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Abstract
Distributed systems are notorious for harboring subtle bugs. 
Verification can, in principle, eliminate these bugs, but it 
has historically been difficult to apply at full-program scale, 
much less distributed system scale. We describe a meth-
odology for building practical and provably correct distrib-
uted systems based on a unique blend of temporal logic of 
actions-style state-machine refinement and Hoare-logic 
verification. We demonstrate the methodology on a complex 
implementation of a Paxos-based replicated state machine 
library and a lease-based sharded key-value store. We prove 
that each obeys a concise safety specification as well as desir-
able liveness requirements. Each implementation achieves 
performance competitive with a reference system. With our 
methodology and lessons learned, we aim to raise the stan-
dard for distributed systems from “tested” to “correct.”

1. INTRODUCTION
Distributed systems are notoriously hard to get right. Protocol 
designers struggle to reason about concurrent execution on 
multiple machines, which leads to subtle errors. Engineers 
implementing such protocols face the same subtleties and, 
worse, must improvise to fill in gaps between abstract proto-
col descriptions and practical constraints such as "real logs 
cannot grow without bound." Thorough testing is consid-
ered best practice, but its efficacy is limited by distributed 
systems’ combinatorially large state spaces.

In theory, formal verification can categorically eliminate 
errors from distributed systems. However, due to the com
plexity of these systems, previous work has primarily focused 
on formally specifying,1, 8, 18 verifying,20 or at least bug-checking9 
distributed protocols, often in a simplified form, without 
extending such formal reasoning to the implementations. In 
principle, one can use model checking to reason about the 
correctness of both protocols15 and implementations.17 In 
practice, however, model checking is incomplete—the accu-
racy of the results depends on the accuracy of the model—
and does not scale.1

This paper presents IronFleet, the first methodology for 
automated machine-checked verification of the safety and 
liveness of nontrivial distributed system implementations. 
The IronFleet methodology is practical: it supports com-
plex, feature-rich implementations with reasonable perfor-
mance, and a tolerable proof burden.

Ultimately, IronFleet guarantees that the implementa-
tion of a distributed system meets a high-level, centralized 

specification. For example, a sharded key-value store acts 
as a key-value store, and a replicated state machine acts as 
a state machine. This guarantee categorically rules out race 
conditions, violations of global invariants, integer overflow, 
disagreements between packet encoding and decoding, and 
bugs in rarely exercised code paths such as failure recovery. 
Moreover, it not only rules out bad behavior but also tells us 
exactly how the distributed system will behave at all times.

The IronFleet methodology supports proving both safety 
and liveness properties of distributed system implementa-
tions. A safety property says that the system cannot perform 
incorrect actions; for example, replicated-state-machine lin-
earizability says that clients never see inconsistent results. 
A liveness property says that the system eventually performs 
a useful action, for example, that it responds to each client 
request. In large-scale deployments, ensuring liveness is 
critical, since a liveness bug may render the entire system 
unavailable.

IronFleet takes the verification of safety properties fur-
ther than prior work (Section 7), mechanically verifying two 
full-featured systems. The verification applies not just to 
their protocols but to actual imperative implementations 
that achieve good performance. Our proofs reason all the 
way down to the bytes of the UDP packets sent on the net-
work, guaranteeing correctness despite packet drops, reor-
derings, or duplications.

Regarding liveness, IronFleet breaks new ground: to our 
knowledge, IronFleet is the first system to mechanically 
verify liveness properties of a practical protocol, let alone an 
implementation.

IronFleet achieves comprehensive verification of complex 
distributed systems via a methodology for structuring and 
writing proofs about them, as well as a collection of generic 
verified libraries useful for implementing such systems. 
Structurally, IronFleet’s methodology uses a concurrency 
containment strategy (Section 3) that blends two distinct 
verification styles within the same automated theorem-
proving framework, preventing any semantic gaps between 
them. We use temporal logic of actions (TLA)-style state-
machine refinement13 to reason about protocol-level con-
currency, ignoring implementation complexities, then use 
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Floyd–Hoare-style imperative verification5, 7 to reason about 
those complexities while ignoring concurrency. To simplify 
reasoning about concurrency, we impose a machine-checked 
reduction-enabling obligation on the implementation. Finally, 
we structure our protocols using always-enabled actions 
(Section 4) to greatly simplify liveness proofs.

To illustrate IronFleet’s applicability, we have built and 
proven correct two rather different distributed systems: 
IronRSL, a Paxos-based12 replicated-state-machine library, 
and IronKV, a sharded key-value store. All IronFleet code is 
publicly available.

IronRSL, our first application, has a complex implementa-
tion including many details often omitted by prior work, such 
as state transfer, log truncation, dynamic view-change time-
outs, batching, and a reply cache. We prove full functional 
correctness and the key liveness property: if the network is 
eventually synchronous for a live quorum of replicas, then cli-
ents that persist in sending requests eventually get replies.

Unlike IronRSL, which uses distribution for reliability, 
IronKV uses it for improved throughput by moving “hot” 
keys to dedicated machines. For IronKV, we prove complete 
functional correctness and an important liveness property: 
if the network is fair then the reliable-transmission compo-
nent eventually delivers each message.

While verification rules out a host of problems, it is not 
a panacea. IronFleet’s correctness relies on several assump-
tions (Section 2.4). Also, verification requires more up-front 
development effort: the automated tools we use fill in many 
low-level proof steps automatically, but still require consid-
erable assistance from the developer. Finally, we focus on 
verifying newly written code in Dafny, a verification-friendly 
language (Section 2.2), rather than verifying existing code.

2. BACKGROUND AND ASSUMPTIONS
We briefly describe the existing verification techniques that 
IronFleet draws upon, as well as our assumptions.

2.1. State machine refinement
State machine refinement11 is often used to reason about dis-
tributed systems.1, 8, 18 The developer describes the desired 
system as a simple abstract state machine with potentially 
infinitely many states and with nondeterministic transition 
predicates. She then creates a series of increasingly com-
plex (but still declarative) state machines, and proves that 
each one refines the one “above” it (Figure 1). State machine 
L refines H if each of L’s possible behaviors, that is, each 
(potentially infinite) sequence of states the machine may 

visit, corresponds to an equivalent behavior of H. State 
machine refinement in a distributed-system context (e.g., 
TLA-style refinement13) typically considers declarative speci-
fications, not imperative code.

2.2. Floyd–Hoare verification
Many program verification tools support Floyd–Hoare style5, 7 
first-order predicate logic reasoning about imperative pro-
grams. That is, the programmer annotates a program with 
assertions about the program’s state, and the verifier checks 
that the assertions hold for all possible program inputs. For 
example, the code in Figure 2 asserts a condition about its 
input via a precondition and asserts a condition about its out-
put via a postcondition.

We use Dafny,14 a high-level language that automates veri-
fication via the Z32 SMT solver. This enables it to fill in many 
low-level proofs automatically; for example, it easily verifies 
the program in Figure 2 for all possible inputs x without any 
assistance.

However, many proposition classes are not decidable in 
general, so Z3 uses heuristics. For example, propositions 
involving universal quantifiers (∀) and existential quantifiers 
(∃) are undecidable. Thus, it is possible to write correct code 
in Dafny that the solver nevertheless cannot prove automati-
cally. In such cases, the developer may insert annotations to 
guide the verifier’s heuristics to a proof.

Once a program verifies, Dafny compiles it to C# and has 
the .NET compiler produce an executable. Other languages 
(e.g., C++) are currently unsupported, but it would be pos-
sible to compile Dafny to them to, for example, simplify inte-
gration with existing code. Our previous work6 shows how to 
compile Dafny to verifiable assembly to avoid depending on 
the Dafny compiler, .NET, and Windows.

Like most verification tools, Dafny only considers one 
single-threaded program, not a collection of concurrently 
executing hosts. Indeed, some verification experts estimate 
that the state-of-the-art in concurrent program verification 
lags that of sequential verification by a decade.19

2.3. Temporal logic of actions (TLA)
Temporal logic and its extension TLA11 are standard tools 
for reasoning about safety and liveness. Temporal logic for-
mulas are predicates about the system’s current and future 
states. The simplest type of formula ignores the future; for 
example, a formula P could be “host h holds the lock now.” 
Other formulas involve the future; for example, ◊P means 
P eventually holds, and P means P holds now and forever. 
Thus, ∀h ∈ Hosts: ◊P means that for any host, it is always 
true that h will eventually hold the lock.

H0 H1 H2 H3 H4

L0 L1 L2 L3 L4 L5 L6 L7

Figure 1. State machine refinement. The low-level state machine 
behavior L0…L7 refines the high-level behavior H0…H4. Each 
low-level state corresponds to a high-level state; for each such 
correspondence, shown as a dashed line, the two states must satisfy 
the spec’s refinement conditions. Each low-level step maps to one 
high-level step (e.g., L0→L1 maps to H0→H1) or no high-level steps 
(e.g., L2→L3).

method halve(x:int) returns (y:int)
requires x > 0;
ensures  y < x;

{
y := x / 2;

}

Figure 2. Simple Floyd–Hoare verification example.
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Although Dafny does not directly support the temporal 
logic  and ◊ operators, Dafny’s logic is powerful enough to 
encode  and ◊ using universal and existential quantifiers 
(∀ and ∃). Section 4 describes our encoding, which is a simple 
library written in Dafny that does not require any extensions 
to the Dafny language. Thus, we do not need a separate tool 
for reasoning about TLA, nor do we modify Dafny; instead, 
we use the existing Dafny language to reason about both our 
executable implementation and our high-level TLA-style 
specifications. Using a single language avoids any semantic 
gaps between implementation and specification.

2.4. Assumptions
Our guarantees rely on the following assumptions.

A small amount of our code is assumed, rather than proven, 
correct. Thus, to trust the system, a user must read this code. 
Specifically, the spec for each system is trusted, as is the 
brief main-event loop that runs ImplInit and ImplNext 
(see Section 3). We do not assume reliable packet delivery, so 
the network may arbitrarily delay, drop, or duplicate packets. 
We do assume the network does not tamper with packets, and 
that addresses in packet headers are trustworthy. These integ-
rity assumptions can be enforced within, say, a datacenter or 
VPN, and could be relaxed by modeling the necessary crypto-
graphic primitives to talk about keys instead of addresses.6

We assume the correctness of Dafny, the .NET compiler 
and runtime, and the underlying Windows OS. Our previ-
ous work6 shows how to compile Dafny code into verifiable 
assembly code to avoid these dependencies. We also rely on 
the correctness of the underlying hardware.

Our liveness properties depend on further assumptions. 
For IronRSL, we assume a quorum of replicas run their respec-
tive main loops with a minimum frequency, never running 
out of memory, and the network eventually delivers messages 
synchronously among them. For IronKV, we assume that 
each host’s main loop executes infinitely often and that the 
network is fair, that is, a message sent infinitely often is even-
tually delivered.

3. VERIFICATION METHODOLOGY
IronFleet organizes a distributed system’s implemen-
tation and proof into layers (Figure 3), all of which are 
expressed in Dafny. This layering avoids the intermin-
gling of subtle distributed protocols with implementation 

complexity. At the top (Section 3.1), we write a simple 
spec for the system’s behavior. We then write an abstract 
distributed protocol layer (Section 3.2) and use TLA-style 
techniques to prove that it refines the spec layer (Section 3.3). 
Then we write an imperative implementation layer to 
run on each host (Section 3.4) and prove that, despite the 
complexities introduced when writing real systems code, 
the implementation correctly refines the protocol layer 
(Section 3.5). Section 4 extends this methodology to live-
ness properties.

To avoid complex reasoning about interleaved execution 
of low-level operations at multiple hosts, we use a concurrency 
containment strategy: the proofs above assume that every 
implementation step performs an atomic protocol step. Since 
the real implementation’s execution is not atomic, we use a 
verified reduction argument to show that a proof assuming 
atomicity is equally valid as a proof for the real system. This 
argument imposes a mechanically verified property on the 
implementation.

3.1. The high-level spec layer
What does it mean for a system to be correct? One can infor-
mally enumerate properties and hope they suffice to provide 
correctness. A more rigorous way is to define a spec, a suc-
cinct description of all allowable behaviors of the system, 
and prove that an implementation always generates outputs 
consistent with the spec.

With IronFleet, the developer writes the system’s spec as 
a state machine expressed in Dafny (Section 2.2): starting 
with some initial state, the spec succinctly describes how 
that state can be transformed. The spec defines the state 
machine via three predicates, that is, functions that return 
true or false. SpecInit describes acceptable starting states, 
SpecNext describes acceptable ways to move from an old 
to a new state, and SpecRelation describes the required 
conditions on the relation between an implementation state 
and its corresponding spec state. For instance, in Figure 3, 
SpecInit constrains H0, SpecNext constrains steps such 
as H0→H1 and H1→H2, and SpecRelation constrains 
corresponding state pairs such as (I1, H1) and (I3, H2). To 
avoid unnecessary constraints on implementations of the 
spec, SpecRelation should only talk about the externally 
visible behavior of the implementation, for example, the set 
of messages it has sent so far.

As a toy example, the Dafny spec in Figure 4 describes a 
simple distributed lock service with a single lock that passes 
among the hosts. It defines the system’s state as a history: a 
sequence of host IDs such that the nth host in the sequence 
held the lock in epoch n. Initially, this history contains one 
valid host. The system can step from an old state to a new 
state by appending a valid host to the history. An implemen-
tation is consistent with the spec if all lock messages for 
epoch n come from the nth host in the history.

By keeping the spec simple, a skeptic can study the spec to 
understand the system’s properties. In our example, she can 
easily conclude that the lock is never held by more than one 
host. Since the spec captures all permitted system behaviors, 
she can later verify additional properties of the implementa-
tion just by verifying they are implied by the spec.

I0 I1 I2 I3

H0 H1 H2

P0 P1 P2 P3

High-level spec (Section 3.1)

Distributed protocol (Section 3.2)

Implementation (Section 3.4)

refinement (Section 3.3)

refinement (Section 3.5)

Figure 3. Verification overview. IronFleet divides a distributed 
system into carefully chosen layers. We use TLA-style verification 
to prove that any behavior of the protocol layer (e.g., P0…P3) refines 
some behavior of the high-level spec (e.g., H0…H2). We then use 
Floyd–Hoare style to prove that any behavior of the implementation 
(e.g., I0…I3) refines a behavior of the protocol layer.
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HostInit, exactly one host is given the lock via the held 
parameter. HostNext then says that a host may step from 
an old to a new state, given some incoming and outgoing 
packets, if the new state is the result of one of two actions, 
each represented by its own predicate. The two actions are 
giving away the lock (HostGrant) and receiving the lock 
from another host (HostAccept). A host may grant the lock 
if in the old state it holds the lock, and if in the new state it 
no longer holds it, and if the outbound packet (spkt) repre-
sents a transfer message to another host. Accepting a lock is 
analogous.

3.3. Connecting protocol to specification
The first major theorem we prove about each system is 

that the distributed protocol layer refines the high-level 
spec layer; that is, given a behavior of IronFleet’s distributed 
system in which N hosts take atomic protocol steps defined 
by HostNext, we provide a corresponding behavior of the 
high-level state machine spec.

We use the standard approach to proving refinement, 
as illustrated in Figure 3. First, we define a protocol abstrac-
tion function PAbs that takes a state of the distributed pro-
tocol state machine and returns the corresponding state 
of the centralized spec. We could use a relation instead of 
a function, but the proof is easier with a function. Second, 
we prove that PAbs of the initial state of the distributed 
protocol satisfies SpecInit. Third, we prove that if a step 
of the protocol takes the state from ps_old to ps_new,  
then either PAbs(ps_old) = PAbs(ps_new) or SpecNext 
(PAbs(ps_old), PAbs(ps_new)).

The challenge of proving the protocol-to-spec theorem 
comes from reasoning about global properties of the dis-
tributed system. One key tool is to establish invariants: 
predicates that should hold throughout the execution of 
the distributed protocol. In the lock example, we might use 

3.2. The distributed-protocol layer
At the untrusted distributed-protocol layer, the IronFleet 
methodology introduces the concept of independent hosts 
that communicate only via network messages. To man-
age the subtle concurrency, we keep this layer simple and 
abstract.

In more detail, we formally specify, in Dafny, a distributed 
system state machine. This state machine consists of N host 
state machines and a set of network packets. In each step 
of the distributed system state machine, one host’s state 
machine takes a step, allowing it to atomically read mes-
sages from the network, update its state, and send messages 
to the network; our reduction argument relaxes this atomic-
ity assumption (see full paper).

The developer must specify each host’s state machine: 
the structure of the host’s local state, how that state is ini-
tialized (HostInit), and how it is updated (HostNext). 
Within the protocol layer, IronFleet reduces the developer’s 
effort in the following three ways.

First, we use a simple, abstract style for the host state 
and network interface; for example, the state uses un
bounded mathematical integers (ignoring overflow issues), 
unbounded sequences of values (e.g., tracking all messages 
ever sent or received), and immutable types (ignoring mem-
ory management and heap aliasing). The network allows 
hosts to send and receive high-level, structured packets, 
hence excluding the challenges of marshalling and pars-
ing from this layer.

Second, we use a declarative predicate style. In other 
words, HostNext merely describes how host state can 
change during each step; it gives no details about how 
to effect those changes, let alone how to do so with good 
performance.

Third, from the protocol’s perspective, each of the steps 
defined above takes place atomically, greatly simplifying the 
proof that the protocol refines the spec layer (Section 3.3). In 
our reduction argument we connect this atomicity-assuming 
proof to a real execution.

Continuing our lock example, the protocol layer might 
define a host state machine in Dafny as in Figure 5. During 
the distributed system’s initialization of each host via 

datatype SpecState = SpecState(history:seq<HostId>)

predicate SpecInit(ss:SpecState) {
|ss.history|==1 && ss.history[0] in AllHostIds()

}

predicate SpecNext(ss_old:SpecState,
ss_new:SpecState) {

exists new_holder :: new_holder in AllHostIds() &&
ss_new.history == ss_old.history + [new_holder]

}

predicate SpecRelation(is:ImplState,ss:SpecState) {
forall p :: p in is.sentPackets && p.msg.lock? ==>

p.src == ss.history[p.msg.epoch]
}

Figure 4. A toy lock specification. Figure 5. Simplified host state machine for a lock service.

datatype Host = Host(held:bool,epoch:int)

predicate HostInit(s:Host,id:HostId,held:bool) {
s.held==held && s.epoch==0

}

predicate HostGrant(s_old:Host,s_new:Host,
spkt:Packet) {

s_old.held && !s_new.held && spkt.msg.transfer?
&& spkt.msg.epoch == s_old.epoch+1

}

predicate HostAccept(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet) {

!s_old.held && s_new.held && rpkt.msg.transfer?
&& s_new.epoch == rpkt.msg.epoch == spkt.msg.epoch
&& rpkt.msg.epoch > s_old.epoch && spkt.msg.lock?

}

predicate HostNext(s_old:Host,s_new:Host,
rpkt:Packet,spkt:Packet) {

HostGrant(s_old,s_new,spkt)
|| HostAccept(s_old,s_new,rpkt,spkt)

}
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We then use our proof about one host implementa-
tion to prove that a distributed system comprising N host 
implementations, which is what we actually intend to run, 
refines the distributed protocol of N hosts. We use an imple-
mentation abstraction function IAbs that maps states of 
the distributed implementation to states of the distributed 
protocol. The refinement proof is largely straightforward 
because each step of the distributed implementation in 
which a host executes ImplNext corresponds to one step 
of the distributed protocol where a host takes a HostNext 
step. The difficult part is proving that the network state in 
the distributed system implementation refines the net-
work state in the protocol layer. Specifically, we must prove 
that every send or receive of a UDP packet corresponds to a 
send or receive of an abstract packet. This involves proving 
that when host A marshals a data structure into an array of 
bytes and sends it to host B, B parses out the identical data 
structure.

The last major theorem we prove is that the distributed 
implementation refines the abstract centralized spec. For 
this, we use the abstraction functions from our two major 
refinement theorems, composing them to form our final 
abstraction function PAbs(IAbs(·) ). The key part of 
this proof is establishing that the specified relation condi-
tions hold, that is, that for all implementation states is, 
SpecRelation (is, PAbs (IAbs (is) ) ) holds.

4. VERIFYING LIVENESS
Section 3 describes the high-level spec as a state machine. 
Such a spec says what the implementation must not do: it must 
never deviate from the state machine’s behavior. However, 
we also often want to specify what the implementation must 
do; properties of this form are called liveness properties. For 
example, we might specify that the lock implementation 
eventually grants the lock to each host (Figure 7). Thus, a 

the invariant that the lock is either held by exactly one host 
or granted by one in-flight lock-transfer message. We can 
prove this invariant inductively by showing that every proto-
col step preserves it. Showing refinement of the spec is then 
simple.

3.4. The implementation layer
Unlike in the declarative protocol layer, in the implemen-

tation layer the developer writes single-threaded, imperative 
code to run on each host. This code must cope with all of the 
ugly practicalities we abstracted away in the protocol layer. 
For instance, it must handle real-world constraints on how 
hosts interact: since network packets must be bounded-
sized byte arrays, we need to prove the correctness of our 
routines for marshalling high-level data structures into 
bytes and for parsing those bytes. We also write the imple-
mentation with performance in mind by, for example, using 
mutable arrays instead of immutable sequences and using 
uint64s instead of infinite-precision integers. The latter 
requires us to prove the system correct despite the potential 
for integer overflow.

Dafny does not natively support networking, so we 
extend the language with a trusted UDP specification that 
exposes Init, Send, and Receive methods. For example, 
Send expects an IP address and port for the destination 
and an array of bytes for the message body. When compiled, 
calls to these Dafny methods invoke the .NET UDP network 
stack.

The trusted network interface maintains a ghost vari-
able (a variable used only for verification, not execution) 
that represents a “journal” of every Send and Receive that 
the implementation might make, including all of the argu-
ments and return values. We use this journal when connect-
ing the implementation to the protocol.

3.5. Connecting implementation to protocol
The second major theorem we prove about each IronFleet 
system is that the implementation layer correctly refines 
the protocol. To do this, we prove that even though the 
implementation operates on concrete local state, which 
uses heap-dependent, bounded representations, it is still a 
refinement of the protocol layer, which operates on abstract 
types and unbounded representations.

First, we prove that the host implementation refines the 
host state machine described in the protocol layer. This 
refinement proof is analogous to the one in Section 3.3, 
though simplified by the fact that each step in the imple-
mentation corresponds to exactly one step of the host state 
machine. We define an abstraction function HAbs that 
maps a host’s implementation state to a host protocol state. 
As shown in Figure 6, we prove that the code ImplInit, 
which initializes the implementation state, ensures 
HostInit for the abstraction of that state. Similarly, we 
prove that the code ImplNext, which executes one host 
step, ensures HostNext. Note that HostNext refers to the 
journal of network events, thus connecting the implemen-
tation’s low-level network actions to the protocol’s abstract 
description of how the host should handle packets it sends 
and receives.

method Main() {
var s := ImplInit();
assert HostInit(HAbs(s));
while (true)
invariant ImplInvariant(s);

{
ghost var journal_old := get_event_journal();
ghost var old_s := s;
ghost var ios_performed:seq<IoEvent>;
s, ios_performed := ImplNext(old_s);
assert HostNext(HAbs(old_s), HAbs(s), ios_performed);
assert get_event_journal() ==

journal_old + ios_performed;
assert ReductionObligation(ios_performed);

}
}

Figure 6. Mandatory host event-handler loop.

predicate LockBehaviorFair(b:map<int,SpecState>) {
forall h:Host, i:int :: h in AllHostIds()&& i >= 0
==> exists j :: j >= i && h == last(b[j].history)

}

Figure 7. Desired liveness property for the lock service.
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step j for one formula, such as ◊Q, the heuristic requests 
that the solver also consider j as a candidate step for other 
formulas starting with  or ◊, such as P and ◊ (P ∧ Q). 
This allows the solver to automatically prove formulas like 
(◊Q) ∧ (P) ⇒ ◊ (P ∧ Q).

This heuristic is effective enough to automatically 
prove 40 fundamental TLA proof rules, that is, rules for 
deriving one formula from other formulas.11 The heuris-
tic allows us to prove complicated rules efficiently; for 
example, we state and prove a key rule about invariants 
in only 27 lines of Dafny, and a key rule about fairness in 
only 16 lines. Our liveness proofs then use these funda-
mental proof-rule lemmas to justify temporal formula 
transformations.

4.2. Always-enabled actions
Liveness properties depend on fairness assumptions, that 
is, assumptions that the underlying environment will 
enable progress. For instance, in IronRSL our liveness 
property depends on a quorum of participants continu-
ing to run, and on the network delivering packets among 
that quorum and the client in a timely fashion. Fairness 
assumptions let us prove fairness properties: properties 
indicating that our protocol makes progress. An example 
fairness property is “Each host executes HostGrant infi-
nitely often.”

Lamport13 suggests that fairness properties take the form 
“if action A becomes always enabled, that is, always possible  
to do, the implementation must eventually do it.” However, 
reasoning about such properties is challenging. For instance, 
it is difficult to verify that an implementation’s scheduler 
really has such a property. Also, to use such a property one 
must prove that A will always be enabled as long as some 
condition C holds, that is, that ∀s. C(s) ⇒ ∃s′ | A(s, s′). Proving 
statements with alternating universal and existential quan-
tifiers is notoriously challenging for automated theorem 
provers.

We thus adopt always-enabled actions; that is, we only 
use actions that are always possible to do. For instance, we 
would not use HostGrant from Figure 5 since it is impos-
sible to perform without the lock. Instead, we might use “if 
you hold the lock, grant it to the next host; otherwise, do 
nothing,” which can always be done. This means we can 
write a method that always does HostGrant no matter 
what state the host is in. Then, the fairness property “Each 
host executes HostGrant infinitely often” can be proven 
by showing that each host runs the method infinitely 
often; we accomplish this by invoking HostGrant inside 
a round-robin scheduler that itself sits inside an infinite 
loop.

Since our approach deviates from Lamport’s standard 
fairness formulas, it can admit specifications that are not 
machine closed.13 Machine closure ensures that liveness 
conditions do not combine with safety conditions to cre-
ate an unimplementable spec, such as that the imple-
mentation must both grant a lock (to be fair) and not 
grant a lock (to be safe, because it does not hold the lock). 
Fortunately, machine closure is no concern in IronFleet: 
the existence of an implementation that meets a fairness 

spec will typically include not just a state machine but also 
liveness properties.

Some researchers have proposed heuristics for detect-
ing and quashing likely sources of liveness violations,9 but 
it is better to definitively prove their absence. With such a 
proof, we do not have to reason about, for example, dead-
lock or livelock; such conditions and any others that can 
prevent the system from making progress are provably 
ruled out.

Liveness properties are much harder to verify than safety 
properties. Safety proofs need only reason about two system 
states at a time: if each step between two states preserves 
the system’s safety invariants, then we can inductively 
conclude that all behaviors are safe. Liveness, in contrast, 
requires reasoning about infinite series of system states. 
Such reasoning creates challenges for automated theorem 
provers (Section 4.2), often causing the prover to time out 
rather than return a successful verification or a useful error 
message.

With IronFleet, we address these challenges by writing 
a library in Dafny that defines standard TLA operators and 
proves standard TLA rules from first principles. This library 
is a useful artifact for proving liveness properties of arbitrary 
distributed systems: its rules allow both the human devel-
oper and Dafny to operate at a high level by taking large 
proof steps with a single call to a lemma from the library. 
Finally, by structuring our protocols with always-enabled 
actions, we significantly simplify the task of proving liveness 
properties.

4.1. TLA library
As discussed in Section 2.3, TLA11 is a standard mathe-
matical formalism for reasoning about liveness. IronFleet 
encodes TLA in Dafny by expressing a TLA behavior, an 
infinite sequence of system states, as a Dafny mapping 
b  from integers to states, where b[0] is the initial state 
and b[i] is the ith subsequent state. A liveness property 
is a constraint on the behavior of the state machine. For 
example, the Dafny code in Figure 7 says that for every 
host h, there is always a later time when h will hold the 
lock.

Our encoding hides key definitions from the prover 
except where truly needed, and instead provides verified 
lemmas that relate them to one another. For example, we 
represent temporal logic formulas as opaque objects (i.e., 
objects Dafny knows nothing about) of type temporal, and 
TLA transformations like  as functions that convert tem-
poral objects to temporal objects.

Of course, in some contexts we actually do need to rea-
son about the internal meaning of  and ◊. State-of-the-
art SMT solvers, such as Z3, do not yet provide decision 
procedures for temporal operators like  and ◊ directly. 
However, we can encode these operators using explicit 
quantification over steps:  universally quantifies over 
all future steps, while ◊ existentially quantifies over some 
future step. We can then provide the SMT solver with heu-
ristics to control these quantifiers using the solver’s sup-
port for triggers.3 One simple heuristic proved effective in 
many situations: when the solver is considering a future 
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property is itself proof that the property does not prevent 
implementation!

4.3. Liveness proof strategies
Most of a liveness proof involves demonstrating that if 
some condition Ci holds then eventually another condi-
tion Ci+1 holds. By chaining such proofs together, we can 
prove that if some assumed initial condition C0 holds then 
eventually some useful condition Cn holds. For instance, 
in IronRSL, we prove that if a replica receives a client’s 
request, it eventually suspects its current view; if it sus-
pects its current view, it eventually sends a message to the 
potential leader of a succeeding view; and, if the potential 
leader receives a quorum of suspicions, it eventually starts 
the next view.

Most steps in this chain require an application of a vari-
ant of Lamport’s WF1 rule.11 This variant involves a starting  
condition Ci, an ending condition Ci+1, and an always-enabled 
action predicate Action. It states that Ci leads to Ci+1 if the 
following three requirements are met:

1.  If Ci holds, it continues to hold as long as Ci+1 does 
not.

2.  If a transition satisfying Action occurs when Ci holds, 
it causes Ci+1 to hold.

3.  Transitions satisfying Action occur infinitely often.

We use this in Dafny as follows. Suppose we need a 
lemma that shows Ci leads to Ci+1. We first find the action 
transition Action intended to cause this. We then estab-
lish each of requirements 1 and 2 with an invariant proof 
that considers only pairs of adjacent steps. We then estab-
lish requirement 3, a fairness property, as discussed in 
Section 4.2. Finally, having established the three precondi-
tions for the WF1 lemma from our verified library, we call 
that lemma.

5. SYSTEM IMPLEMENTATION
We use the IronFleet methodology to implement two prac-
tical distributed systems. All IronFleet code is publicly 
available.

5.1. IronRSL
IronRSL replicates a deterministic application on multiple 
machines to make that application fault-tolerant. Such 
replication is commonly used for critical services, such 
as Chubby and Zookeeper, on which many other services 
depend.

IronRSL guarantees safety and liveness while support-
ing complex implementation features. For instance, it uses 
batching to amortize consensus costs, log truncation to 
constrain memory usage, and state transfer to let nodes 
recover from extended network disconnection. The spec for 
IronRSL is simply linearizability: it must generate the same 
outputs as a system that runs the application sequentially 
on a single node. Our implementation achieves lineariz-
ability via the MultiPaxos12 consensus protocol. It is worth 
noting that our spec does not enforce exactly once seman-
tics, as it is a matter of much debate whether linearizability 

implies such semantics or not. If required, exactly-once 
semantics can be implemented—and formally proven—at 
the application level. We also prove that our implementa-
tion is live: if a client repeatedly sends a request to all rep-
licas, it eventually receives a reply. No consensus protocol 
can be live under arbitrary conditions,4 so we prove liveness 
of IronRSL under a set of fairness assumptions about the 
network and nodes.

5.2. IronKV
IronKV uses distribution for a completely different pur-
pose: to scale its throughput by dynamically sharding a 
key-value store across a set of nodes. The high-level spec 
of IronKV’s state machine is concise: it is simply a map 
(Figure 8).

In IronKV’s distributed-protocol layer, each host’s state 
consists of a map storing a subset of the key space and a 
“delegation map” mapping each key to the host respon-
sible for it. To gain throughput and to relieve hot spots, 
IronKV allows an administrator to delegate key ranges to 
other hosts. When a host receives such an order, it sends 
the corresponding key-value pairs to the intended recipi-
ent and updates its delegation map to reflect the new 
owner. If such a message is lost, the protocol layer can-
not be shown to refine the high-level spec, since the cor-
responding key-value pairs vanish. To avoid this, we design 
a reliable-transmission component that requires each host 
to acknowledge messages it receives, track its own set of 
unacknowledged messages, and periodically resend them. 
We prove desirable safety and liveness properties of this 
component.

We then prove a key invariant—every key is claimed 
either by exactly one host or in-flight packet—that we use 
in conjunction with the semantics ensured by the reliable-
transmission component to show that the protocol layer 
refines the high-level spec. Finally, we implement the proto-
col and prove it refines the protocol layer.

Figure 8. Complete high-level spec for IronKV state machine.

type Map = map<Key,Value>
type OptValue = ValuePresent(v:Value) | ValueAbsent

predicate SpecInit(h:Map) {
h == map []

}

predicate Set(h:Map,h’:Map,
k:Key,ov:OptValue) {

h’ == if ov.ValuePresent? then h[k := ov.v]
else map ki | ki in h && ki!=k :: h[ki]

}

predicate Get(h:Map,h’:Map,
k:Key,ov:OptValue) {

h’ == h && ov == if k in h then ValuePresent(h[k])
else ValueAbsent()

}

predicate SpecNext(h:Map,h’:Map) {
exists k, ov :: Set(h,h’,k,ov) || Get(h,h’,k,ov)

}
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In exchange for this effort, IronFleet produces a provably 
correct implementation with desirable liveness properties. 
Indeed, except for unverified components like our C# client, 
both IronRSL (including view changes, log truncation, etc.) 
as well as IronKV (including delegation and reliable delivery) 
worked the first time we ran them.

6.2. Performance
We run IronRSL on three replicas on three separate machines, 
each equipped with an Intel Xeon 2.13 GHz processor and 
connected over a 1 Gbps network. Our IronKV experiments 
use two such machines connected over a 10 Gbps network. 
In all our experiments the bottleneck was the CPU (not the 
memory, disk, or network).

IronRSL. Workload is offered by 1–256 parallel client 
threads, each making a serial request stream and mea-
suring latency. As an unverified baseline, we use the 
MultiPaxos Go-based implementation from the EPaxos 
codebase.16 For both systems, we measure with and without 
batching, and we use the same application state machine: 
it maintains a counter and it increments the counter for 
every client request. Figure 9 summarizes our results. We 
find that IronRSL’s peak throughput is within 2.4× of the 
baseline.

IronKV. To measure the throughput of IronKV, we pre-
load the server with 1000 keys, then run a client with 1–256 
parallel threads; each thread generates a stream of Get 
(or Set) requests in a closed loop. As an unverified baseline, 
we use Redis, a popular key/value store written in C and C++, 
with the client-side write buffer disabled. For both systems, 
we use 64-bit unsigned integers as keys and byte arrays of 
varying sizes as values. Figure 10 summarizes our results. 
We find that IronKV’s performance is competitive with that 
of Redis.

While our systems achieve respectable performance, 
they do not yet match that of the unverified baselines. 
Since verifying mutable data structures is challenging, we 
sometimes employ immutable data structures instead; 
our measurements indicate that these create signifi-
cant bottlenecks. The baselines we compare against are 
highly optimized; we  have also optimized our code, but 
each optimization must be proven correct rather than just 
implemented and tested. Hence, given a fixed time bud-
get, IronFleet may produce fewer optimizations. IronFleet 
also suffers from compiling to C#, which imposes run-time 

5.3. Common libraries
We wrote several libraries when building IronRSL and 
IronKV.

Marshalling and parsing. All distributed systems need 
to marshal and parse network packets, a tedious task 
prone to bugs. Hence, we have written and verified a generic 
grammar-based parser and marshaller to hide this pain 
from developers. For each distributed system, the developer 
specifies a high-level grammar for her messages. The library 
automatically converts byte arrays to and from a datatype 
conforming to the grammar.

Collection properties. We have developed a library prov-
ing many useful relationships about collections such as 
sequences, sets, maps, etc. These are common for reason-
ing about distributed systems, for example, to reason about 
whether a set of nodes form a quorum.

Generic refinement. We also built a library for reasoning 
about refinement between collections, for example, to prove 
the refinement from protocol-layer collections containing 
abstract node identifiers to implementation-layer collec-
tions containing IP addresses.

6. EVALUATION
IronFleet’s premise is that automated verification is a 
viable engineering approach, ready for developing real dis-
tributed systems. We evaluate that hypothesis by answer-
ing the following questions: (1) How does verification 
affect the development of distributed systems? (2) How 
does the performance of a verified system compare with an 
unverified one?

6.1. Developer experience
To assess practicality, we evaluate the developer experi-
ence as well as the effort required to produce verified sys-
tems. The experience of producing verified software shares 
some similarities with that of unverified software. Dafny pro-
vides near-real-time integrated development environment 
feedback. Hence, as the developer writes a given method 
or proof, she typically sees feedback in 1–10 s indicating 
whether the verifier is satisfied. To ensure the entire system 
verifies, our build system tracks dependencies across files 
and outsources, in parallel, each file’s verification to a cloud 
virtual machine. Thus, while a full integration build done 
serially requires 6 h, in practice, the developer rarely waits 
more than 6–8 min, which is comparable to a traditional 
large system integration build and test pass.

An IronFleet developer must write a formal trusted spec,  
a distributed protocol layer, and proof annotations to 
help the verifier see the refinements between them. Table 1  
quantifies this effort by reporting the amount of proof 
annotation required for each layer of the system. We count 
all non-spec, non-executable code as proof annotation; this 
includes, for example, preconditions and postconditions, 
loop invariants, and all lemmas and invocations thereof. 
Our ratio of proof annotation to implementation is 7.7:1 
(5.4:1 if liveness proof annotations are excluded). In total, 
developing the IronFleet methodology and applying it to 
build and verify two real systems required approximately 3.7 
person-years.

Table 1. Code sizes and verifi cation times

Spec Impl Proof Time to verify
 Source lines of code (minutes)

High-level spec 327

Distributed protocol
IronRSL 202 – 12,450 145
IronKV 134 – 6817 37
TLA library – – 1824 2

Implementation 737 5114 18,162 207

Total 1400 5114 39,253 395
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implementation in a simplified environment into an equ
ivalent implementation that is robust in a more hostile 
environment, offering a clean approach to composition. 
Unlike IronRSL, Verdi does not prove any liveness proper-
ties and its current implementation of Raft does not sup-
port verified marshalling and parsing, state transfer, log 
truncation, dynamic view-change timeouts, a reply cache, 
or batching.

8. SUMMARY AND FUTURE WORK
The IronFleet methodology slices a system into specific 
layers to make verification of practical distributed system 
implementations feasible. The high-level spec gives the 
simplest description of the system’s behavior. The proto-
col layer deals solely with distributed protocol design; we 
connect it to the spec using TLA+13 style verification. At the 
implementation layer, the programmer reasons about a 
single-host program without worrying about concurrency. 
Reduction and refinement tie these individually feasible 
components into a methodology that scales to practically- 
sized concrete implementations. This methodology admits 
conventionally structured implementations capable of 
processing up to 18,200 requests/s (IronRSL) and 28,800 
requests/s (IronKV), performance competitive with unveri-
fied reference implementations.

In the future, we plan to address two of IronFleet’s 
limitations. First, the performance of even state-of-the-
art verification tools limits the scale of the systems we 
can easily verify. For instance, for every system invari-
ant, we must prove that no action can invalidate that 
invariant. Automated reasoning handles this with little 
developer burden when there are tens of actions, but 
likely not when there are thousands. To fix this, we will 
require stronger modularity, for example, to enable effi-
cient verification that one component’s actions do not 
interfere with another component’s invariants. Another 
limitation of IronFleet is that it allows concurrency only 
among processes, not among threads that share memory. 
The software verification community provides a variety of 
approaches, such as ownership and separation logic, to 
address this problem. We plan to make such approaches 
practical in the context of automated verification of large-
scale systems.�

overhead to enforce type safety on code that provably 
does not need it.

7. RELATED WORK
The recent increase in the power of software verification has 
emboldened several research groups to use it to prove the 
correctness of single-machine implementations, for exam-
ple, the seL4 microkernel.10 Our Ironclad project6 shows 
how to completely verify the security of sensitive services all 
the way down to the assembly code.

Distributed systems are known to harbor subtle design 
and implementation errors. Researchers have recently 
started generating machine-checkable proofs of correctness 
for their protocols, since paper proofs, no matter how for-
mal, can contain serious errors.25 In some cases, the proof of 
correctness encompasses the implementation, as well. In all 
cases, the systems proven correct have been much smaller 
and simpler than ours.

Ridge21 proves the correctness of a persistent message 
queue; however, his system is substantially smaller in 
scale than ours and has no proven liveness properties. 
Schiper et  al.22 verify the correctness, but no liveness 
properties, of a Paxos implementation. However, they 
do not verify the state machine replication layer of this 
Paxos implementation, only the consensus algorithm, 
ignoring complexities such as state transfer. In contrast 
to IronFleet, which exploits multiple levels of abstraction 
and refinement, their approach posits a language below 
which all code generation is automatic, and above which 
a human can produce a one-to-one refinement. It  is 
unclear if this approach will scale up to complex distrib-
uted systems.

Verdi23,24 implements verified distributed systems. 
Its verified system transformers convert a developer’s 
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This book proposes an architecture for cluster 
computing systems that can tackle emerging data 
processing workloads at scale. Today, a myriad data 
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data. As a result, organizations increasingly need to 
scale out their computations over clusters.


