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Abstract

Recent work in automatic recognition of conversational tele-
phone speech (CTS) has achieved accuracy levels comparable
to human transcribers, although there is some debate how to
precisely quantify human performance on this task, using the
NIST 2000 CTS evaluation set. This raises the question what
systematic differences, if any, may be found differentiating hu-
man from machine transcription errors. In this paper we ap-
proach this question by comparing the output of our most accu-
rate CTS recognition system to that of a standard speech tran-
scription vendor pipeline. We find that the most frequent substi-
tution, deletion and insertion error types of both outputs show a
high degree of overlap. The only notable exception is that the
automatic recognizer tends to confuse filled pauses (“uh”) and
backchannel acknowledgments (‘“uhhuh”). Human tend not to
make this error, presumably due to the distinctive and opposing
pragmatic functions attached to these words. Furthermore, we
quantify the correlation between human and machine errors at
the speaker level, and investigate the effect of speaker overlap
between training and test data. Finally, we report on an informal
“Turing test” asking humans to discriminate between automatic
and human transcription error cases.

Index Terms: speech recognition, conversational speech, hu-
man vs. computer performance.

1. Introduction

Automatic speech recognition (ASR) systems have seen re-
markable advances over the last half-decade from the use of
deep, convolutional and recurrent neural network architectures,
enabled by a combination of modeling advances, available
training data, and increased computational resources. Given
these advances, our research group recently embarked on an
effort to reach human-level transcription accuracy using state-
of-the-art ASR techniques on one of the genres of speech that
has historically served as a difficult benchmark task: conver-
sational telephone speech (CTS). About a decade ago, CTS
recognition had served as an evaluation task for government-
sponsored work in speech recognition, predating the take-over
of deep learning approaches and still largely in the GMM-HMM
modeling framework [1, 2, 3, 4, 5, 6]. It had proven to be
a hard problem, due to the variable nature of conversational
pronunciations, speaking styles, and regional accents. Seide
at al. [7] demonstrated that deep networks as acoustic mod-
els could achieve significant improvements over GMM-HMM
models on CTS data, and more recently researchers at IBM had
achieved results on this task that represented a further signifi-
cant advance [8, 9] over those from a decade ago.

The goal of reaching “human parity” in automatic CTS
transcription raises the question of what should be considered
human accuracy on this task. We operationalized the question
by submitting the chosen test data to the same vendor-based
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transcription pipeline that is used at Microsoft for production
data (for model training and internal evaluation purposes), and
then comparing the results to ASR system output under the
NIST scoring protocol. Using this methodology, and incorpo-
rating state-of-the-art convolutional and recurrent network ar-
chitectures for both acoustic modeling [10, 11, 8, 12, 13, 14, 15]
and language modeling [16, 17, 18, 19] with extensive use
of model combination, we obtained a machine error rate that
was very slightly below that of the human transcription pro-
cess (5.8% versus 5.9% on Switchboard data, and 11.0% ver-
sus 11.3% on CallHome English data) [20]. Since then, Saon
et al. have reported even better results, along with a separate
transcription experiment that puts the human error rate, on the
same test data, at a lower point than measured by us (5.1% for
Switchboard, 6.8% for CallHome) [21].

In this paper, we address the question whether there are ma-
jor qualitative differences between the results of human tran-
scriptions of conversational speech and those obtained by ASR
systems, based on a detailed analysis of the data and system
output from our human parity experiment [20]. The question
becomes important if ASR is to replace humans as the first
step in fully automatic speech understanding systems—if ma-
chine transcription errors are qualitatively different from hu-
mans then we would have to worry about the possible effects on
downstream processing, and mitigation techniques so as to still
achieve an overall “natural” user experience (e.g., in real-time
conversational speech translation, such as in the Skype applica-
tion).

We start by discussing why human error rate on this task
must themselves be considered a moving target. Next we ask
whether speech that is difficult for ASR also tends to be hard for
humans to transcribe (and vice-versa), and whether the speaker
overlap with the training data that is found in a portion of the
test data has a noticeable effect on the result, as was suggested in
[21]. We then look at the most frequent word error types exhib-
ited by the two transcription systems (human and machine), and
finally report on a very preliminary but still informative exper-
iment to see if humans could tell apart the transcription source
(again, human versus machine), based on the errors they make.

2. Measuring Human Error

The assessment of human transcription error on conversational
speech has been somewhat murky. A widely cited figure is
4% word error rate (WER), based on [22]. However, the ref-
erence therein is only a “personal communication” without fur-
ther data. The Linguistics Data Consortium quantified inter-
transcriber disagreement for the NIST 2003 CTS evaluation
data at between 4.1% and 4.5% with very careful multiple tran-
scriptions [23]. For “quick transcription”, the disagreement in-
creased to 9.6%. The CTS data in the NIST study is from the
Switchboard (SWB) and Fisher corpora, and is therefore com-
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Figure 1: Correlation between machine and human word error rates at speaker level. The solid black circles represent SWB speakers
not seen in training. The solid red circles stand for secondary CH speakers that share a conversation side with a dominating primary

speaker.

parable to the SWB portion of our data, i.e., coming from tele-
phone conversations between strangers discussing a general-
interest topic. Still, the exact dataset is different, which may
account for some of the discrepancy with error rates measured
on the NIST 2000 set used by us (5.9%) and IBM (5.1%), al-
though the numbers are remarkably close.

As briefly described in the introduction, we measured hu-
man performance by leveraging an existing pipeline in which
Microsoft data is transcribed on a weekly basis. This pipeline
uses a large commercial vendor to perform two-pass transcrip-
tion. In the first pass, a transcriber works from scratch to tran-
scribe the data. In the second pass, a second listener monitors
the data to do error correction. Dozens of hours of test data
are processed in each batch, with no special instructions to the
transcribers. The waveform segments, roughly corresponding
to utterances, making up the test set are processed separately.
This makes the task easier since the speakers are more clearly
separated, but also more difficult since the two sides of the con-
versation are not interleaved and context may be missing.! We
performed that text normalization on the human transcripts to
remove systematic discrepancies with the NIST scoring refer-
ences. (Since this was done with some amount of trial and er-
ror it effectively was “cheating” for the benefit of the human
transcribers.) We then applied the NIST scoring tools to obtain
word error rates of 5.9% on the SWB portion, and 11.3% on the
CallHome (CH) portion of the NIST 2000 test set. The latter
corpus, unlike Switchboard, consists of conversations between
friends and family, without seed topic, which would account
for the much higher overall error rate. Clearly our method was
not designed to achieve the highest possible human transcrip-
tion accuracy; instead, as pointed out in [20], our goal was to
establish a benchmark corresponding to industry-standard (i.e.
high-volume) professional transcript production.

The authors in [21] undertook to measure human error on
the same dataset, but using a more involved process. The ma-
jor differences were: (1) The transcription vendor was cog-
nizant of the experiment and actively involved. (2) Transcribers
were chosen based on past performance and familiarized with
the conventions used by LDC in generating the reference tran-

I This happens to be the way our ASR system operates since the lan-
guage model currently has no context across utterances. Still, we realize
this deprives humans of a potential advantage over current technology.

scripts. (3) Three independent, parallel transcribers were used,
plus a fourth one for 2nd-pass quality control (QC) of the 1st-
pass output. All in all, the transcribers performed roughly 12
to 18 listening passes. (4) The final output was obtained by
choosing the transcriber (with QC) who had obtained the low-
est WER on the test data. As noted earlier, the resulting WERs
were 5.1% and 6.8%, respectively. The considerably lower esti-
mate for CH could be a result of the transcribers having access
to the entire conversation (as per personal communication with
the authors). This would be especially helpful in transcribing
unfamiliar vocabulary and speaking styles (allowing the tran-
scriber to “adapt” to the data more effectively).

Clearly the IBM experiment made a much more thorough
effort to probe the boundaries of human accuracy, and may in
fact have come close to the inter-transcriber agreement previ-
ously measured by LDC on a different data set. However, it
is important to realize that further improvements on the human
side are no doubt achievable. For example, the number of tran-
scribers could be scaled up further, or they could be allowed to
confer with each other, to resolve disagreements. This raises the
question of where to draw the line on human effort.

Finally, it is important to realize that conversational speech
has a high degree of inherent ambiguity. For example, conver-
sational pronunciations are highly variable and often reduced
[24]. Another source of ambiguity is the lack of context and
knowledge shared by the speakers (especially in the case of
CH). In the presence of inherent ambiguity, inter-transcriber
agreement can be improved by agreed-upon disambiguation
rules, although this would not necessarily reflect true agreement
based on speech understanding.

3. Machine Transcription System

The details of our conversational speech recognition system are
described elsewhere [20], so we only give a brief summary here.
The system employs independent decodings by diverse acous-
tic models, including convolutional neural net (CNN) and bidi-
rectional long short-term memory (BLSTM) models that differ
by model architecture, number of senones, amount of training
data, and other metaparameters. Decoding uses a pruned 4-
gram N-gram language model (LM) to generate lattices, which
are then expanded into 500-best lists using a larger N-gram



LM. The N-best lists are rescored with multiple LSTM-LMs
operating in forward and backward directions. Model scores
are combined log-linearly at the utterance level and converted
to posterior probabilities represented as word confusion net-
works. The various subsystems making up the final system are
selected in a greedy search, and their weights are optimized via
an expectation-maximization algorithm, on development data.
The acoustic training data comprises all the publicly available
CTS data (about 2000 hours), while the LMs are additionally
trained on Broadcast News and Web data from U. Washington.
The individual subsystems (based on different acoustic mod-
els) achieve word error rates between 6.4% and 7.7% on the
Switchboard evaluation set, and between 12.2% and 17.0% on
the CallHome portion. Combined, the system achieves 5.8%
and 11.0% WER, respectively.

4. Error Distribution and Correlation

We note in passing that machine and human transcription WERs
do not differ significantly according the Wilcoxon and Matched
Pairs Sentence Segment Word Error tests as applied by NIST,
nor do they differ according to a Sign test comparing error
counts at the utterance level.

A first high-level question regarding the relation between
word errors by machine and human transcribers is whether dif-
ficulty in one predicts difficulty in the other. Figure 1 shows
scatter plots of speaker-level error rates (machine vs. human),
separated by corpus. Each corpus subset has 40 conversation
sides.

Clearly the errors at that level are correlated, with p = 0.65
for SWB and p = 0.73 for CH. This suggests that properties of
the speech, either as a function of the content, the speaker, or the
channel (each speaker occurs in exactly one test conversation),
cause errors for both machine and human transcription.

We observe that the CH data has two speakers with out-
lier machine error rates (37.5% and 64.7% WER, solid red dots
in Figure 1). These correspond to secondary speakers in their
respective conversation sides, each with only a fraction of the
speech of the dominant speaker. Note that the ASR system pro-
cesses each conversation assuming only a single speaker per
side. If we remove these outliers, the machine-human error cor-
relation on CH increases to p = 0.80. With secondary speakers
excluded, we can also observe that the machine error rates clus-
ter tighter than the human ones in both corpora (SWB: machine
6.1% =+ 2.8 vs. human 6.2% = 3.4; CH: machine 11.8% + 6.1
vs. human 12.7% =+ 7.0).

In [21] it was sugggested that one of the reasons for the
much higher error rate on CH compared to SWB was that 36
of the 40 SWB test speakers occur in the portion of the SWB
corpus that is used in training (due to what we surmise to be an
oversight in the selection of the NIST 2000 test set). To assess
this hypothesis we singled out the four speakers in the SWB
portion that are not found in the training set; these are shown
as solid black circles in Figure 1. At first, it seems that the
speaker-averaged WER for the “seen” speakers (machine WER
5.9%) is indeed much lower than for the speakers not found
in training (7.5%). However, we can safely attribute this to
bad luck and small sample size. The average machine WER
of 7.5% for “unseen” speakers is well within one standard de-
viation of the “seen” speakers” WER distribution (5.9% =+ 2.7),
and more tellingly, almost exactly the same relative difference
in WERs between “seen” and “unseen” speakers is observed for
human transcriptions (6.0% versus 7.7%). Clearly the human
transcribers did not have the benefit of training on the “seen”

Which transcription was created by a human?

Choice One (Click to Select) Reference Transcription (Click to Play Audic) Choice Two (Click to Select)
it seems like you know we need furniture then it seems like you know OH WHEN need
you know a bedroom SUIT then we need to fumniture AND you know [] bedroom SUITS

budget it then we need to budget it

CORRECT 1 : 0 INCORRECT

Figure 2: Turing-like test challenging human players to tell ma-
chine from human transcripts

speakers, so the difference must be due to the intrinsic difficulty
of the speakers, which affects both transcription systems.

S. Error types

Tables 1-3 show the top ten types of substitutions, deletions
and insertions for both ASR and human transcripts. Inspections
reveals that the same short function words, discourse markers
and filled pauses appear in the top ten errors for both systems.
There is one notable exception, however. The top substitu-
tion error for the ASR system involves misrecognition of filled
pauses (“%hesitation”, a word class label covering “uh” and
“um” in various spellings) as backchannel acknowledgments
(“%bcack”, standing for “uhhuh”, “mhm”, etc.).2 The same
substitution error is much less frequent in human transcripts.

A possible explanation for this asymmetry lies in the dis-
course functions of filled pauses and backchannels. Filled
pauses serve to either claim or retain the floor, signaling that the
speaker wants to either start or continue speaking. Backchan-
nels, on the other hand, acknowledge that the speaker is listen-
ing, and that the other speaker should carry on. Since the two
classes of words thus have exactly opposite functions in turn
management, it stands to reason that humans are keenly aware
of their differences and use all available phonetic, prosodic,
and contextual cues to distinguish then. Our ASR system, by
contrast, uses only its standard acoustic-phonetic and language
models. Modeling dialog context in particular would be ex-
pected to improve this shortcoming.

6. A Turing-like Experiment

Having established that human and machine transcriptions are
quite similar in several aspects, including the word token types
involved, we were wondering if higher-level error patterns
could distinguish the two systems. For example, one might ex-
pect that human misrecognitions are guided by a strong “hu-
man” language and understanding model, whereas machine er-
rors might be more likely to generate syntactic and semantic
nonsense. To get at this question we designed a specialized ver-
sion of the classic Turing test, in the sense that a human judge
is asked to interact with a system with the goal of estimating
whether it is underpinned by human or artificial “intelligence.”
In our case, the task involved inspecting one randomly chosen
utterance from the test set at a time, with a side-by-side display
of the reference transcript, the human transcript, and the ASR
output (after the text normalizations that are part of the scoring
protocol). Only utterances having at least one transcription er-

2Note that the reverse substitution cannot occur because we pro-
grammatically delete filled pauses from the recognizer output, since
they can only increase recognition errors under the NIST scoring proto-
col.



Table 1: Most common substitutions for ASR system and humans. The number of times each error occurs is followed by the word in the

reference, and what appears in the hypothesis instead.

CH SWB
ASR | Human ASR | Human
45: (%hesitation) / %bcack | 12: a/the 29: (%hesitation) / %bcack | 12: (%hesitation) / hmm
12: was / is 10: (%hesitation) / a 9: (%hesitation) / oh 10: (%hesitation) / oh
9: (%hesitation) / a 10: was / is 9: was / is 9: was / is
8: (%hesitation) / oh 7: (%hesitation) / hmm 8: and/in 8: (Yhesitation) / a
8: a/the 7: bentsy / bensi 6: (%hesitation) / i 5:in/and
7: and/ in 7: is / was 6: in / and 4: (%hesitation) / %bcack
7: it / that 6: could / can 5: (%hesitation) / a 4: and / in
6: in / and 6: well / oh 5: (%hesitation) / yeah 4: is / was
5:alto 5: (%hesitation) / %bcack || 5: a/the 4: that / it
5:aw/oh 5: (%hesitation) / oh 5: jeez / jeeze 4:the/a

Table 2: Most common deletions for ASR system and humans.

CH SWB
ASR | Human ASR | Human
44: i 73: 1 31: it 34:1
33: it 59: and 26: 1 30: and
29: a 48: it 19: a 29: it
29: and | 47:is 17: that 22: a
25:is 45: the 15: you | 22: that
19: he 41: %bcack || 13:and | 22: you
18:are | 37:a 12: have | 17: the
17: oh 33: you 12: oh 17: to
17: that | 31: oh 11: are 15: oh
17: the | 30: that 11:is 15: yeah

Table 3: Most common insertions for ASR system and humans.

CH SWB
ASR [ Human || ASR | Human
15: a 10: 1 19: 1 12: 1
15: is 9: and 9: and 11: and
11: 1 8:a 7: of 9: you
11: the 8: that 6: do 8: s
11: you | 8:the 6: is 6: they
9: it 7: have 5: but 5: do
7: oh 5: you 5: yeah | 5: have
6: and 4: are 4: air 5:it
6: in 4:is 4: in 5: yeah
6: know | 4: they 4:you | 4:a

ror and a discrepancy between the two versions are presented.
Discrepancies between the transcript versions are highlighted,
and the error type (substitution, insertion, deletion) is visually
coded as well, as shown in Figure 2.

We ran this informal experiment during four days on the
exhibitor floor of the 2017 IEEE ICASSP conference in New
Orleans.* The players were not formally recruited or charac-
terized, but consisted of conference attendees who for the most
part had some background or experience in speech processing.
Subjects were introduced to the test by explaining the research

3The experimental setup also supports audio playback of the test
utterances. However, this function was not used due to technical diffi-
culties.

background, and were allowed to play as many trials as they
wanted. Out of a total of 353 trials, subjects identified the hu-
man transcript correctly 188 times, for an overall success rate
of 53%. The successes included occasional gimmes like human
misspellings or the asymmetry in the filled pause/backchannel
substitution (which we pointed out to the subjects). According
to a binomial test, this success rate does not differ signficantly
from the 50% chance rate (p ~ 0.12, one-tailed). While this re-
sult is obviously quite preliminary, it was a good demonstration
that it is not easy distinguishing machine from human errors,
even for technically sophisticated observers.

7. Conclusions

We have discussed methodological issues and reported first
findings when comparing automatic conversational speech tran-
scriptions to human performance, using data generated by our
recent efforts to reach human parity in CTS recognition. While
an exact characterization of the human benchmark remains a
moving target that is subject to debate, our results so far have
shown that machine transcription errors track those made by
humans in several important aspects. At the speaker (as well
as corpus) level the two error rates are strongly correlated, sug-
gesting that common underlying factors in the speech data de-
termine transcription difficulty for both humans and ASR sys-
tems. (A detailed characterization of those factors has precedent
in ASR research and should be revisited while also considering
human performance.) A partial overlap of Switchboard train-
ing and test speakers seems to have no major effect on error
rates. We also find that the most frequent error patterns involve
the same short function words and discourse particles for both
humans and machines. The one notable exception is that ASR
tends to confuse filled pauses and backchannels, a functional
distinction that humans need to be very good at pragmatically.
An informal Turing-like test also demonstrated that error pat-
terns in the two types of transcriptions are not obviously distin-
guishable. Overall, we conclude that recent advances in ASR
technology have not only achieved remarkable levels of accu-
racy, but also generate results that are qualitatively surprisingly
similar to professional human transcriber output.
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