry (eds.), Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, vol-
ume 54 of Proceedings of Machine Learning Research,
pp. 1255–1263, Fort Lauderdale, FL, USA, 20–22 Apr
2017. PMLR. URL http://proceedings.mlr.
press/v54/zhong17a.html.

http://proceedings.mlr.press/v54/zhong17a.html
http://proceedings.mlr.press/v54/zhong17a.html

ProtoNN: kNN for Resource-scarce Devices

8. Appendix
For the entirety of this section, assume W = I and Z = I2.

8.1. Derivation of gradient of the loss with respect to prototypes

In this subsection, we will derive the gradient of the expected loss function with respect to B under the general mixture of
Gaussian model. That is, x ∼ 1

2N (µ+,Σ+) + 1
2N (µ−,Σ−).

The loss function with 2 prototypes and rbf-kernel (γ2 = 1
2) is the following:

Remp =
1

n

n∑
i=1

[
‖yi − e1 exp

{
− 1

2‖b+ − xi‖2
}
− e2 exp

{
− 1

2‖b− − xi‖2
}
‖2
]

In the infinite sample case (n→∞), with points being draw from mixture of Gaussian, we have

R = E[Remp] =0.5[Ex∼N (µ+,Σ+)

[
(1− exp

{
− 1

2‖b+ − x‖2
}

)2
]

+ 0.5Ex∼N (µ−,Σ−)

[
(exp

{
− 1

2‖b+ − x‖2
}

)2
]
]

0.5[Ex∼N (µ−,Σ−)

[
(1− exp

{
− 1

2‖b− − x‖2
}

)2
]

+ 0.5Ex∼N (µ+,Σ+)

[
(exp

{
− 1

2‖b− − x‖2
}

)2
]
]

Notice that the loss function decomposes into independent terms with respect to b+ and b−. Given this observation, we
constrain our focus on the analysis with respect to only b+. All theorems follow analogously for b−.

We introduce some notation that we will use in the rest of the section.

• ∆+ := (b+ − µ+), ∆− := (b+ − µ−), µ̄ := (µ+ − µ−).

• For p.s.d. matrix M , vector v, ‖v‖2M = vTMv.

• Σ′+ := (I + Σ+)−1, g′+ := exp
{
− 1

2‖∆+‖2Σ′+
}
.

• Σ′′+ := (I + 2Σ+)−1, g′′+ := exp
{
−‖∆+‖2Σ′′+

}
.

• Σ′− := (I + 2Σ−)−1, g′− := exp
{
−‖∆−‖2Σ′−

}
.

• Σ′′− := (I + 2Σ−)−1, g′′− := exp
{
−‖∆−‖2Σ′′−

}
.

Theorem 3 (Gradient of the loss). In the infinite sample case:

∇b+
R =

(
Σ′+|Σ′+|g′+ −Σ′′+|Σ′′+|g′′+

)
∆+ −

(
Σ′′−|Σ′′−|g′′−

)
∆−.

Proof. The loss function decomposes as a sum over datapoints. Hence, using the fact that the expectation and gradient
operators both distribute over sums, we can write down the gradient as,

∇b+
R = Ex

[
dR(x)

db+

]
=

= 1√
|2πΣ+|

∫
(b+ − x) exp

{
− 1

2‖(b+ − x)‖2
}

(1− exp
{
− 1

2‖(b+ − x)‖2
}

) exp
{
− 1

2 (x− µ+)
T

(Σ+)−1(x− µ+)
}
dx

− 1√
|2πΣ−|

∫
(b+ − x) exp

{
− 1

2‖(b+ − x)‖2
}

(exp
{
− 1

2‖(b+ − x)‖2
}

) exp
{
− 1

2 (x− µ−)
T

(Σ−)−1(x− µ−)
}
dx

= 1√
|2πΣ+|

∫
(b+ − x) exp

{
− 1

2 (xT (Σ+Σ′+)−1x− 2xT (b+ + Σ−1
+ µ+) + ‖b+‖2 + µ+

TΣ−1
+ µ+)

}
dx

+ 1√
|2πΣ+|

∫
(b+ − x) exp

{
− 1

2 (xT (Σ+Σ′′+)−1x− 2xT (2b+ + Σ−1
+ µ+) + 2‖b+‖2 + µ+

TΣ−1
+ µ+)

}
dx

− 1√
|2πΣ−|

∫
(b+ − x) exp

{
− 1

2 (xT (Σ−Σ′′−)−1x− 2xT (2b+ + Σ−1
− µ−) + 2‖b+‖2 + µ−

TΣ−1
− µ−)

}
dx.

ProtoNN: kNN for Resource-scarce Devices

The last equality follows by completing the square and separating out constants with respect to x. We thus have Gaussians
with the following means,

µ′+ := Σ+Σ′+(b+ + Σ−1
+ µ+), µ′′+ := Σ+Σ′′+(2b+ + Σ−1

+ µ+), µ′′− := Σ−Σ′′−(2b+ + Σ−1
− µ−),

The following constants come out as factors,

g′+ = exp
{
− 1

2‖∆+‖2Σ′+
}
, g′′+ = exp

{
−‖∆+‖2Σ′′+

}
, g′′− = exp

{
−‖∆−‖2Σ′′−

}
.

Then, the expression for the gradient can be re-written as:

∇b+
R =

[
1√
|2πΣ+|

∫
(b+ − x) exp

{
− 1

2 (x− µ′+)
T

(Σ+Σ′+)−1(x− µ′+)
}
dx

]
g′+

−
[

1√
|2πΣ+|

∫
(b+ − x) exp

{
− 1

2 (x− µ′′+)
T

(Σ+Σ′′+)−1(x− µ′′+)
}
dx

]
g′′+

−
[

1√
|2πΣ−|

∫
(b+ − x) exp

{
− 1

2 (x− µ′′−)
T

(Σ−Σ′′−)−1(x− µ′′−)
}
dx

]
g′′−.

Using expectation of Gaussians, we get:

∇b+
R =

[
(b+ − µ′+)

(
|Σ′+|

)
g′+ − (b+ − µ′′+)

(
|Σ′′+|

)
g′′+ − (b+ − µ′′−)

(
|Σ′′−|

)
g′′−
]

=
(
Σ′+|Σ′+|g′+ −Σ′′+|Σ′′+|g′′+

)
∆+ −

(
Σ′′−|Σ′′−|g′′−

)
∆−.

To establish the last equality, we claim that (b+ − µ′+) = Σ′+∆+, (b+ − µ′′+) = Σ′′+∆+, and (b+ − µ′′−) = Σ′′−∆− as a
consequence of their definitions. We show the first of these three equalities and the other two proofs are similar. Note that
Σ+, Σ′+, Σ−1

+ and (Σ′+)−1 commute, when Σ+ is non-singular. Therefore

(b+ − µ′+) = Σ′+(Σ′+)−1(b+ −Σ+Σ′+(b+ + Σ−1
+ µ+))

= Σ′+((Σ′+)−1 −Σ+)b+ −Σ′+(Σ′+)−1Σ+Σ′+Σ−1
+ µ+

= Σ′+((I + Σ+)−Σ+)b+ −Σ′+µ+

= Σ′+(b+ − µ+)

= Σ′+∆+.

Corollary 1. Let x be sampled from a mixture of 2 spherical Gaussians, i.e., Σ+ = Σ− = I and x ∼ 1
2N (µ+, I) +

1
2N (µ−, I). Then, the gradient of the loss is given by,

∇b+
R =

(
1

2d/2+1

)
g′+ −

(
1

3d/2+1

)
g′′+ −

(
1

3d/2+1

)
g′′−

where,

g′+ = ∆+ exp

{
−1

4
‖∆+‖2

}
, g′′+ = exp

{
−1

3
‖∆+‖2

}
, g′′− = exp

{
−1

3
‖∆−‖2

}
.

For the rest of this section, unless otherwise stated, assume Σ+ = Σ− = I.

8.2. Lemmas

Lemma 1. Let assumptions of Theorem 1 hold. In particular, let ∆+
T µ̄ ≥ − (1−δ)

2 ‖µ̄‖2, for some small constant δ > 0,
then:

g′′− ≤ g′+ exp

{
−δ‖µ̄‖

2

4

}
,

where g′′− := exp
{
−‖∆−‖

2

3

}
, g′+ := exp

{
−‖∆+‖2

4

}
.

ProtoNN: kNN for Resource-scarce Devices

Proof.

g′′− = exp

{
−‖∆−‖

2

3

}
≤ exp

{
−‖∆−‖

2

4

}
= exp

{
−‖∆+ + µ̄‖2

4

}
= exp

{
−‖∆+‖2 + ‖µ̄‖2 + 2∆+

T µ̄

4

}
ζ1
≥ exp

{
−‖∆+‖2 + ‖µ̄‖2 − (1− δ)‖µ̄‖2

4

}
= exp

{
−‖∆+‖2

4

}
exp

{
−δ‖µ̄‖

2

4

}
= g′+ exp

{
−δ‖µ̄‖

2

4

}
.

Here, ζ1 follows by replacing ∆+
T µ̄ with its lower bound − (1−δ)

2 ‖µ̄‖2 as specified in the assumption.

Lemma 2. Let assumptions of Theorem 1 hold. In particular, if for some fixed δ ≥ 0, ∆+
T µ̄ ≥ − (1−δ)

2 ‖µ̄‖2,and

‖∆+‖ ≥ 8‖µ̄‖ exp
{
−α‖µ̄‖

2

4

}
for some fixed α > 0. Also, let d ≥ 8(α− δ)‖µ̄‖2. Then we have:

∆+
TE

[
dR
db+

]
> 0.1 · (1

2)
d
2 +1g′+‖∆+‖‖∆−‖ exp

{
−α‖µ̄‖

2

4

}
> 0,

where where g′′− := exp
{
−‖∆−‖

2

3

}
, g′+ := exp

{
−‖∆+‖2

4

}
.

Proof. Using ∆− = ∆+ + µ̄ and triangle inequality, we have:

‖∆+‖
‖∆−‖

=
‖∆+‖
‖∆+ + µ̄‖

≥ ‖∆+‖
‖∆+‖+ ‖µ̄‖

.

The above quantity is monotonically increasing in ∆+. Hence, for all ‖∆+‖ ≥ 8‖µ̄‖ exp
{
−α‖µ̄‖

2

4

}
, we have:

‖∆+‖
‖∆−‖

≥
8 exp

{
−α‖µ̄‖

2

4

}
8 exp

{
−α‖µ̄‖

2

4

}
+ 1
≥ 4 exp

{
−α‖µ̄‖

2

4

}
. (3)

Using Lemma 1 and the fact that g′+ ≥ g′′+, we have

∆+
TE

[
dR
db+

]
= ∆+

T

[(
(1

2)
d
2 +1g′+ − (1

3)
d
2 +1g′′+

)
∆+ −

(
(1

3)
d
2 +1g′′−

)
∆−

]
=

[
‖∆+‖2

(
(1

2)
d
2 +1g′+ − (1

3)
d
2 +1g′′+

)]
−
[
∆+

T∆−(1
3)
d
2 +1g′+ exp

{
−δ‖µ̄‖

2

4

}]
≥
[
‖∆+‖2

(
(1

2)
d
2 +1 − (1

3)
d
2 +1

)
g′+

]
−
[
∆+

T∆−(1
3)
d
2 +1g′+ exp

{
−δ‖µ̄‖

2

4

}]
≥
[
‖∆+‖2

(
(1

2)
d
2 +1 − (1

3)
d
2 +1

)
g′+

]
−
[
‖∆+‖‖∆−‖(1

3)
d
2 +1g′+ exp

{
−δ‖µ̄‖

2

4

}]
= g′+‖∆+‖‖∆−‖

[
‖∆+‖
‖∆−‖

(
(1

2)
d
2 +1 − (1

3)
d
2 +1

)
− (1

3)
d
2 +1 exp

{
−δ‖µ̄‖

2

4

}]
.

ζ1
≥ g′+‖∆+‖‖∆−‖

[
4 exp

{
−α‖µ̄‖

2

4

}(
(1

2)
d
2 +1 − (1

3)
d
2 +1

)
− (1

3)
d
2 +1 exp

{
−δ‖µ̄‖

2

4

}]
,

= g′+‖∆+‖‖∆−‖ exp

{
−α‖µ̄‖

2

4

}[
4

(
(1

2)
d
2 +1 − (1

3)
d
2 +1

)
− (1

3)
d
2 +1 exp

{
− (δ − α)‖µ̄‖2

4

}]
,

≥ g′+‖∆+‖‖∆−‖ exp

{
−α‖µ̄‖

2

4

}[
(1

2)
d
2 +1 − (1

3)
d
2 +1 exp

{
− (δ − α)‖µ̄‖2

4

}]
,

where ζ1 follows from (3) and the last inequality follows by simple calculations.

Lemma now follows by using d ≥ 8(α− δ)‖µ̄‖2 and d ≥ 1.

ProtoNN: kNN for Resource-scarce Devices

8.3. Proof of Theorem 1

Proof. Note that ∇b+R = c1∆+ − c2∆−, where c1 = 1
2d/2+1 exp(− 1

4‖∆+‖2) − 1
3d/2+1 exp(− 1

3‖∆+‖2), c2 =
1

3d/2+1 exp(− 1
3‖∆−‖

2).

Let b+
′ = b+ − η∇b+R. Then, b+

′ − µ+ = ∆+ − η∇b+R.

‖b+
′ − µ+‖2 = ‖∆+‖2 + η2‖∇b+

R‖2 − 2η∆+
T∇b+

R. (4)

Note that ∆+
T∇b+

R > 0. Hence, setting η appropriately, we get:

‖b+
′ − µ+‖2 ≤ ‖µ̄‖2

(
1−

(∆+
T∇b+

R)2

‖∆+‖‖∇b+
R‖2

)
. (5)

Using Lemma 2, we have:

‖b+
′ − µ+‖2 ≤ ‖∆+‖2

1−
0.01 · (1

2)d+2 · (g′+)2‖∆−‖2 · exp
{
−α‖µ̄‖

2

2

}
2c21‖∆+‖2 + 2c22‖∆−‖2

 . (6)

Using ∆− = ∆+ + µ̄ and 2∆+
T µ̄ ≥ −(1− δ)‖µ̄‖2, we have: ‖∆−‖2 = ‖∆+ + µ̄‖2 = ‖∆+‖2 + ‖µ̄‖2 + 2∆+

T µ̄ ≥
‖∆+‖2 + δ‖µ̄‖2. Using monotonicity of the above function wrt ‖∆−‖, and using ‖∆−‖ ≥ ‖distp‖, we have:

‖b+
′ − µ+‖2 ≤ ‖∆+‖2

1−
0.01 · (g′+)2 · (1

2)d+2 exp
{
−α‖µ̄‖

2

4

}
2c21 + 2c22

 . (7)

Using Lemma 1, we have: c22 ≤ c21. Moreover, using (g′+)2(1
2)d+2 ≥ 4c21, we get:

‖b+
′ − µ+‖2 ≤ ‖∆+‖2

(
1− 0.01 exp

{
−α‖µ̄‖

2

4

})
. (8)

That is, ‖b+
′ − µ+‖2 decreases geometrically until ‖b+

′‖ ≤ 8 exp
{
−α‖µ̄‖

2

4

}
.

8.4. Proof of Theorem 2

Proof. We wish to analyze the Hessian ∇2
b+
R. The loss function decomposes as a sum over datapoints. Hence, using the

fact that the expectation and Hessian operators both distribute over sums, we can write down the Hessian as,

∇2
b+
R = Ex

[
d2R(x)

db+
2

]
= c1g

′
+(I− 1

2∆+∆+
T)− c2g′′+(I− 2

3∆+∆+
T)− c2g′′−(I− 2

3∆−∆−
T).

Here, c1 = (1
2)
d
2 +1, c2 = (1

3)
d
2 +1. Now,

∇2
b+
R < c1g

′
+I−

[
c1g
′
+∆+∆+

T + c2g
′′
+I + c2g

′′
−I
]
< c1g

′
+

([
1− c2

c1

(
g′′+ + g′′−
g′+

)]
I−∆+∆+

T

)
.

From lemma 1, g′′− ≤ g′+ exp
{
− δ‖µ̄‖

2

4

}
. Also, let c := c2

c1
=
(

2
3

)d/2+1
. It can be seen that if d ≥ 1, c ≤ 0.6. Thus,

∇2
b+
R < c1g

′
+

([
1− 0.6

g′′+
g′+
− 0.6 exp

{
−δ‖µ̄‖

2

4

}]
I−∆+∆+

T

)
= c1g

′
+

([
1− 0.6 exp

{
−‖∆+‖2

12

}
− 0.6 exp

{
−δ‖µ̄‖

2

4

}]
I−∆+∆+

T

)

ProtoNN: kNN for Resource-scarce Devices

Figure 5. Iteration vs. Test Accuracy plot on mnist binary dataset. The legend shows the variables that are optimized (e.g., Z and W
corresponds to case where we fix B and optimize over Z,W).

From assumption, exp
{
− δ‖µ̄‖

2

4

}
≤ exp

{
−
δ(4

(ln 0.1)δ)
4

}
= 0.1. Thus,

∇2
b+
R < c1g

′
+

([
0.9− 0.6 exp

{
−‖∆+‖2

12

}]
I−∆+∆+

T

)

For ‖∆+‖2 ≤ 0.5, the following facts can be seen by simple one-dimensional arguments:(
0.9− 0.6 exp

{
−‖∆+‖2

12

})
− ‖∆+‖2 ≥

1

20
.

(
0.9− 0.6 exp

{
−‖∆+‖2

12

})
≤ 1

‖∆+‖2 is the only eigen value of ∆+∆+
T , and all eigen values of the scaled identity matrix are[

0.9− 0.6 exp
{
−‖∆+‖2

12

}]
. Thus the ratio of the largest eigen value to the smallest eigen value of ∇2

b+
R is smaller

than 20. Thus the condition number is bounded by 20, and the theorem follows.

9. Experiments
9.1. Joint training of Z, B, and W

A major reason ProtoNN achieves state-of-the-art performance is because of the joint optimization problem over Z,B,W
that ProtoNN solves. Instead of limiting ourselves to a projection matrix that’s fixed beforehand on the basis of some
unknown objective function (LMNN, SLEEC), we incorporate it into our objective and learn it along with the prototypes
and the label vectors. To show that this joint optimization in fact helps improve the accuracy of ProtoNN, we conducted
the following experiment, where we don’t optimize one or more of Z,B,W in our algorithm and instead fix them to their
initial values. We use the following hyper parameters for ProtoNN: d = 10, sW = 0.1, sZ = sB = 1.0 and m = 20.
We initialize ProtoNN using LMNN. If W is not begin trained, then we sparsify it immediately at the beginning of the
experiment.
Figure 5 shows the results from this experiment on mnist binary dataset. The X-axis denotes iterations of alternating
minimization. One iteration denotes 20 epochs each over each of the e parameters W,B,Z. From the plots, we can see
that if W is fixed to its initial value, then the performance of ProtoNN drops significantly.

9.2. Datasets

ProtoNN: kNN for Resource-scarce Devices

Dataset n d L Links
cifar 50000 400 2 http://manikvarma.org/

character recognition 4397 400 2 https://www.kaggle.com/
eye 456 8192 2 https://rd.springer.com/chapter/10.1007/978-3-540-25976-3 23

mnist 60000 784 2 http://manikvarma.org/
usps 7291 256 2 http://manikvarma.org/
ward 4503 1000 2 https://www.kaggle.com/

letter-26 19500 16 26 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
mnist-10 4397 784 10 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
usps-10 7291 256 10 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
curet-61 4209 610 61 http://www.manikvarma.org/

aloi 97200 128 1000 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
mediamill 30993 101 120 http://manikvarma.org/downloads/XC/XMLRepository.html
delicious 12920 500 983 http://manikvarma.org/downloads/XC/XMLRepository.html

eurlex 15539 5000 3993 http://manikvarma.org/downloads/XC/XMLRepository.html

Table 3. Dataset statistics and links

