
JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 83

IronFleet: Proving Safety
and Liveness of Practical
Distributed Systems
By Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill

DOI:10.1145/3068608

Abstract
Distributed systems are notorious for harboring subtle bugs.
Verification can, in principle, eliminate these bugs, but it
has historically been difficult to apply at full-program scale,
much less distributed system scale. We describe a meth-
odology for building practical and provably correct distrib-
uted systems based on a unique blend of temporal logic of
actions-style state-machine refinement and Hoare-logic
verification. We demonstrate the methodology on a complex
implementation of a Paxos-based replicated state machine
library and a lease-based sharded key-value store. We prove
that each obeys a concise safety specification as well as desir-
able liveness requirements. Each implementation achieves
performance competitive with a reference system. With our
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. INTRODUCTION
Distributed systems are notoriously hard to get right. Protocol
designers struggle to reason about concurrent execution on
multiple machines, which leads to subtle errors. Engineers
implementing such protocols face the same subtleties and,
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints such as "real logs
cannot grow without bound." Thorough testing is consid-
ered best practice, but its efficacy is limited by distributed
systems’ combinatorially large state spaces.

In theory, formal verification can categorically eliminate
errors from distributed systems. However, due to the com
plexity of these systems, previous work has primarily focused
on formally specifying,1, 8, 18 verifying,20 or at least bug-checking9
distributed protocols, often in a simplified form, without
extending such formal reasoning to the implementations. In
principle, one can use model checking to reason about the
correctness of both protocols15 and implementations.17 In
practice, however, model checking is incomplete—the accu-
racy of the results depends on the accuracy of the model—
and does not scale.1

This paper presents IronFleet, the first methodology for
automated machine-checked verification of the safety and
liveness of nontrivial distributed system implementations.
The IronFleet methodology is practical: it supports com-
plex, feature-rich implementations with reasonable perfor-
mance, and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementa-
tion of a distributed system meets a high-level, centralized

specification. For example, a sharded key-value store acts
as a key-value store, and a replicated state machine acts as
a state machine. This guarantee categorically rules out race
conditions, violations of global invariants, integer overflow,
disagreements between packet encoding and decoding, and
bugs in rarely exercised code paths such as failure recovery.
Moreover, it not only rules out bad behavior but also tells us
exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform
incorrect actions; for example, replicated-state-machine lin-
earizability says that clients never see inconsistent results.
A liveness property says that the system eventually performs
a useful action, for example, that it responds to each client
request. In large-scale deployments, ensuring liveness is
critical, since a liveness bug may render the entire system
unavailable.

IronFleet takes the verification of safety properties fur-
ther than prior work (Section 7), mechanically verifying two
full-featured systems. The verification applies not just to
their protocols but to actual imperative implementations
that achieve good performance. Our proofs reason all the
way down to the bytes of the UDP packets sent on the net-
work, guaranteeing correctness despite packet drops, reor-
derings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our
knowledge, IronFleet is the first system to mechanically
verify liveness properties of a practical protocol, let alone an
implementation.

IronFleet achieves comprehensive verification of complex
distributed systems via a methodology for structuring and
writing proofs about them, as well as a collection of generic
verified libraries useful for implementing such systems.
Structurally, IronFleet’s methodology uses a concurrency
containment strategy (Section 3) that blends two distinct
verification styles within the same automated theorem-
proving framework, preventing any semantic gaps between
them. We use temporal logic of actions (TLA)-style state-
machine refinement13 to reason about protocol-level con-
currency, ignoring implementation complexities, then use

The original version of this paper was published as “Iron-
Fleet: Proving Practical Distributed Systems Correct” in
the 25th ACM Symposium on Operating Systems Principles
(SOSP), Oct. 2015.

http://dx.doi.org/10.1145/3068608

research highlights

84 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

Floyd–Hoare-style imperative verification5, 7 to reason about
those complexities while ignoring concurrency. To simplify
reasoning about concurrency, we impose a machine-checked
reduction-enabling obligation on the implementation. Finally,
we structure our protocols using always-enabled actions
(Section 4) to greatly simplify liveness proofs.

To illustrate IronFleet’s applicability, we have built and
proven correct two rather different distributed systems:
IronRSL, a Paxos-based12 replicated-state-machine library,
and IronKV, a sharded key-value store. All IronFleet code is
publicly available.

IronRSL, our first application, has a complex implementa-
tion including many details often omitted by prior work, such
as state transfer, log truncation, dynamic view-change time-
outs, batching, and a reply cache. We prove full functional
correctness and the key liveness property: if the network is
eventually synchronous for a live quorum of replicas, then cli-
ents that persist in sending requests eventually get replies.

Unlike IronRSL, which uses distribution for reliability,
IronKV uses it for improved throughput by moving “hot”
keys to dedicated machines. For IronKV, we prove complete
functional correctness and an important liveness property:
if the network is fair then the reliable-transmission compo-
nent eventually delivers each message.

While verification rules out a host of problems, it is not
a panacea. IronFleet’s correctness relies on several assump-
tions (Section 2.4). Also, verification requires more up-front
development effort: the automated tools we use fill in many
low-level proof steps automatically, but still require consid-
erable assistance from the developer. Finally, we focus on
verifying newly written code in Dafny, a verification-friendly
language (Section 2.2), rather than verifying existing code.

2. BACKGROUND AND ASSUMPTIONS
We briefly describe the existing verification techniques that
IronFleet draws upon, as well as our assumptions.

2.1. State machine refinement
State machine refinement11 is often used to reason about dis-
tributed systems.1, 8, 18 The developer describes the desired
system as a simple abstract state machine with potentially
infinitely many states and with nondeterministic transition
predicates. She then creates a series of increasingly com-
plex (but still declarative) state machines, and proves that
each one refines the one “above” it (Figure 1). State machine
L refines H if each of L’s possible behaviors, that is, each
(potentially infinite) sequence of states the machine may

visit, corresponds to an equivalent behavior of H. State
machine refinement in a distributed-system context (e.g.,
TLA-style refinement13) typically considers declarative speci-
fications, not imperative code.

2.2. Floyd–Hoare verification
Many program verification tools support Floyd–Hoare style5, 7
first-order predicate logic reasoning about imperative pro-
grams. That is, the programmer annotates a program with
assertions about the program’s state, and the verifier checks
that the assertions hold for all possible program inputs. For
example, the code in Figure 2 asserts a condition about its
input via a precondition and asserts a condition about its out-
put via a postcondition.

We use Dafny,14 a high-level language that automates veri-
fication via the Z32 SMT solver. This enables it to fill in many
low-level proofs automatically; for example, it easily verifies
the program in Figure 2 for all possible inputs x without any
assistance.

However, many proposition classes are not decidable in
general, so Z3 uses heuristics. For example, propositions
involving universal quantifiers (∀) and existential quantifiers
(∃) are undecidable. Thus, it is possible to write correct code
in Dafny that the solver nevertheless cannot prove automati-
cally. In such cases, the developer may insert annotations to
guide the verifier’s heuristics to a proof.

Once a program verifies, Dafny compiles it to C# and has
the .NET compiler produce an executable. Other languages
(e.g., C++) are currently unsupported, but it would be pos-
sible to compile Dafny to them to, for example, simplify inte-
gration with existing code. Our previous work6 shows how to
compile Dafny to verifiable assembly to avoid depending on
the Dafny compiler, .NET, and Windows.

Like most verification tools, Dafny only considers one
single-threaded program, not a collection of concurrently
executing hosts. Indeed, some verification experts estimate
that the state-of-the-art in concurrent program verification
lags that of sequential verification by a decade.19

2.3. Temporal logic of actions (TLA)
Temporal logic and its extension TLA11 are standard tools
for reasoning about safety and liveness. Temporal logic for-
mulas are predicates about the system’s current and future
states. The simplest type of formula ignores the future; for
example, a formula P could be “host h holds the lock now.”
Other formulas involve the future; for example, ◊P means
P eventually holds, and P means P holds now and forever.
Thus, ∀h ∈ Hosts: ◊P means that for any host, it is always
true that h will eventually hold the lock.

H0 H1 H2 H3 H4

L0 L1 L2 L3 L4 L5 L6 L7

Figure 1. State machine refinement. The low-level state machine
behavior L0…L7 refines the high-level behavior H0…H4. Each
low-level state corresponds to a high-level state; for each such
correspondence, shown as a dashed line, the two states must satisfy
the spec’s refinement conditions. Each low-level step maps to one
high-level step (e.g., L0→L1 maps to H0→H1) or no high-level steps
(e.g., L2→L3).

method halve(x:int) returns (y:int)
requires x > 0;
ensures y < x;

{
y := x / 2;

}

Figure 2. Simple Floyd–Hoare verification example.

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 85

Although Dafny does not directly support the temporal
logic  and ◊ operators, Dafny’s logic is powerful enough to
encode  and ◊ using universal and existential quantifiers
(∀ and ∃). Section 4 describes our encoding, which is a simple
library written in Dafny that does not require any extensions
to the Dafny language. Thus, we do not need a separate tool
for reasoning about TLA, nor do we modify Dafny; instead,
we use the existing Dafny language to reason about both our
executable implementation and our high-level TLA-style
specifications. Using a single language avoids any semantic
gaps between implementation and specification.

2.4. Assumptions
Our guarantees rely on the following assumptions.

A small amount of our code is assumed, rather than proven,
correct. Thus, to trust the system, a user must read this code.
Specifically, the spec for each system is trusted, as is the
brief main-event loop that runs ImplInit and ImplNext
(see Section 3). We do not assume reliable packet delivery, so
the network may arbitrarily delay, drop, or duplicate packets.
We do assume the network does not tamper with packets, and
that addresses in packet headers are trustworthy. These integ-
rity assumptions can be enforced within, say, a datacenter or
VPN, and could be relaxed by modeling the necessary crypto-
graphic primitives to talk about keys instead of addresses.6

We assume the correctness of Dafny, the .NET compiler
and runtime, and the underlying Windows OS. Our previ-
ous work6 shows how to compile Dafny code into verifiable
assembly code to avoid these dependencies. We also rely on
the correctness of the underlying hardware.

Our liveness properties depend on further assumptions.
For IronRSL, we assume a quorum of replicas run their respec-
tive main loops with a minimum frequency, never running
out of memory, and the network eventually delivers messages
synchronously among them. For IronKV, we assume that
each host’s main loop executes infinitely often and that the
network is fair, that is, a message sent infinitely often is even-
tually delivered.

3. VERIFICATION METHODOLOGY
IronFleet organizes a distributed system’s implemen-
tation and proof into layers (Figure 3), all of which are
expressed in Dafny. This layering avoids the intermin-
gling of subtle distributed protocols with implementation

complexity. At the top (Section 3.1), we write a simple
spec for the system’s behavior. We then write an abstract
distributed protocol layer (Section 3.2) and use TLA-style
techniques to prove that it refines the spec layer (Section 3.3).
Then we write an imperative implementation layer to
run on each host (Section 3.4) and prove that, despite the
complexities introduced when writing real systems code,
the implementation correctly refines the protocol layer
(Section 3.5). Section 4 extends this methodology to live-
ness properties.

To avoid complex reasoning about interleaved execution
of low-level operations at multiple hosts, we use a concurrency
containment strategy: the proofs above assume that every
implementation step performs an atomic protocol step. Since
the real implementation’s execution is not atomic, we use a
verified reduction argument to show that a proof assuming
atomicity is equally valid as a proof for the real system. This
argument imposes a mechanically verified property on the
implementation.

3.1. The high-level spec layer
What does it mean for a system to be correct? One can infor-
mally enumerate properties and hope they suffice to provide
correctness. A more rigorous way is to define a spec, a suc-
cinct description of all allowable behaviors of the system,
and prove that an implementation always generates outputs
consistent with the spec.

With IronFleet, the developer writes the system’s spec as
a state machine expressed in Dafny (Section 2.2): starting
with some initial state, the spec succinctly describes how
that state can be transformed. The spec defines the state
machine via three predicates, that is, functions that return
true or false. SpecInit describes acceptable starting states,
SpecNext describes acceptable ways to move from an old
to a new state, and SpecRelation describes the required
conditions on the relation between an implementation state
and its corresponding spec state. For instance, in Figure 3,
SpecInit constrains H0, SpecNext constrains steps such
as H0→H1 and H1→H2, and SpecRelation constrains
corresponding state pairs such as (I1, H1) and (I3, H2). To
avoid unnecessary constraints on implementations of the
spec, SpecRelation should only talk about the externally
visible behavior of the implementation, for example, the set
of messages it has sent so far.

As a toy example, the Dafny spec in Figure 4 describes a
simple distributed lock service with a single lock that passes
among the hosts. It defines the system’s state as a history: a
sequence of host IDs such that the nth host in the sequence
held the lock in epoch n. Initially, this history contains one
valid host. The system can step from an old state to a new
state by appending a valid host to the history. An implemen-
tation is consistent with the spec if all lock messages for
epoch n come from the nth host in the history.

By keeping the spec simple, a skeptic can study the spec to
understand the system’s properties. In our example, she can
easily conclude that the lock is never held by more than one
host. Since the spec captures all permitted system behaviors,
she can later verify additional properties of the implementa-
tion just by verifying they are implied by the spec.

I0 I1 I2 I3

H0 H1 H2

P0 P1 P2 P3

High-level spec (Section 3.1)

Distributed protocol (Section 3.2)

Implementation (Section 3.4)

refinement (Section 3.3)

refinement (Section 3.5)

Figure 3. Verification overview. IronFleet divides a distributed
system into carefully chosen layers. We use TLA-style verification
to prove that any behavior of the protocol layer (e.g., P0…P3) refines
some behavior of the high-level spec (e.g., H0…H2). We then use
Floyd–Hoare style to prove that any behavior of the implementation
(e.g., I0…I3) refines a behavior of the protocol layer.

research highlights

86 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

HostInit, exactly one host is given the lock via the held
parameter. HostNext then says that a host may step from
an old to a new state, given some incoming and outgoing
packets, if the new state is the result of one of two actions,
each represented by its own predicate. The two actions are
giving away the lock (HostGrant) and receiving the lock
from another host (HostAccept). A host may grant the lock
if in the old state it holds the lock, and if in the new state it
no longer holds it, and if the outbound packet (spkt) repre-
sents a transfer message to another host. Accepting a lock is
analogous.

3.3. Connecting protocol to specification
The first major theorem we prove about each system is

that the distributed protocol layer refines the high-level
spec layer; that is, given a behavior of IronFleet’s distributed
system in which N hosts take atomic protocol steps defined
by HostNext, we provide a corresponding behavior of the
high-level state machine spec.

We use the standard approach to proving refinement,
as illustrated in Figure 3. First, we define a protocol abstrac-
tion function PAbs that takes a state of the distributed pro-
tocol state machine and returns the corresponding state
of the centralized spec. We could use a relation instead of
a function, but the proof is easier with a function. Second,
we prove that PAbs of the initial state of the distributed
protocol satisfies SpecInit. Third, we prove that if a step
of the protocol takes the state from ps_old to ps_new,
then either PAbs(ps_old) = PAbs(ps_new) or SpecNext
(PAbs(ps_old), PAbs(ps_new)).

The challenge of proving the protocol-to-spec theorem
comes from reasoning about global properties of the dis-
tributed system. One key tool is to establish invariants:
predicates that should hold throughout the execution of
the distributed protocol. In the lock example, we might use

3.2. The distributed-protocol layer
At the untrusted distributed-protocol layer, the IronFleet
methodology introduces the concept of independent hosts
that communicate only via network messages. To man-
age the subtle concurrency, we keep this layer simple and
abstract.

In more detail, we formally specify, in Dafny, a distributed
system state machine. This state machine consists of N host
state machines and a set of network packets. In each step
of the distributed system state machine, one host’s state
machine takes a step, allowing it to atomically read mes-
sages from the network, update its state, and send messages
to the network; our reduction argument relaxes this atomic-
ity assumption (see full paper).

The developer must specify each host’s state machine:
the structure of the host’s local state, how that state is ini-
tialized (HostInit), and how it is updated (HostNext).
Within the protocol layer, IronFleet reduces the developer’s
effort in the following three ways.

First, we use a simple, abstract style for the host state
and network interface; for example, the state uses un
bounded mathematical integers (ignoring overflow issues),
unbounded sequences of values (e.g., tracking all messages
ever sent or received), and immutable types (ignoring mem-
ory management and heap aliasing). The network allows
hosts to send and receive high-level, structured packets,
hence excluding the challenges of marshalling and pars-
ing from this layer.

Second, we use a declarative predicate style. In other
words, HostNext merely describes how host state can
change during each step; it gives no details about how
to effect those changes, let alone how to do so with good
performance.

Third, from the protocol’s perspective, each of the steps
defined above takes place atomically, greatly simplifying the
proof that the protocol refines the spec layer (Section 3.3). In
our reduction argument we connect this atomicity-assuming
proof to a real execution.

Continuing our lock example, the protocol layer might
define a host state machine in Dafny as in Figure 5. During
the distributed system’s initialization of each host via

datatype SpecState = SpecState(history:seq<HostId>)

predicate SpecInit(ss:SpecState) {
|ss.history|==1 && ss.history[0] in AllHostIds()

}

predicate SpecNext(ss_old:SpecState,
ss_new:SpecState) {

exists new_holder :: new_holder in AllHostIds() &&
ss_new.history == ss_old.history + [new_holder]

}

predicate SpecRelation(is:ImplState,ss:SpecState) {
forall p :: p in is.sentPackets && p.msg.lock? ==>

p.src == ss.history[p.msg.epoch]
}

Figure 4. A toy lock specification. Figure 5. Simplified host state machine for a lock service.

datatype Host = Host(held:bool,epoch:int)

predicate HostInit(s:Host,id:HostId,held:bool) {
s.held==held && s.epoch==0

}

predicate HostGrant(s_old:Host,s_new:Host,
spkt:Packet) {

s_old.held && !s_new.held && spkt.msg.transfer?
&& spkt.msg.epoch == s_old.epoch+1

}

predicate HostAccept(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet) {

!s_old.held && s_new.held && rpkt.msg.transfer?
&& s_new.epoch == rpkt.msg.epoch == spkt.msg.epoch
&& rpkt.msg.epoch > s_old.epoch && spkt.msg.lock?

}

predicate HostNext(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet) {

HostGrant(s_old,s_new,spkt)
|| HostAccept(s_old,s_new,rpkt,spkt)

}

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 87

We then use our proof about one host implementa-
tion to prove that a distributed system comprising N host
implementations, which is what we actually intend to run,
refines the distributed protocol of N hosts. We use an imple-
mentation abstraction function IAbs that maps states of
the distributed implementation to states of the distributed
protocol. The refinement proof is largely straightforward
because each step of the distributed implementation in
which a host executes ImplNext corresponds to one step
of the distributed protocol where a host takes a HostNext
step. The difficult part is proving that the network state in
the distributed system implementation refines the net-
work state in the protocol layer. Specifically, we must prove
that every send or receive of a UDP packet corresponds to a
send or receive of an abstract packet. This involves proving
that when host A marshals a data structure into an array of
bytes and sends it to host B, B parses out the identical data
structure.

The last major theorem we prove is that the distributed
implementation refines the abstract centralized spec. For
this, we use the abstraction functions from our two major
refinement theorems, composing them to form our final
abstraction function PAbs(IAbs(·) ). The key part of
this proof is establishing that the specified relation condi-
tions hold, that is, that for all implementation states is,
SpecRelation (is, PAbs (IAbs (is) ) ) holds.

4. VERIFYING LIVENESS
Section 3 describes the high-level spec as a state machine.
Such a spec says what the implementation must not do: it must
never deviate from the state machine’s behavior. However,
we also often want to specify what the implementation must
do; properties of this form are called liveness properties. For
example, we might specify that the lock implementation
eventually grants the lock to each host (Figure 7). Thus, a

the invariant that the lock is either held by exactly one host
or granted by one in-flight lock-transfer message. We can
prove this invariant inductively by showing that every proto-
col step preserves it. Showing refinement of the spec is then
simple.

3.4. The implementation layer
Unlike in the declarative protocol layer, in the implemen-

tation layer the developer writes single-threaded, imperative
code to run on each host. This code must cope with all of the
ugly practicalities we abstracted away in the protocol layer.
For instance, it must handle real-world constraints on how
hosts interact: since network packets must be bounded-
sized byte arrays, we need to prove the correctness of our
routines for marshalling high-level data structures into
bytes and for parsing those bytes. We also write the imple-
mentation with performance in mind by, for example, using
mutable arrays instead of immutable sequences and using
uint64s instead of infinite-precision integers. The latter
requires us to prove the system correct despite the potential
for integer overflow.

Dafny does not natively support networking, so we
extend the language with a trusted UDP specification that
exposes Init, Send, and Receive methods. For example,
Send expects an IP address and port for the destination
and an array of bytes for the message body. When compiled,
calls to these Dafny methods invoke the .NET UDP network
stack.

The trusted network interface maintains a ghost vari-
able (a variable used only for verification, not execution)
that represents a “journal” of every Send and Receive that
the implementation might make, including all of the argu-
ments and return values. We use this journal when connect-
ing the implementation to the protocol.

3.5. Connecting implementation to protocol
The second major theorem we prove about each IronFleet
system is that the implementation layer correctly refines
the protocol. To do this, we prove that even though the
implementation operates on concrete local state, which
uses heap-dependent, bounded representations, it is still a
refinement of the protocol layer, which operates on abstract
types and unbounded representations.

First, we prove that the host implementation refines the
host state machine described in the protocol layer. This
refinement proof is analogous to the one in Section 3.3,
though simplified by the fact that each step in the imple-
mentation corresponds to exactly one step of the host state
machine. We define an abstraction function HAbs that
maps a host’s implementation state to a host protocol state.
As shown in Figure 6, we prove that the code ImplInit,
which initializes the implementation state, ensures
HostInit for the abstraction of that state. Similarly, we
prove that the code ImplNext, which executes one host
step, ensures HostNext. Note that HostNext refers to the
journal of network events, thus connecting the implemen-
tation’s low-level network actions to the protocol’s abstract
description of how the host should handle packets it sends
and receives.

method Main() {
var s := ImplInit();
assert HostInit(HAbs(s));
while (true)
invariant ImplInvariant(s);

{
ghost var journal_old := get_event_journal();
ghost var old_s := s;
ghost var ios_performed:seq<IoEvent>;
s, ios_performed := ImplNext(old_s);
assert HostNext(HAbs(old_s), HAbs(s), ios_performed);
assert get_event_journal() ==

journal_old + ios_performed;
assert ReductionObligation(ios_performed);

}
}

Figure 6. Mandatory host event-handler loop.

predicate LockBehaviorFair(b:map<int,SpecState>) {
forall h:Host, i:int :: h in AllHostIds()&& i >= 0
==> exists j :: j >= i && h == last(b[j].history)

}

Figure 7. Desired liveness property for the lock service.

research highlights

88 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

step j for one formula, such as ◊Q, the heuristic requests
that the solver also consider j as a candidate step for other
formulas starting with  or ◊, such as P and ◊ (P ∧ Q).
This allows the solver to automatically prove formulas like
(◊Q) ∧ (P) ⇒ ◊ (P ∧ Q).

This heuristic is effective enough to automatically
prove 40 fundamental TLA proof rules, that is, rules for
deriving one formula from other formulas.11 The heuris-
tic allows us to prove complicated rules efficiently; for
example, we state and prove a key rule about invariants
in only 27 lines of Dafny, and a key rule about fairness in
only 16 lines. Our liveness proofs then use these funda-
mental proof-rule lemmas to justify temporal formula
transformations.

4.2. Always-enabled actions
Liveness properties depend on fairness assumptions, that
is, assumptions that the underlying environment will
enable progress. For instance, in IronRSL our liveness
property depends on a quorum of participants continu-
ing to run, and on the network delivering packets among
that quorum and the client in a timely fashion. Fairness
assumptions let us prove fairness properties: properties
indicating that our protocol makes progress. An example
fairness property is “Each host executes HostGrant infi-
nitely often.”

Lamport13 suggests that fairness properties take the form
“if action A becomes always enabled, that is, always possible
to do, the implementation must eventually do it.” However,
reasoning about such properties is challenging. For instance,
it is difficult to verify that an implementation’s scheduler
really has such a property. Also, to use such a property one
must prove that A will always be enabled as long as some
condition C holds, that is, that ∀s. C(s) ⇒ ∃s′ | A(s, s′). Proving
statements with alternating universal and existential quan-
tifiers is notoriously challenging for automated theorem
provers.

We thus adopt always-enabled actions; that is, we only
use actions that are always possible to do. For instance, we
would not use HostGrant from Figure 5 since it is impos-
sible to perform without the lock. Instead, we might use “if
you hold the lock, grant it to the next host; otherwise, do
nothing,” which can always be done. This means we can
write a method that always does HostGrant no matter
what state the host is in. Then, the fairness property “Each
host executes HostGrant infinitely often” can be proven
by showing that each host runs the method infinitely
often; we accomplish this by invoking HostGrant inside
a round-robin scheduler that itself sits inside an infinite
loop.

Since our approach deviates from Lamport’s standard
fairness formulas, it can admit specifications that are not
machine closed.13 Machine closure ensures that liveness
conditions do not combine with safety conditions to cre-
ate an unimplementable spec, such as that the imple-
mentation must both grant a lock (to be fair) and not
grant a lock (to be safe, because it does not hold the lock).
Fortunately, machine closure is no concern in IronFleet:
the existence of an implementation that meets a fairness

spec will typically include not just a state machine but also
liveness properties.

Some researchers have proposed heuristics for detect-
ing and quashing likely sources of liveness violations,9 but
it is better to definitively prove their absence. With such a
proof, we do not have to reason about, for example, dead-
lock or livelock; such conditions and any others that can
prevent the system from making progress are provably
ruled out.

Liveness properties are much harder to verify than safety
properties. Safety proofs need only reason about two system
states at a time: if each step between two states preserves
the system’s safety invariants, then we can inductively
conclude that all behaviors are safe. Liveness, in contrast,
requires reasoning about infinite series of system states.
Such reasoning creates challenges for automated theorem
provers (Section 4.2), often causing the prover to time out
rather than return a successful verification or a useful error
message.

With IronFleet, we address these challenges by writing
a library in Dafny that defines standard TLA operators and
proves standard TLA rules from first principles. This library
is a useful artifact for proving liveness properties of arbitrary
distributed systems: its rules allow both the human devel-
oper and Dafny to operate at a high level by taking large
proof steps with a single call to a lemma from the library.
Finally, by structuring our protocols with always-enabled
actions, we significantly simplify the task of proving liveness
properties.

4.1. TLA library
As discussed in Section 2.3, TLA11 is a standard mathe-
matical formalism for reasoning about liveness. IronFleet
encodes TLA in Dafny by expressing a TLA behavior, an
infinite sequence of system states, as a Dafny mapping
b from integers to states, where b[0] is the initial state
and b[i] is the ith subsequent state. A liveness property
is a constraint on the behavior of the state machine. For
example, the Dafny code in Figure 7 says that for every
host h, there is always a later time when h will hold the
lock.

Our encoding hides key definitions from the prover
except where truly needed, and instead provides verified
lemmas that relate them to one another. For example, we
represent temporal logic formulas as opaque objects (i.e.,
objects Dafny knows nothing about) of type temporal, and
TLA transformations like  as functions that convert tem-
poral objects to temporal objects.

Of course, in some contexts we actually do need to rea-
son about the internal meaning of  and ◊. State-of-the-
art SMT solvers, such as Z3, do not yet provide decision
procedures for temporal operators like  and ◊ directly.
However, we can encode these operators using explicit
quantification over steps:  universally quantifies over
all future steps, while ◊ existentially quantifies over some
future step. We can then provide the SMT solver with heu-
ristics to control these quantifiers using the solver’s sup-
port for triggers.3 One simple heuristic proved effective in
many situations: when the solver is considering a future

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 89

property is itself proof that the property does not prevent
implementation!

4.3. Liveness proof strategies
Most of a liveness proof involves demonstrating that if
some condition Ci holds then eventually another condi-
tion Ci+1 holds. By chaining such proofs together, we can
prove that if some assumed initial condition C0 holds then
eventually some useful condition Cn holds. For instance,
in IronRSL, we prove that if a replica receives a client’s
request, it eventually suspects its current view; if it sus-
pects its current view, it eventually sends a message to the
potential leader of a succeeding view; and, if the potential
leader receives a quorum of suspicions, it eventually starts
the next view.

Most steps in this chain require an application of a vari-
ant of Lamport’s WF1 rule.11 This variant involves a starting
condition Ci, an ending condition Ci+1, and an always-enabled
action predicate Action. It states that Ci leads to Ci+1 if the
following three requirements are met:

1.  If Ci holds, it continues to hold as long as Ci+1 does
not.

2.  If a transition satisfying Action occurs when Ci holds,
it causes Ci+1 to hold.

3.  Transitions satisfying Action occur infinitely often.

We use this in Dafny as follows. Suppose we need a
lemma that shows Ci leads to Ci+1. We first find the action
transition Action intended to cause this. We then estab-
lish each of requirements 1 and 2 with an invariant proof
that considers only pairs of adjacent steps. We then estab-
lish requirement 3, a fairness property, as discussed in
Section 4.2. Finally, having established the three precondi-
tions for the WF1 lemma from our verified library, we call
that lemma.

5. SYSTEM IMPLEMENTATION
We use the IronFleet methodology to implement two prac-
tical distributed systems. All IronFleet code is publicly
available.

5.1. IronRSL
IronRSL replicates a deterministic application on multiple
machines to make that application fault-tolerant. Such
replication is commonly used for critical services, such
as Chubby and Zookeeper, on which many other services
depend.

IronRSL guarantees safety and liveness while support-
ing complex implementation features. For instance, it uses
batching to amortize consensus costs, log truncation to
constrain memory usage, and state transfer to let nodes
recover from extended network disconnection. The spec for
IronRSL is simply linearizability: it must generate the same
outputs as a system that runs the application sequentially
on a single node. Our implementation achieves lineariz-
ability via the MultiPaxos12 consensus protocol. It is worth
noting that our spec does not enforce exactly once seman-
tics, as it is a matter of much debate whether linearizability

implies such semantics or not. If required, exactly-once
semantics can be implemented—and formally proven—at
the application level. We also prove that our implementa-
tion is live: if a client repeatedly sends a request to all rep-
licas, it eventually receives a reply. No consensus protocol
can be live under arbitrary conditions,4 so we prove liveness
of IronRSL under a set of fairness assumptions about the
network and nodes.

5.2. IronKV
IronKV uses distribution for a completely different pur-
pose: to scale its throughput by dynamically sharding a
key-value store across a set of nodes. The high-level spec
of IronKV’s state machine is concise: it is simply a map
(Figure 8).

In IronKV’s distributed-protocol layer, each host’s state
consists of a map storing a subset of the key space and a
“delegation map” mapping each key to the host respon-
sible for it. To gain throughput and to relieve hot spots,
IronKV allows an administrator to delegate key ranges to
other hosts. When a host receives such an order, it sends
the corresponding key-value pairs to the intended recipi-
ent and updates its delegation map to reflect the new
owner. If such a message is lost, the protocol layer can-
not be shown to refine the high-level spec, since the cor-
responding key-value pairs vanish. To avoid this, we design
a reliable-transmission component that requires each host
to acknowledge messages it receives, track its own set of
unacknowledged messages, and periodically resend them.
We prove desirable safety and liveness properties of this
component.

We then prove a key invariant—every key is claimed
either by exactly one host or in-flight packet—that we use
in conjunction with the semantics ensured by the reliable-
transmission component to show that the protocol layer
refines the high-level spec. Finally, we implement the proto-
col and prove it refines the protocol layer.

Figure 8. Complete high-level spec for IronKV state machine.

type Map = map<Key,Value>
type OptValue = ValuePresent(v:Value) | ValueAbsent

predicate SpecInit(h:Map) {
h == map []

}

predicate Set(h:Map,h’:Map,
k:Key,ov:OptValue) {

h’ == if ov.ValuePresent? then h[k := ov.v]
else map ki | ki in h && ki!=k :: h[ki]

}

predicate Get(h:Map,h’:Map,
k:Key,ov:OptValue) {

h’ == h && ov == if k in h then ValuePresent(h[k])
else ValueAbsent()

}

predicate SpecNext(h:Map,h’:Map) {
exists k, ov :: Set(h,h’,k,ov) || Get(h,h’,k,ov)

}

research highlights

90 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

In exchange for this effort, IronFleet produces a provably
correct implementation with desirable liveness properties.
Indeed, except for unverified components like our C# client,
both IronRSL (including view changes, log truncation, etc.)
as well as IronKV (including delegation and reliable delivery)
worked the first time we ran them.

6.2. Performance
We run IronRSL on three replicas on three separate machines,
each equipped with an Intel Xeon 2.13 GHz processor and
connected over a 1 Gbps network. Our IronKV experiments
use two such machines connected over a 10 Gbps network.
In all our experiments the bottleneck was the CPU (not the
memory, disk, or network).

IronRSL. Workload is offered by 1–256 parallel client
threads, each making a serial request stream and mea-
suring latency. As an unverified baseline, we use the
MultiPaxos Go-based implementation from the EPaxos
codebase.16 For both systems, we measure with and without
batching, and we use the same application state machine:
it maintains a counter and it increments the counter for
every client request. Figure 9 summarizes our results. We
find that IronRSL’s peak throughput is within 2.4× of the
baseline.

IronKV. To measure the throughput of IronKV, we pre-
load the server with 1000 keys, then run a client with 1–256
parallel threads; each thread generates a stream of Get
(or Set) requests in a closed loop. As an unverified baseline,
we use Redis, a popular key/value store written in C and C++,
with the client-side write buffer disabled. For both systems,
we use 64-bit unsigned integers as keys and byte arrays of
varying sizes as values. Figure 10 summarizes our results.
We find that IronKV’s performance is competitive with that
of Redis.

While our systems achieve respectable performance,
they do not yet match that of the unverified baselines.
Since verifying mutable data structures is challenging, we
sometimes employ immutable data structures instead;
our measurements indicate that these create signifi-
cant bottlenecks. The baselines we compare against are
highly optimized; we have also optimized our code, but
each optimization must be proven correct rather than just
implemented and tested. Hence, given a fixed time bud-
get, IronFleet may produce fewer optimizations. IronFleet
also suffers from compiling to C#, which imposes run-time

5.3. Common libraries
We wrote several libraries when building IronRSL and
IronKV.

Marshalling and parsing. All distributed systems need
to marshal and parse network packets, a tedious task
prone to bugs. Hence, we have written and verified a generic
grammar-based parser and marshaller to hide this pain
from developers. For each distributed system, the developer
specifies a high-level grammar for her messages. The library
automatically converts byte arrays to and from a datatype
conforming to the grammar.

Collection properties. We have developed a library prov-
ing many useful relationships about collections such as
sequences, sets, maps, etc. These are common for reason-
ing about distributed systems, for example, to reason about
whether a set of nodes form a quorum.

Generic refinement. We also built a library for reasoning
about refinement between collections, for example, to prove
the refinement from protocol-layer collections containing
abstract node identifiers to implementation-layer collec-
tions containing IP addresses.

6. EVALUATION
IronFleet’s premise is that automated verification is a
viable engineering approach, ready for developing real dis-
tributed systems. We evaluate that hypothesis by answer-
ing the following questions: (1) How does verification
affect the development of distributed systems? (2) How
does the performance of a verified system compare with an
unverified one?

6.1. Developer experience
To assess practicality, we evaluate the developer experi-
ence as well as the effort required to produce verified sys-
tems. The experience of producing verified software shares
some similarities with that of unverified software. Dafny pro-
vides near-real-time integrated development environment
feedback. Hence, as the developer writes a given method
or proof, she typically sees feedback in 1–10 s indicating
whether the verifier is satisfied. To ensure the entire system
verifies, our build system tracks dependencies across files
and outsources, in parallel, each file’s verification to a cloud
virtual machine. Thus, while a full integration build done
serially requires 6 h, in practice, the developer rarely waits
more than 6–8 min, which is comparable to a traditional
large system integration build and test pass.

An IronFleet developer must write a formal trusted spec,
a distributed protocol layer, and proof annotations to
help the verifier see the refinements between them. Table 1
quantifies this effort by reporting the amount of proof
annotation required for each layer of the system. We count
all non-spec, non-executable code as proof annotation; this
includes, for example, preconditions and postconditions,
loop invariants, and all lemmas and invocations thereof.
Our ratio of proof annotation to implementation is 7.7:1
(5.4:1 if liveness proof annotations are excluded). In total,
developing the IronFleet methodology and applying it to
build and verify two real systems required approximately 3.7
person-years.

Table 1. Code sizes and verifi cation times

Spec Impl Proof Time to verify
 Source lines of code (minutes)

High-level spec 327

Distributed protocol
IronRSL 202 – 12,450 145
IronKV 134 – 6817 37
TLA library – – 1824 2

Implementation 737 5114 18,162 207

Total 1400 5114 39,253 395

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 91

implementation in a simplified environment into an equ
ivalent implementation that is robust in a more hostile
environment, offering a clean approach to composition.
Unlike IronRSL, Verdi does not prove any liveness proper-
ties and its current implementation of Raft does not sup-
port verified marshalling and parsing, state transfer, log
truncation, dynamic view-change timeouts, a reply cache,
or batching.

8. SUMMARY AND FUTURE WORK
The IronFleet methodology slices a system into specific
layers to make verification of practical distributed system
implementations feasible. The high-level spec gives the
simplest description of the system’s behavior. The proto-
col layer deals solely with distributed protocol design; we
connect it to the spec using TLA+13 style verification. At the
implementation layer, the programmer reasons about a
single-host program without worrying about concurrency.
Reduction and refinement tie these individually feasible
components into a methodology that scales to practically-
sized concrete implementations. This methodology admits
conventionally structured implementations capable of
processing up to 18,200 requests/s (IronRSL) and 28,800
requests/s (IronKV), performance competitive with unveri-
fied reference implementations.

In the future, we plan to address two of IronFleet’s
limitations. First, the performance of even state-of-the-
art verification tools limits the scale of the systems we
can easily verify. For instance, for every system invari-
ant, we must prove that no action can invalidate that
invariant. Automated reasoning handles this with little
developer burden when there are tens of actions, but
likely not when there are thousands. To fix this, we will
require stronger modularity, for example, to enable effi-
cient verification that one component’s actions do not
interfere with another component’s invariants. Another
limitation of IronFleet is that it allows concurrency only
among processes, not among threads that share memory.
The software verification community provides a variety of
approaches, such as ownership and separation logic, to
address this problem. We plan to make such approaches
practical in the context of automated verification of large-
scale systems.�

overhead to enforce type safety on code that provably
does not need it.

7. RELATED WORK
The recent increase in the power of software verification has
emboldened several research groups to use it to prove the
correctness of single-machine implementations, for exam-
ple, the seL4 microkernel.10 Our Ironclad project6 shows
how to completely verify the security of sensitive services all
the way down to the assembly code.

Distributed systems are known to harbor subtle design
and implementation errors. Researchers have recently
started generating machine-checkable proofs of correctness
for their protocols, since paper proofs, no matter how for-
mal, can contain serious errors.25 In some cases, the proof of
correctness encompasses the implementation, as well. In all
cases, the systems proven correct have been much smaller
and simpler than ours.

Ridge21 proves the correctness of a persistent message
queue; however, his system is substantially smaller in
scale than ours and has no proven liveness properties.
Schiper et al.22 verify the correctness, but no liveness
properties, of a Paxos implementation. However, they
do not verify the state machine replication layer of this
Paxos implementation, only the consensus algorithm,
ignoring complexities such as state transfer. In contrast
to IronFleet, which exploits multiple levels of abstraction
and refinement, their approach posits a language below
which all code generation is automatic, and above which
a human can produce a one-to-one refinement. It is
unclear if this approach will scale up to complex distrib-
uted systems.

Verdi23,24 implements verified distributed systems.
Its verified system transformers convert a developer’s

References

	 1.	 Bolosky, W.J., Douceur, J.R., Howell, J.
The Farsite project: a retrospective.
ACM SIGOPS Oper. Syst. Rev. 41, 2
(Apr. 2007), 17–26.

	 2.	 de Moura, L.M., Bjørner, N. Z3:
An efficient SMT solver. In
Proceedings of the Conference
on Tools and Algorithms for the
Construction and Analysis of
Systems (2008).

	 3.	 Detlefs, D., Nelson, G., Saxe, J.B.
Simplify: A theorem prover for
program checking. J. ACM 52 (2003),
365–473.

	 4.	 Fischer, M.J., Lynch, N.A., Paterson, M.S.
Impossibility of distributed
consensus with one faulty process.
J. ACM 32, 2 (Apr. 1985), 374–382.

	 5.	 Floyd, R. Assigning meanings to
programs. In Proceedings of Symposia

in Applied Mathematics (1967).
American Mathematical Society,
19–32.

	 6.	 Hawblitzel, C., Howell, J., Lorch, J.R.,
Narayan, A., Parno, B., Zhang, D.,
Zill, B. Ironclad apps: End-to-end
security via automated full-system
verification. In Proceedings of
USENIX OSDI (Oct. 2014).

	 7.	 Hoare, T. An axiomatic basis for
computer programming. Commun.
ACM 12 (1969), 576–580.

	 8.	 Joshi, R., Lamport, L., Matthews, J.,
Tasiran, S., Tuttle, M., Yu, Y. Checking
cache coherence protocols with
TLA+. J. Formal Methods Syst. Des.
22, 2 (2003), 125–131.

	 9.	 Killian, C.E., Anderson, J.W., Braud, R.,
Jhala, R., Vahdat, A.M. Mace:
Language support for building

Figure 10. IronKV’s performance is competitive with Redis, an
unverified key-value store. Results averaged over three trials.

10
20
30
40
50

128B 1KB
Get

8KB 128B 1KB
Set

8KB

P
ea

k
th

ro
ug

hp
ut

(k
ilo

 r
eq

s/
se

c)

 IronKV
Redis

10
20
30
40
50

no-batch batch

P
ea

k
th

ro
ug

hp
ut

(k
ilo

 r
eq

s/
se

c) IronRSL
Baseline

Figure 9. IronRSL’s performance is competitive with an unverified
MultiPaxos system. Results averaged over three trials.

research highlights

92 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

distributed systems. In Proceedings
of ACM PLDI (2007).

10.	 Klein, G., Andronick, J.,
Elphinstone, K., Murray, T., Sewell, T.,
Kolanski, R., Heiser, G. Comprehensive
formal verification of an OS
microkernel. ACM Trans. Comput.
Syst. 32, 1 (2014), 1–70.

11.	 Lamport, L. The temporal logic
of actions. ACM Trans. Program.
Lang. Syst. 16, 3 (May 1994),
872–923.

12.	 Lamport, L.. The part-time
parliament. ACM Trans. Comput.
Syst. 16, 2 (May 1998), 133–169.

13.	 Lamport, L. Specifying Systems:
The TLA+ Language and Tools
for Hardware and Software
Engineers. Addison-Wesley, Boston,
MA, 2002.

14.	 Leino, K.R.M. Dafny: An automatic
program verifier for functional
correctness. In Proceedings of the
LPAR Conference (2010).

15.	 Lu, T., Merz, S., Weidenbach, C.,
Bendisposto, J., Leuschel, M.,
Roggenbach, M., Margaria, T.,
Padberg, J., Taentzer, G., Lu, T.,
Merz, S., Weidenbach, C. Model
checking the Pastry routing protocol.
In 10th International Workshop
Automated Verification of Critical
Systems (Düsseldorf, Germany, Sep.
2010).

16.	 Moraru, I., Andersen, D.G.,
Kaminsky, M. There is more
consensus in egalitarian parliaments.
In Proceedings of the ACM SOSP
(2013).

17.	 Musuvathi, M., Park, D., Chou, A.,
Engler, D., Dill, D.L. CMC: A pragmatic
approach to model checking real code.
In Proceedings of the Fifth Symposium
on Operating Systems Design and
Implementation (2002).

18.	 Newcombe, C., Rath, T., Zhang, F.,
Munteanu, B., Brooker, M., Deardeuff, M.
How Amazon Web Services uses
formal methods. Commun. ACM 58, 4
(Apr. 2015), 66–73.

19.	 Parkinson, M. The next 700 separation
logics. In Proceedings of IFIP VSTTE
(Aug. 2010).

20.	 Pek, E., Bogunovic, N. Formal
verification of communication
protocols in distributed systems.
In Proceedings of the Joint
Conferences on Computers in
Technical Systems and Intelligent
Systems, MIPRO (2003).

21.	 Ridge, T. Verifying distributed
systems: The operational approach.
In Proceedings of the ACM POPL
(Jan. 2009).

22.	 Schiper, N., Rahli, V., van Renesse, R.,
Bickford, M., Constable, R. Developing
correctly replicated databases using
formal tools. In Proceedings of IEEE/
IFIP DSN (June 2014).

23.	 Wilcox, J.R., Woos, D., Panchekha, P.,
Tatlock, Z., Wang, X., Ernst, M.D.,
Anderson, T. Verdi: A framework for
implementing and formally verifying
distributed systems. In Proceedings
of ACM PLDI (June 2015).

24.	 Woos, D., Wilcox, J.R., Anton, S.,
Tatlock, Z., Ernst, M.D., Anderson, T.
Planning for change in a formal

Chris Hawblitzel, Manos Kapritsos,
Jacob R. Lorch, Bryan Parno, Michael
L. Roberts, Srinath Setty, and Brian
Zill ({chrishaw, emkaprit, lorch, parno,

mirobert, srinath, bzill}@microsoft.com),
Microsoft Research.

Jon Howell (jonh@jonh.net), Google.

verification of the Raft consensus
protocol. In ACM Conference on
Certified Programs and Proofs (CPP)
(Jan. 2016).

25.	 Zave, P. Using lightweight modeling
to understand Chord. ACM SIGCOMM
Comput. Comm. Rev. 42, 2
(Apr. 2012), 49–57.

© 2017 ACM 0001-0782/17/07 $15.00

Watch the authors discuss their work in
this exclusive Communications video.
https://cacm.acm.org/videos/ironfleet

2014 Dissertation Award Winner,
revised and updated.

This book proposes an architecture for cluster
computing systems that can tackle emerging data
processing workloads at scale. Today, a myriad data
sources, from the Internet to business operations to
scientific instruments, produce large and valuable
data streams. However, the processing capabilities
of single machines have not kept up with the size of
data. As a result, organizations increasingly need to
scale out their computations over clusters.

