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Abstract—Twitter’s data centers process billions of events per
day the instant the data is generated. To achieve real-time per-
formance, Twitter has developed Heron, a streaming engine that
provides unparalleled performance at large scale. Heron has been
recently open-sourced and thus is now accessible to various other
organizations. In this paper, we discuss the challenges we faced
when transforming Heron from a system tailored for Twitter’s
applications and software stack to a system that efficiently handles
applications with diverse characteristics on top of various Big
Data platforms. Overcoming these challenges required a careful
design of the system using an extensible, modular architecture
which provides flexibility to adapt to various environments and
applications. Further, we describe the various optimizations that
allow us to gain this flexibility without sacrificing performance.
Finally, we experimentally show the benefits of Heron’s modular
architecture.

I. INTRODUCTION

Twitter’s daily operations rely heavily on real-time pro-
cessing of billions of events per day. To efficiently process
such large data volumes, Twitter has developed and deployed
Heron [1], a streaming engine tailored for large scale en-
vironments that is able to meet Twitter’s strict performance
requirements. Heron has been shown to outperform Storm [2],
the first generation streaming engine used at Twitter and at
the same time provides better manageability. Heron is now
the de facto stream data processing system in Twitter and is
used to support various types of applications such as spam
detection, real time machine learning and real time analytics,
among others.

Twitter has recently open sourced Heron. As many organi-
zations rely on stream processing for various applications such
as IOT and finance among others, Heron has already attracted
contributors from multiple institutions, including Microsoft.
However, making Heron publicly available poses significant
challenges. Heron must now be able to operate on potentially
different environments (private/public cloud), various software
stacks, and at the same time support applications with diverse
requirements without sacrificing performance. For example,
Twitter deploys Heron on top of the Aurora scheduler [3] in its
private cloud. However, many organizations already manage
a solutions stack based on the YARN scheduler [4] since it
efficiently supports batch processing systems such as Apache
Hive [5]. Co-locating Heron along with these batch processing
systems on top of YARN, can reduce the total cost of owner-
ship and also improves maintenance and manageability of the
overall software stack. Similarly, depending on the application
requirements, one might want to optimize for performance
or for deployment cost especially in the context of a cloud
environment which employs a pay-as-you-go model. Along

the same lines, a data scientist might want to use Python to
implement a machine learning model in a streaming system,
whereas a financial analyst might prefer to use C++ in order
to fully optimize the performance of her application.

To address these challenges, we carefully designed Heron
using a modular architecture. In this approach, each com-
ponent of the system provides the minimum functionality
needed to perform a particular operation. The various modules
of the system communicate and provide services to each
other through well-specified, communication protocols. An
important aspect of Heron is that it allows extensibility of
the modules. More specifically, Heron allows the applica-
tion developer or the system administrator to create a new
implementation for a specific Heron module (such as the
scheduler, resource manager, etc) and plug it in the system
without disrupting the remaining modules or the communica-
tion mechanisms between them. The benefit of this approach
is that the developer needs to understand and implement only
the basic functionality of a particular module, using well-
specified APIs, and does not need to interact with other system
components. Another important aspect of this architecture is
that different Heron applications can seamlessly operate on the
same resources using different module implementations. For
example, one application might manage resources optimizing
for load balancing while another application might optimize
for total cost. Providing such functionality is critical for the
adoption of Heron across different organizations.

To the best of our knowledge, Heron is the first streaming
system that adopts and implements a modular architecture.
Note that although other systems such as Storm [2] face similar
challenges, they have taken the approach of implementing
specialized versions of the system for different software stacks.
For example, there are separate repositories for Storm on
Mesos [6], Storm on YARN [7], and Storm on Slider [8].
Heron, on the other hand, has a more flexible and scalable
architecture that allows it to easily integrate with different Big
Data platforms, as long as the appropriate module implemen-
tations are available. Despite the benefits of general-purpose
architectures, such as Heron’s modular architecture, a common
belief is that specialized solutions tend to outperform general-
purpose ones because they are optimized for particular environ-
ments and applications. In this paper, we show that by carefully
optimizing core components of the system, Heron’s general-
purpose architecture can actually provide better performance
than specialized solutions such as Storm.

The contributions of this paper are the following:

• We describe Heron’s modular architecture and present
in detail various important modules of the system.
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Fig. 1. Heron’s Modular Architecture

• We compare and contrast Heron’s general-purpose ar-
chitecture to specialized approaches such as Storm [2]
and Spark Streaming [9].

• We experimentally highlight the performance advan-
tages of Heron’s general-purpose architecture.

II. HERON’S GENERAL-PURPOSE ARCHITECTURE

In this section, we provide a high-level overview of Heron’s
modular and extensible architecture. Heron’s architecture is in-
spired by that of microkernel-based operating systems. Unlike
monolithic kernel-based operating systems, microkernel-based
operating systems provide a core set of services each one im-
plementing one basic mechanism such as IPC and scheduling
among others. As pointed in [10], microkernel-based operating
systems have been developed to facilitate the adoption of
new device drivers, protocol stacks, and file systems. These
components were normally located in the monolithic kernel
and as result their adoption required a considerable amount
of work. In microkernel-based systems, these components run
in user space, outside the kernel. Along the same lines, due
to the heterogeneity of today’s cloud environments and Big
Data platforms, we decided to design Heron using extensible,
self-contained modules that operate on top of a kernel which
provides the basic functionality needed to build a streaming
engine. This architecture facilitates the adoption of Heron to
run on different underlying software stacks. Furthermore, it
simplifies the detection of performance problems as well as
tuning and maintainance of the overall software stack.

Figure 1 shows the various Heron modules and the interac-
tions between them. As opposed to a monolithic architecture,
Heron consists of several modules (in blue) that communicate
through basic inter/intra process communication mechanisms
(IPC). The IPC mechanisms essentially constitute the kernel
of the system. Every other Heron module is extensible and
easily pluggable to the system, similar to microkernel-based
operating systems.

As described in [1], a Heron topology is a directed graph of
spouts and bolts. The spouts are sources of input data such as a
stream of Tweets, whereas the bolts perform computations on
the streams they receive from spouts or other bolts. When a
topology is submitted to Heron, the Resource Manager

first determines how many containers should be allocated
for the topology. The first container runs the Topology
Master which is the process responsible for managing the
topology throughout its existence. The remaining containers
each run a Stream Manager, a Metrics Manager and
a set of Heron Instances which are essentially spouts or
bolts that run on their own JVM. The Stream Manager
is the process responsible for routing tuples among Heron
Instances. The Metrics Manager collects several met-
rics about the status of the processes in a container. As we will
discuss later, the Resource Manager determines the allo-
cation of Heron Instances to containers based on some
resource management policy. It then passes this information
to the Scheduler which is responsible for allocating the
required resources from the underlying scheduling framework
such as YARN or Aurora. The Scheduler is also responsible
for starting all the Heron processes assigned to the container.
In the following sections we discuss how the various modules
behave when a failure is detected or when a user updates the
topology configuration.

Heron’s architecture provides flexibility to the application
developers. For example, a Heron Instance can execute
user code that can be written in Java or Python. Along the same
lines, an application developer can use the YARN implemen-
tation of the Scheduler, if she operates on top of a YARN
cluster. If her environment changes, she can easily switch to
another Scheduler implementation (e.g., Aurora) without
having to change her topology or her Heron setup. Similarly,
the application developer can pick the Resource Manager
implementation that better suits her needs or even implement
new policies. The user can configure the Heron modules either
at topology submission time through the command line or
using special configuration files.

III. GENERAL-PURPOSE VS. SPECIALIZED STREAMING

ARCHITECTURES

Heron’s modular architecture provides flexibility to incor-
porate various cloud environments and Big Data platforms. In
that sense, Heron’s architecture is a general-purpose architec-
ture as opposed to specialized streaming engines which have
tight dependencies between various parts of the system. In this
section, we compare Heron’s general-purpose architecture with
the architectures of Storm [2] and Spark Streaming [9]. More
specifically, we highlight the major differences between Heron
and these two systems focusing on their resource isolation
mechanisms in shared environments as well as their data
processing and communication layers.

A. Comparison with Apache Storm

Storm is also a large-scale stream processing system but
has a significantly different architecture than Heron. Although
it provides some extensibility points, like support for different
topology specification languages, Storm has a much more rigid
architecture than Heron.

Scheduling and Resource Sharing. Heron is designed
with the goal of operating in a cloud environment on top of
a scheduling framework such as Aurora or YARN (although
it can also run on local mode). As a result, it leverages the
resource isolation mechanisms implemented by these frame-
works. Storm, on the other hand implements parts of the
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functionality of the Heron Resource Manager, the Heron
Scheduler and the underlying scheduling framework in the
same abstraction. More specifically, Storm is responsible for
deciding how resources will be allocated to a given topology
and how resources will be allocated across different topolo-
gies without taking into account the underlying scheduling
framework. Apart from the extensibility issues, this approach
has several drawbacks. First, it is not clear what is the rela-
tionship between Storm’s scheduling decisions and that of the
underlying scheduling framework if one is part of the software
stack. Second, in the absence of a scheduling framework, it
becomes very hard to provide resource isolation across differ-
ent topologies in an environment where resources are shared.
Finally, unlike Heron where resources are acquired when the
topologies are deployed, the resources for a Storm cluster must
be acquired before any topology can be submitted. As a result,
the system administrator needs to know a priori how many
topologies will run on the cluster and their expected resource
requirements in order to preallocate resources accordingly.

Data Processing Layer. Heron’s modular architecture
provides resource isolation not only across different topologies
(through the underlying scheduling framework) but also among
the processes of the same topology. This is because every
spout and bolt run as separate Heron Instances and thus
do not share the same JVM. This architecture helps isolating
performance problems and also recover from failures. Storm,
on the other hand, packs multiple spout and bolt tasks into a
single executor. Each executor shares the same JVM with other
executors. As a result, it is very difficult to provide resource
isolation in such an environment.

Communication Layer. In Heron’s modular architecture,
a dedicated process named Stream Manager is responsible
for all the data transfers among the Heron Instances.
Separating this component from the processing units (Heron
Instances) makes the system scalable, allows various opti-
mizations at the data transfer level and simplifies the man-
ageability of the system. In Storm, on the other hand, the
threads that perform the communication operations and the
actual processing tasks share the same JVM [2]. As a result,
it is much harder to isolate performance bottlenecks and thus
optimize the overall performance.

B. Comparison with Spark Streaming

Spark Streaming [9] is another popular open-source stream-
ing engine. Its architecture differs from that of Heron and
Storm as it uses a separate processing framework (Spark [11])
to process data streams. Because of its architecture, it operates
on small batches of input data and thus it is not suitable
for applications with latency needs below a few hundred
milliseconds [12].

Scheduling and Resource Sharing. Spark Streaming de-
pends on Spark for extensibility. For example, since Spark can
support two different types of schedulers (YARN and Mesos),
Spark Streaming is able to operate on top of these frameworks.
Apart from streaming applications, Spark is typically also used
for batch analytics, machine learning and graph analytics on
the same resources. As a result, it is not easy to customize it
particularly for streaming applications. Spark runs executor
processes for each application submitted. Each executor pro-
cess can run multiple tasks in different threads. Unlike Heron’s

Resource Manager, Spark Streaming does not provide a
way to specify new policies for assigning tasks to executors.

Data Processing Layer. It is worth noting that Spark
(and, as a result, Spark Streaming) has a similar architecture
with Storm that limits the resource isolation guarantees it
can provide. As noted above, each executor process can run
multiple tasks in different threads. As opposed to Heron, this
model does not provide resource isolation among the tasks that
are assigned to the same executor.

Communication Layer. Finally, unlike Heron that im-
plements an extensible Stream Manager, all the Spark
Streaming communication mechanisms rely on Spark and are
not customizable.

Overall, Heron’s modular architecture makes it much easier
for the application developer to configure, manage, and extend
Heron. Although Storm and Spark Streaming provide some ex-
tensibility, their respective architectures contain more tightly-
coupled modules and are less flexible than that of Heron.

IV. HERON MODULES

In this section, we present several important Heron modules
and describe in detail their functionality. To further highlight
the simplicity and extensibility of the Heron modules, we
also provide the corresponding APIs. The source code of all
the implemented modules can be found in the Heron code
repository [13].

A. Resource Manager

The Resource Manager is the module that determines
how resources (CPU, memory, disk) are allocated for a par-
ticular topology. Note that the Resource Manager is not
a long-running Heron process but is invoked on-demand to
manage resources when needed. More specifically, it is the
component responsible for assigning Heron Instances to
containers, namely generating a packing plan. The packing
plan is essentially a mapping from containers to a set of Heron
Instances and their corresponding resource requirements.
The Resource Manager produces the packing plan using
a packing algorithm. After the packing plan is generated,
it is provided to the Scheduler which is the component
responsible for requesting the appropriate resources from an
underlying scheduling framework such as YARN, Mesos or
Aurora.

When a topology is submitted for the first time, the
Resource Manager generates an initial packing plan
which is used to distribute the Heron Instances to a set
of available containers. Heron provides the flexibility to the
user to adjust the parallelism of the components of a running
Heron topology. For example, a user may decide to increase
the number of instances of a particular spout or bolt. This
functionality is useful when load variations are observed. In
such case, adjusting the parallelism of one or more topology
components can help meet a performance requirement or better
utilize the available resources. When the user invokes a topol-
ogy scaling command, the Resource Manager adjusts the
existing packing plan given the specific user requests.

The Resource Manager implements the basic func-
tionality of assigning Heron Instances to containers
through the following simple APIs:
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p u b l i c i n t e r f a c e ResourceManager {
vo id i n i t i a l i z e ( C o n f i g u r a t i o n conf , Topology

t o p o l o g y )
P a c k i n g P l a n pack ( )
P a c k i n g P l a n r e p a c k ( P a c k i n g P l a n c u r r e n t P l a n , Map

p a r a l l e l i s m C h a n g e s )
vo id c l o s e ( )

}

The pack method is the core of the Resource
Manager. It implements a packing algorithm which generates
a packing plan for the particular topology and it is invoked the
first time a topology is submitted. The Resource Manager
can implement various policies through the pack method.
For example, a user who wants to optimize for load balancing
can use a simple Round Robin algorithm to assign Heron
Instances to containers. A user who wants to reduce the
total cost of running a topology in a pay-as-you go environ-
ment can choose a Bin Packing algorithm that produces a
packing plan with the minimum number of containers for the
given topology [14]. Note that Heron’s architecture is flexi-
ble enough to incorporate user-defined resource management
policies which may require different inputs than the existing
algorithms.

The repack method is invoked during topology scaling
operations. More specifically, it adjusts the existing packing
plan by taking into account the parallelism changes that the
user requested. Various algorithms can be implemented to
specify the logic of the repack operation. Heron currently
attempts to minimize disruptions to the existing packing plan
while still providing load balancing for the newly added
instances. It also tries to exploit the available free space of
the already provisioned containers. However, the users can
implement their own policies depending on the requirements
of their particular application.

It is worth noting that the Resource Manager allows
the user to specify different resource management policies for
different topologies running on the same cluster. This is an
important feature of the general-purpose architecture which
differentiates it from specialized solutions.

B. Scheduler

The Scheduler is the module responsible for interacting
with the underlying scheduling framework such as YARN
or Aurora and allocate the necessary resources based on the
packing plan produced by the Resource Manager.

The Scheduler can be either stateful or stateless depend-
ing on the capabilities of the underlying scheduling frame-
work. A stateful Scheduler regularly communicates with
the underlying scheduling framework to monitor the state
of the containers of the topology. In case a container has
failed, the stateful Scheduler takes the necessary actions to
recover from the failure. For example, when Heron operates
on top of YARN, the Heron Scheduler monitors the state
of the containers by communicating with YARN through the
appropriate YARN APIs. When a container failure is detected,
the Scheduler invokes the appropriate commands to restart
the container and its associated tasks. A stateless Scheduler,
on the other hand, is not aware of the state of the containers

while the topology is running. More specifically, it relies
on the underlying scheduling framework to detect container
failures and take the necessary actions to resolve them. For
example, the Heron Scheduler is stateless when Aurora is
the underlying scheduling framework. In case of a container
failure, Aurora invokes the appropriate command to restart the
container and its corresponding tasks.

The Scheduler implements the following APIs:

p u b l i c i n t e r f a c e S c h e d u l e r {
vo id i n i t i a l i z e ( C o n f i g u r a t i o n c o n f )
vo id onSchedu le ( P a c k i n g P l a n i n i t i a l P l a n ) ;
vo id o n K i l l ( K i l l T o p o l o g y R e q u e s t r e q u e s t ) ;
vo id o n R e s t a r t ( R e s t a r t T o p o l o g y R e q u e s t r e q u e s t ) ;
vo id onUpdate ( Upda teTopo logyReques t r e q u e s t ) ;
vo id c l o s e ( )

}

The onSchedule method is invoked when the initial
packing plan for the topology is received from the Resource
Manager. The method interacts with the underlying schedul-
ing framework to allocate the resources specified in the pack-
ing plan. The onKill and onRestart methods are invoked
when the Scheduler receives a request to kill or restart
a topology, respectively. Finally, the onUpdate method is
invoked when a request to update a running topology has
been submitted. For example, during topology scaling the
Scheduler might need to update the resources allocated
to the topology given a new packing plan. In this case, the
Scheduler might remove existing containers or request new
containers from the underlying scheduling framework.

It is worth noting that the various underlying scheduling
frameworks have different strengths and limitations. For ex-
ample, YARN can allocate heterogeneous containers whereas
Aurora can only allocate homogeneous containers for a given
packing plan. Depending on the framework used, the Heron
Scheduler determines whether homogeneous or heteroge-
neous containers should be allocated for the packing plan
uncder consideration. This architecture abstracts all the low
level details from the Resource Manager which generates
a packing plan irrespective of the underlying scheduling frame-
work.

Heron currently supports several scheduling frameworks.
More particularly, it has been tested with Aurora and YARN.
The Heron community is currently extending the Scheduler
component by implementing the above APIs for various
other frameworks such as Mesos [15], [16], Slurm [17] and
Marathon [18]. Note that since Heron’s architecture is able to
seamlessly incorporate scheduling frameworks with different
capabilities, there is no need to create separate specialized
versions of Heron for each new scheduling framework.

C. State Manager

Heron uses the State Manager module for distributed
coordination and for storing topology metadata. More specifi-
cally, the Topology Master advertises its location through
the State Manager to the Stream Manager processes
of all the containers. As a result, in case the Topology
Master dies, all the Stream Managers become imme-
diately aware of the event. Heron stores several metadata in
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the State Manager including the topology definition, the
packing plan generated by the Resource Manager, the
host and port information of all the containers, and the URL
of the underlying scheduling framework among others.

The State Manager abstraction allows easy integration
with various filesystems and coordination frameworks. Heron
provides a State Manager implementation using Apache
Zookeeper [19] for distributed coordination in a cluster envi-
ronment and also an implementation on the local file system
for running locally in a single server. Both implementations
currently operate on tree-structured storage where the root
of the tree is supplied by the Heron administrator. However,
Heron provides the flexibility to extend the State Manager
in order to incorporate other state management mechanisms.

V. OPTIMIZING THE COMMUNICATION LAYER

One of the concerns with general-purpose architectures,
such as Heron’s modular architecture, is the potential overhead
of data transfer between the different modules of the system.
As opposed to tighter architectures, such as Storm, where the
data transfer and the processing threads share the same JVM,
the Stream Manager is a separate process in Heron and
thus incurs inter-process instead of intra-process communica-
tion.

In this section, we first discuss how we enable fast data
transfers between Heron Instances by applying various
optimizations to the Stream Manager module, and as a
result, outperform other tightly coupled architectures (such as
Storm). We then provide more insights about the Stream
Manager by discussing two important configuration parame-
ters that affect the overall performance.
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A. Stream Manager Optimizations

The Stream Manager is an extensible and pluggable
module. It can potentially support different inter-process com-
munication mechanisms (sockets, shared memory, etc) and
different data serialization formats (e.g., binary encoding,
Protocol Buffers [20]). The module is implemented in C++
because it provides tighter control on the memory and cpu
footprint and to avoid the overhead of copying data between
the native heap and the JVM heap.

The Stream Manager implementation relies on two ma-
jor techniques to achieve high performance. First, it avoids data
copies as much as possible. Currently, the Stream Manager
implementation uses Protocol Buffers to serialize and exchange
data between different processes. Our implementation allows
reusability of the Protocol Buffer objects by using memory
pools to store dedicated objects and thus avoid the expen-
sive new/delete operations. Second, the Stream Manager
performs in-place updates of Protocol Buffer objects and uses
lazy deserialization whenever possible. For example, when one
Stream Manager process receives a message from another
Stream Manager process, it parses only the destination
field that determines the particular Heron Instance that
must receive the tuple. The tuple is not deserialized but is
forwarded as a serialized byte array to the appropriate Heron
Instance. In Section VI, we experimentally show the impact
of these two optimizations in Heron’s overall performance both
in terms of throughput and latency.

B. Performance Tuning

Although the current Stream Manager implementation
can provide very good performance out-of-the-box due to the
optimizations that we described above, Heron provides the
flexibility to the user to further tune the communication layer.
We now discuss two important configuration parameters that
can be tuned by the user to actively control the data transfer
rates in case this might be beneficial for a particular workload.
As part of future work, we plan to automate the process of
configuring the values for these parameters based on real-time
observations of the workload performance.

The first parameter called max spout pending, represents
the maximum number of tuples that can be pending on a spout
task at any given time. A pending tuple is one that has been
emitted from a spout but has not been acknowledged or failed
yet. By configuring this parameter the user can determine how
many tuples can be in flight at any point of time and thus
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affect both the throughput and the latency of the workload.
Section VI provides an analysis of the performance observed
as the value of this parameter varies.

The second parameter called cache drain frequency, is
reated to the Stream Manager tuple cache. The tuple cache
is a cache that temporarily stores the incoming and outcoming
data tuples before routing them to the appropriate Heron
Instances. The cache stores tuples in batches along with the
Heron Instance id that is the recipient of the batch. The
cache drain frequency determines the frequency in millisec-
onds to drain the tuple cache. As we show in Section VI, the
value of this parameter can affect the end-to-end performance
both in terms of latency and throughput.

VI. EXPERIMENTAL EVALUATION

In this section, we present experiments that demonstrate the
benefits of Heron’s modular architecture. In all our experiments
we use Heron version 0.14.4 and Storm version 1.0.2.

A. Comparing Heron with Storm

In this experiment, we compare Heron’s general-purpose
architecture with Storm on top of the YARN scheduler. As in
previous work [1], we use the Word Count topology since it
is a good measure of the overhead introduced by either Storm
or Heron. This is because its spouts and bolts do not perform
significant work. In this topology, the spout picks a word at
random from a set of 450K Engish words and emits it. Hence

spouts are extremely fast, if left unrestricted. The spouts use
hash partitioning to distribute the words to the bolts which in
turn count the number of times each word was encountered.

The experiments were performed on Microsoft HDIn-
sight [21]. Each machine has one 8-core Intel Xeon E5-2673
CPU@2.40GHz and 28GB of RAM. In each experiment we
use the same degree of parallelism for spouts and bolts and we
perform four experiments with different degrees of parallelism.
Figures 2 and 3 present the overall throughput and latency
results when acknowledgements are enabled. As shown in
the figures, Heron outperforms Storm by approximately 3-
5X in terms of throughput and at the same time has 2-4X
lower latency. Figure 4 presents the total throughput when
acknowledgements are disabled. As shown in the figure, the
throughput of Heron is 2-3X higher than that of Storm.

Our experiment demonstrates that although Heron employs
an extensible and general-purpose architecture, it can signifi-
cantly outperform Storm’s more specialized architecture.

B. Impact of Stream Manager Optimizations

In this section, we quantify the impact of the optimizations
in the Stream Manager module presented in Section V. We
use the Word Count topology and vary the parallelism of
the spouts and bolts. All experiments were run on machines
with dual Intel Xeon E5645@2.4GHZ CPUs, each consisting
of 12 physical cores with hyper-threading enabled and 72GB
of RAM.
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Figures 5 and 6 present our results when acknowledge-
ments are not enabled. As shown in Figure 5, our Stream
Manager optimizations provide 5-6X performance improve-
ment in throughput. Figure 6 shows the throughput per cpu
core provisioned. When the Stream Manager optimizations
are enabled, there is approximately a 4-5X performance im-
provement per CPU core which shows that Heron is then able
to utilize resources more efficiently.

The throughput results when acknowledgments are enabled
are presented in Figures 7 and 8. As shown in Figure 7, the
Stream Manager optimizations provide a 3.5-4.5X perfor-
mance improvement. At the same time, as shown in Figure 8
there is a substantial performance improvement per CPU core.
Figure 9 shows that the Stream Manager optimizations can
also provide a 2-3X reduction in end-to-end latency.

C. Performance Tuning

In this section, we present experiments that highlight the
impact of the configuration parameters described in Sec-
tion V-B on the overall performance. We use the same
hardware setup as in the previous experiment and run the
WordCount topology with acknowledgements enabled.

In this experiment, we quantify the performance impact of
varying the maximum number of tuples that can be pending
on a spout task (max spout pending). Figures 10 and 11 show
how the throughput and end-to-end latency vary for different
degrees of parallelism. As shown in Figure 10, as the value of
the parameter increases the overall throughput also increases
until the topology cannot handle more in-flight tuples. This
behavior is expected since a small number of pending tuples
can result in underutilization of the provisioned resources.
Figure 11 shows that as the number of maximum pending
tuples increases, the end-to-end latency also increases. This is
because the system has to process a larger number of tuples and
thus additional queuing delays are incurred. For the particular
topology examined, a value of 20 Ktuples/s seems to provide
the best tradeoff between latency and throughput.

We now explore the impact of the cache drain frequency
on the overall performance. As mentioned in Section V-B,
this parameter determines how often the Stream Manager
tuple cache is flushed. Figures 12 and 13 show how the
throughput and end-to-end latency vary for different degrees
of parallelism. As shown in Figure 12, as the time threshold

to drain the cache increases the overall throughput gradually
increases until it reaches a peak point. After that point, the
throughput starts decreasing. This behavior is consistent across
all the configurations tested and can be explained as follows:
When the time threshold to drain the cache is low, the
system pays a significant overhead in flushing the cache state.
This overhead gets amortized as the time threshold increases
since the flush operations become less frequent. However,
further increasing the time threshold might actually reduce the
throughput observed. As noted previously, the maximum in-
flight tuples that can be handled by the system is fixed (see
max spout pending parameter). At the same time, increasing
the time threshold to drain the cache will increase the end-to-
end latency. As a result, fewer tuples will be processed during
a given time interval since the system has a bounded number
of pending tuples and is not able to process more in-flight
tuples.

Figure 13 shows that if the time threshold to drain the
cache is low, the system pays a large overhead to flush the
cache. Similar to the throughput curves, as the time threshold
increases, the latency improves until the system reaches a point
where the additional queuing delays hurt performance.

D. Heron Resource Usage Breakdown

In this experiment, we present resource usage statistics for
Heron that highlight that Heron’s general-purpose architecture
manages resources efficienly. We used a real topology that
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reads events from Apache Kafka [22] at a rate of 60-100
million events/min. It then filters the tuples before sending
them to an aggregator bolt, which after performing aggrega-
tion, stores the data in Redis [23]. We have provisioned 120
and 24 CPU cores for Heron and Redis, respectively. The
memory provisioned is 200 GB and 48 GB for Heron and
Redis, respectively.

We profiled the topology in stable state and tracked the
resources used from each system component. Figure 14 shows
the overall resource consumption breakdown. As shown in
the figure, Heron consumes only 11% of the resources. This
number includes the overheads introduced due to data trans-
fers, internal data serialization and deserialization, and metrics
reporting. The remaining resources are used to fetch data from
Kafka (60%), execute the user logic (21%) and write data to
Redis (8%).

Overall, this experiment highlights that Heron can effi-
ciently manage the available resources and shows that most
of the processing overheads are related to data reading and
writing to external services.

VII. CONCLUSIONS

In this paper, we presented Heron’s modular and extensible
architecture that allows it to accommodate various environ-
ments and applications. We compared Heron’s general-purpose
architecture with other specialized approaches and showed that

60%
21%

11%
8%

Fetching Data User Logic

Heron Usage Writing Data

Fig. 14. Resource Consumption

with careful system design especially at the communication
layer, general-purpose architectures can outperform their spe-
cialized counterparts without sacrificing manageability.
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