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In a market with repeated sales of a single item to a single buyer, prior work has established the
existence of a zero revenue perfect Bayesian equilibrium in the absence of a commitment device
for the seller. This counter-intuitive outcome is the result of strategic purchasing decisions, where
the buyer worries that the seller will update future prices in response to past purchasing behavior.
We first show that in fact almost any revenue can be achieved in equilibrium, but the zero revenue
equilibrium uniquely survives natural refinements. This establishes that single buyer markets
without commitment are subject to market failure. However, our main result shows that this market
failure depends crucially on the assumption of a single buyer. If there are multiple buyers, the
seller can approximate the revenue that is possible with commitment. We construct an intuitive
equilibrium for multiple buyers that survives our refinements, in which the seller learns from past
purchasing behavior and obtains a constant factor of the per-round Myerson optimal revenue.
Moreover, we describe a simple and computationally tractable pricing algorithm for the seller that
achieves this approximation when buyers best-respond.

1 INTRODUCTION

It is now commonplace for regular, repeated purchases to be made through large online
platforms. New parents purchase diapers monthly through Amazon Prime. Firms buy online
advertising space millions of times per day through Google, Microsoft and other advertising
markets. City-dwellers use delivery services like Foodler and Instacart to purchase their
meals and groceries. Each platform is a cornucopia of data, since they can readily observe
how pricing decisions affect the purchasing behavior of customers, both in aggregate and
individually. It is tempting for a platform to exploit this historical data, by using the past
behavior of individual users to tune prices and maximize revenue. However, using revealed
preference data in this way runs afoul of game-theoretic considerations. If a regular customer
knows that their behavior will impact the prices they will be offered in the future, they
will naturally respond by changing their behavior. It is therefore crucial to understand how
forward-looking customers will respond to price-learning algorithms, and the implications
for how a seller should use historical data to make pricing decisions.

Consider the following simple and fundamental instantiation of the repeated-sales problem,
coined the “fishmonger problem” [Devanur et al., 2015]. There is a single seller, and each
day the seller has a single copy of a good to sell. There is a single buyer, who has a private
value v > 0 for obtaining the good each day, drawn from a distribution known to the seller.
Crucially, the value does not change from one day to the next; the buyer has the same
value for consuming the good on every day. Each day, the seller posts a take-it-or-leave-it
price, and the buyer can choose to accept or reject. The seller is free to set each day’s price
however she chooses, given the past purchasing behavior of the buyer. On any day that
the buyer rejects, the good expires and the seller must discard it. The game is played for
infinitely many rounds; the buyer wishes to maximize total time-discounted utility, and the
seller wishes to maximize total time-discounted revenue.
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How should the seller set her price? If there is only a single round, the well-known solution
is to post the Myerson price for the buyer’s distribution, which maximizes expected revenue.
In the dynamic setting, however, we cannot expect the seller to post the Myseron price
each round. After all, if the buyer chose not to purchase on the first day, the seller would
naturally want to learn from this information and set a lower price on the following day. It
is tempting to guess that the seller can benefit from this oppotunity to learn, by offering
a variety of prices to gain information about the value v, then use this knowledge to set
an aggressive price just below v. However, a surprising folklore result implies that such
techniques can never be beneficial to the seller: the average per-round revenue can never
be higher than the one-round Myerson revenue. Intuitively, the issue is that a rational
buyer would respond to an explore/exploit strategy by pretending at first to have a low
value, passing up some opportunities to buy the item, in order to secure a lower price later
on. Indeed, this strategic demand-reduction behavior is the essence of bargaining, and is
commonly observed in practice.

So what can the seller do? To disentangle the strategic behavior of the buyer and seller,
it is necessary to study equilibria. Since ours is a repeated game with private information,
the appropriate solution concept is perfect Bayesian equilibrium (PBE). A formal definition
is given in Section 2, but roughly speaking a PBE requires that the decision taken by
each player at each point in time, for any observed history of prices and purchases, is
a best response to the anticipated future behavior of the other player, given the seller’s
belief about the private value (which will depend on the observed behavior of the buyer).
Determining how the seller should set prices then reduces to understanding the structure
of PBE. Sadly, prior work on equilibria for repeated sales have mostly generated negative
results. In particular, there exist PBE in which the seller posts a price equal to the minimum
value in the support of the buyer’s distribution, on every round [Devanur et al., 2015, Hart
and Tirole, 1988, Schmidt, 1993]. For example, if the buyer’s value is supported on [0, 1],
then there is a PBE with zero revenue for the seller. This extreme and counterintuitive
equilibrium is driven by a self-fulfilling prophecy: the buyer never accepts any positive price
out of fear that doing so will lead the seller to charge very high prices in the future; as a
result, the seller infers that only a buyer with very high type would ever accept a positive
price, so the seller would indeed charge very high prices in response. The formal details of
the equilibrium are described in Section 3. This construction illustrates that in the absence
of commitment power, a seller might suffer extremely low revenue in long-term interaction
with a buyer. We note that this conclusion is reminiscient of the Coase conjecture; the
primary difference is that the Coase conjecture refers to a durable good that a buyer will
purchase only once, whereas in the fishmonger problem the good is perishable and can be
repurchased each day [Coase, 1972].

This result is quite negative, but also unsatisfying since the low-revenue equilibrium does
not appear to be predictive of real-world outcomes. Why don’t we see this behavior in
practice? One simplifying assumption in the model is the presence of only a single buyer.
Indeed, because there is only one buyer, it is possible for the seller to exploit the buyer’s
revealed preference in a very targetted way. In contrast, if the seller continues to sell by
posting a single price, but that price will be faced by multiple buyers, then the opportunity
for price-discrimination is diminished. Intuitively, in a market with multiple buyers, each
buyer is less worried about being exploited directly, and competition gives an extra incentive
to purchase even though this is revealing a signal to the seller. We therefore ask: would the
presence of multiple buyers change the structure of equilibrium?
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Our Results. The existence of a zero-revenue equilibrium is discouraging, but we begin
by showing that the single-buyer situation is even more dire than that. One might wonder
whether the low-revenue equilibrium is simply an edge case, and that better and more
plausible equilibria exist. Indeed, we establish a folk theorem that implies that any amount
of revenue between the trivial lower bound (that of posting the minimum-supported value
every round) and that of Myerson pricing every round can be realized at a PBE of the game.
However, despite the rich space of equilibria, we prove that the zero-revenue equilibrium is
the unique equilibrium that survives a natural refinement of the set of PBE. Specifically,
it is the unique equilibrium in which the buyer uses threshold strategies (i.e., on each
round and for any offered price, a buyer purchases if and only if their value is sufficiently
high), strategies are Markovian on-path (meaning that on the equilibrium path, the players’
strategies depend only on their beliefs and the current price, and not the full history of past
play), and the seller offers prices in the support of buyers’ distributions. These refinements
have been studied previously in the context of repeated sales (see [Fudenberg and Tirole,
1983] and [Hart and Tirole, 1988]), and are natural conditions for “simple” strategies. We
interpret this as strong evidence that the zero-revenue equilibrium, and the market failure it
implies, is actually a plausible and natural outcome of the single-buyer repeated game.

Main Result: Multiple Buyers. We next turn to studying a multi-buyer variant of the
Fishmonger problem. Suppose now that there are n > 2 buyers, each buyer’s value is drawn
iid from a known distribution, and these values are again fixed over all rounds. The seller
still has a single copy of the good for sale, and sells that good by posting a single price each
day. Each buyer independently chooses whether or not to purchase each day. If multiple
buyers wish to purchase at the offered price on a given day, then one of the accepting buyers
is chosen uniformly at random to make the purchase.!

In contrast to the single-buyer variant, we show that the seller can achieve a constant
fraction of the benchmark optimal revenue in a PBE that employs threshold strategies and is
Markovian on-path, surviving our refinements. The equilibrium we construct has a natural
form, based upon an explore-exploit structure. The seller starts by setting a low price, and
slowly raises the price over time as long as at least two buyers purchase in each round. Once
all but one (or zero) buyers have stopped purchasing, the seller switches to an exploitation
phase in which she posts the highest price at which she believes an agent is guaranteed to
buy. Since an agent is guaranteed to buy, the seller stops learning information about the
buyers’ values, and will post the same price every round from that point onward.

This equilibrium structure sets up a natural optimization problem for the seller: how
quickly should prices be increased, given the way that rational buyers will respond at
equilibrium? Typical of explore/exploit algorithms, the seller must balance the rate of
learning with the revenue ultimately generated in the exploitation phase. Different pricing
policies will correspond to different equilibria, with potentially different amounts of revenue.
We provide an approximation result: for two buyers, if the distribution over buyer valuations
satisfies the standard monotone hazard rate (MHR) condition, then we show how to compute
prices (and the corresponding equilibrium thresholds for the buyers) that generate a constant
fraction (1/3e2) of the Myseron optimal revenue. For n > 3 bidders, we obtain a stronger
guarantee (.12-approximation) for a broader class of distributions (regular with monopoly

1We choose to model the fishmonger problem as a pricing problem, as this is a common approach taken in
practice. We note that one could alternatively model it as a general mechanism design problem, which we
leave as a direction for future research.
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quantile at least 1/n). The revenue of the prices we analyze are a lower bound on the seller’s
revenue in our equilibrium.

1.1 Related Work

Hart and Tirole [Hart and Tirole, 1988] initiated the study of repeated sales (“rental,” in
their terms) with a single buyer and a large but finite horizon. They consider a special case
with just two possible values. They show that in equilibrium the seller will always post the
smaller value for all but a constant number of final rounds. Schmidt [1993] genereralized
their result to general discrete distributions. For a survey of this work and the large body of
work on closely related models, see the survey of Fudenberg and Villas-Boas [2006]. Some
variants include Kennan [2001] and Battaglini [2005] who analyze the setting where the
value of the buyer is not constant but evolves according to a Markov process, and Conitzer
et al. [2012] who study the case where the buyers are short-lived and given the option to
anonymize at a cost.

Closest to our work is Devanur et al. [2015], which was the first attempt by the CS
community to attempt to move beyond the strong negative results in the setting of Hart and
Tirole [1988] and Schmidt [1993], and the first to consider continuous distributions. Like
us, they analyzed threshold equilibria, proving that no such equilibria exist for large but
finite numbers of rounds. They go on to study the case of partial commtiment, where the
seller can commit to never increase the price in the future. They prove existence of PBE for
power law distributions and provide revenue guarantees for the uniform distribution UJ0, 1].
Note that our results can be directly compared to Devanur et al. [2015] where instead of
relaxing the commitment assumptions we introduce an extra buyer, and provide revenue
guarantees for a much larger family of distributions.

1.2 Discussion

Our results have several interpretations. First, the folk theorem and subsequent elimination
of learning equilibria via refinements can be thought of an extension of the conclusions of
Hart and Tirole [1988] and Schmidt [1993] to infinite horizon and continuous distributions.
This provides further justification for the modified assuptions Devanur et al. [2015] use to
derive their results. Our work is similar in that we show that single-buyer market failure is
fragile - we use extra buyers rather than partial commitment to support nontrivial equilibria.
Finally, we note the prescriptive flavor of our results - our equilibrium and revenue analysis
together provide an approximately optimal solution to the problem of dynamic mechanism
design in the presence of distrustful buyers.

2 MODEL

Game Description and Timing: The dynamic pricing game takes place in T' rounds, where
T may be infinite. Each round, there is one item for sale, which must be allocated using
a common price among n buyers. Before the game begins, each buyer i draws their value
v; for the goods independently and identically from some continuous distribution F' which
is common knowledge. The value for allocation remains unchanged from round to round.
Each round k then proceeds in the following way:

(1) The seller chooses a price pi, > 0, which is posted to the buyers.
(2) Buyers simultaneously decide whether to accept py.
(3) The item is allocated uniformly at random among the agents who accept.
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Utilities: Agents are risk-neutral expected utility maximizers. Utilities are linear in money,
additive across rounds, and discounted by a common discount factor § € (0,1) over time.
Formally:

e Seller: The seller’s utility for an outcome to the above game is Zk:pk accepted 5Fpy.

e Buyer: The buyer’s utility for an outcome is >, ., .. 6*v;.

Note that all of our results, except the revenue analyses of Sections 5.2 and 6.2, hold without
modification if the seller holds a different discount factor from the buyers. Moreover, the
revenue analyses extend in a natural way.

Information: We assume all information and outcomes are common knowledge, with the
exception of buyers’ values, which are privately held and unknown by all other agents.

Histories: A history of play at round k, denoted h* is different for buyers and the
seller, but generally consists of all past pricing and purchasing decisions. Formally, h*
consists of consists of the vector p[k — 1] = (p1,...,pk—1) of past prices, as well as the
purchasing decisions of agents in each past round, denoted D[k — 1] = (D',..., DF1),
where DI = (DJ,..., D7) € {A, R}" is the vector of accept/reject decisions for each agent i
in round j.

Beliefs: The seller does not know any buyer’s values, and buyers only know their own.
As mentioned earlier, this uncertainty is modeled with a Bayesian prior. After every round
of play, the actions of agents may reveal information about their private values, and hence
agents’ beliefs must be updated. We consider only outcomes where agents’ posteriors after
each round are shared, which is possible because all actions are commonly observed. The
prior for v; after history h*, denoted u¥(-|h*), is a probability measure over the support
of F. The joint posterior at round k is denoted u* = x;u¥. After round k, the seller
believes values are distributed according to p*, and buyer i believes other buyers’ values are
distributed according to p* ;.

Strategies: Generally, strategies are maps from histories and private information to actions
in round k:

e A seller strategy Ug(hk) specifies for every history k¥ a nonnegative price py.
e Buyer ¢’s strategy Uf(hk, pr; v;) specifies for every buyer history a response to price
pi for every possible value of buyer 3.

Equilibrium: Our solution concept is Perfect Bayesian Equilibrium (PBE). Perfect Bayesian
Equilibrium imposes joint requirements on beliefs and strategies: beliefs must be updated
accurately given strategies, and given beliefs, strategies must form a subgame-perfect
equilibrium. Formally, a profile of strategies o = (0% (-),07(-),...,0%(-)) and beliefs p*(-)
for k=0,...,T is a PBE if:

e Bayesian updating: For every history h*, if there is some v such that u¥(v|h¥) >
0 and o¥(h*, pr;v) = DF, then p¥(v|h*) is computed according to Bayes’ rule.
Importantly, for histories which would not occur according to (o&(-), ¥ (-),...,o%("))
under any realization of buyers’ values, beliefs may be arbitrary.

o Subgame perfection: Let ug(o | h*, u*) denote the expected utility of the seller from
the continuation of the game from stage k according to o, given that buyers’ values
are distributed according to u*(h¥). We require that for every alternate strategy
o’ of the seller, we have that ug(o | h¥, u¥) > ug(cly,o_g|h*, p*). Similarly if
ui(o | ¥, ¥, pr;v;) is the expected utility of a buyer with value v; offered price py,
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under history h* under beliefs u* ;(h*) on other buyers’ values, u; (o | h¥, u*, py;v;) >
u;(of, o_; | h*, uF;v;) for every alternate strategy o.

Simple Equilibria: Equilibria may in general be extremely complicated. We focus on
equilibria satisfying two refinements:

e Markovian on path: An equilibrium is Markovian on path if on the equilibrium
path, agents condition their actions only on the public beliefs and their private
information, rather than the complete history. Formally, for any profile of buyer
values v and strategy profile o, let h* and h*" be the histories generated by o under
v. If p¥ = uk/, then pr = pp and DF = D*'.

e Threshold equilibrium: If a buyer will buy when their value is v;, they will also buy
with any higher value. Formally, a PBE is a threshold equilibrium if for each history
h¥ and price py, there is a threshold ti(hk7 pr) such that for each agent i, ¢ accepts
py, if and only if v; > t;(h*,p;.). Note that in threshold equilibria, updated beliefs
derived from on-path histories will be the value distribution F' conditioned to some
interval [a, b] for each agent. For such equilibria, we will therefore summarize beliefs
over agent i’s value with the notation F? to denote F' conditioned to the interval
[a, b].

We refer to threshold equilibria which are Markovian on path as simple. Note that simplicity
is a refinement rather than a restriction of the strategy space.

3 FOLK THEOREM

We first explore the space of Markovian on path threshold equilibria with no further
refinements. It is well-known from previous work on the subject that there exists an
equilibrium for the one-buyer case in which the seller gets no revenue and does not learn
anything about the buyer’s value. The buyers refuse all positive prices, and deviation is
punished by the seller with high prices in the future. We refer to this as the no-learning
equilibrium, and for completeness present the equilibrium in Appendix A. Formally, we have:

THEOREM 3.1 (DEVANUR ET AL. [2015]). For é > 1/2 and any number of buyers there
is a simple PBE in which the seller does not learn, and posts a price of O every round. All
buyers accept each round.

The no-learning equilibrium is considered unnatural and unpredictive. In this and the
next section, we offer a more nuanced view. We prove a folk theorem: the no-learning
equilibrium can be used to enforce other even less intuitive equilibria, including posting
any fixed price every round. In other words, PBE is ineffective at ruling out commitment.
We solve this problem in Section 4, by offering an additional, intuitive refinement which
surprisingly eliminates all equilibria but precisely the no-learning equilibrium. This suggests
that such behavior is a reasonable outcome to the game.

THEOREM 3.2 (FOLK THEOREM). If§ > —i1» then for any price p, there is a Markovian
on path threshold PBE of the dynamic pricing game with n buyers where the seller offers
price p every round on the equilibrium path, regardless of the action of the buyer. This holds

regardless of the initial prior over buyers’ values.

We prove the theorem in Appendix B. Intuitively, we use the no-learning equilibrium to
commit the seller to a strategy. One way to understand the space of PBE is in terms of
pairs of attainable payoffs for the buyers and the seller. Theorem 3.2 implies that the Pareto
frontier of attainable payoffs under our two simplicity refinements is at least as strong as
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that attainable from posting the same price each round. A natural question is whether there
are PBE which surpass this frontier. The best known bounds on the performance of PBE is
a theorem due to Devanur et al. [2015], which we rephrase below.

THEOREM 3.3 (DEVANUR ET AL. [2015]). For any target total expected buyer utility
U and revenue R attainable in a PBE, there is a mechanism for the single-round game in
which the buyers attain total expected utility (1 — 0)U and the seller attains expected revenue
(1-9)R.

The proof is constructive: given the PBE attaining R and U, the mechanism designer
may in essence simulate the PBE on the reported values of the sellers. In other words,
PBE resemble single-shot mechanisms with stronger incentive constraints. Theorem 3.3
implies that the utility-revenue Pareto frontier for PBE cannot generally exceed that of the
single-shot mechanism design problem. For one buyer, Theorem 3.3 implies that the folk
theorem is tight - the utility and revenue guarantees are the best possible. Theorem 3.2
implies a troubling multiplicity of equilibria, all with very different outcomes for both the
seller and the buyers. It implies that further study of PBE is not worthwhile without a
manner of refining away equilibria. We provide such a selection tool in the next section.

4 NON-ROBUSTNESS OF ONE-BUYER LEARNING EQUILIBRIA

We now consider the case of one buyer and one seller. In this setting, Theorem 3.2 proves
that there are Markovian on path threshold equilibria which are totally efficient, totally
inefficient, and revenue-maximizing, as well as everything in between. We argue that these
equilibria exhibit unnatural seller behavior. In particular, in the equilibria of Theorem 3.2,
there are continuations in which the seller offers prices at the upper boundary of or outside
the support of the current beliefs. We prove in this section that every simple equilibrium
of the one-buyer case, except those in which no learning occurs on the part of the seller,
requires such odd behavior. This leaves only equilibria in which the seller posts a price at
the bottom of the support each round. We first formalize “natural” seller behavior.

Definition 4.1. A perfect Bayesian threshold equilbrium o of the single-buyer has natural
prices on-path (or simply natural prices) if for every on-path history h* with beliefs supported
on [a, ], the seller’s price ok (h*) lies in [a, b).

Though this requirement might seem mild, it in fact suffices to eliminate all nontrivial
equilibria.

THEOREM 4.2. In the single-buyer game, let the value distribution F be supported on
[a,b], with a > 0. If § > 1/2, then in any simple PBE with natural prices, the seller posts a
every round, which is accepted by all buyers. In other words, no learning will occur.

Driving the proof of Theorem 4.2 will be an idea from single-dimensional mechanism
design: in equilibrium, allocations are monotone in type. In the repeated pricing setting,
agents are maximizing their discounted total utility, which is a function of discounted total
allocation and discounted total payments. These quantities satisfy the usual incentive
constraints from mechanism design, and hence intuitions from mechanism design carry over.
We now define these formally:

Definition 4.3. Given an PBE of the single-buyer game with some fixed value distribution,
let: xx(v) be an indicator variable of whether or not the buyer with value v purchases in
round k on the equilibrium path, and let pg(v) be the on-path price offered that round.
Then we may define the following for any finite ¢ > 1 and any j € {1,...,00}:
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e The total discounted allocation:

LEMMA 4.4. In any PBE of the one-buyer game, the total discounted allocation, payments,
and utility (respectively X (v), P(v), and U(v)), are nondecreasing in v.

To prove this claim, we invoke a theorem of Myerson [1981]:

THEOREM 4.5 ([MYERSON, 1981]). Let f(-), g(:) and be functions from some interval
[a,b] (a > 0) to the positive reals, and assume the following holds for all v and v' in [a,b]:

vf(v) = g(v) Zvf(v') — g(v'). (1)
Then the following must be true:

(1) f() is nondecreasing inv.
(2) gv) =vf(v) = [, f(s)ds + g(a).

The classic application of this theorem sets f() to be the equilibrium allocation probability
in a single-item auction and g(-) the equilibrium expected payments. We take a similar
approach to prove Lemma 4.4.

PrOOF OF LEMMA 4.4. Consider an buyer with value v, who must choose a strategy.
Among their options are to pretend to have a different value, say v/, and play the actions that
value would play. Doing so would yield total discounted allocation X (v'), total discounted
payments P(v'), and total discounted utility U(v"). Since the buyer is best responding, it
must be that vX (v)—P(v) > vX (v')—P(v"). We may now invoke Theorem 4.5. Monotonicity
of X () follows from part (1) of the theorem, and monotonicity of P(-) from part (2). Noting
that U(v) = [ X(s)ds — P(a) shows U(-) to be nondecreasing as well. O

We will only use monotonicity of allocations here. In Appendix C, we make heavier
use of Lemma 4.4 to derive alternate sufficient conditions under which the conclusions of
Theorem 4.2 hold.

We now show that natural prices induces non-monotonicity around any threshold ¢ other
than the bottom of the support. In particular, we will show that there must exist a type
below t with high cumulative allocation, while the threshold type gets allocated strictly less
often. This contradicts Lemma 4.4.

LEMMA 4.6. For any § > 1/2, consider any simple PBE of the single-buyer game satisfying
natural prices with distribution supported on [a,b] and first-round threshold t > a. There
exists a type t' <t such that X(t') > 1
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PrROOF. We argue by contradiction. We will assume that for all ¢ < ¢, X(¢') <1 and use
natural prices, along with simplicity of equilibrium, to show that there is at least one type
less than ¢ who would prefer to deviate from the equilibrium.

We first argue that we may assume the existence of some M such that all types in [a,t)
have rejected by round M. Assume this is not the case. Then let k. be the earliest round
such that all agents in [a,t — €) have rejected at least once. If it is the case that k. — oo
as € — 0, then because § > 1/2, it must be the case that there exists some t' < t with
X (t') > 1, which would prove the lemma. Hence we may assume that the number of rounds
before every type in [a,t) would reject at least once on the equilibrium path is finite.

Let M an index such that all agents in [a, t) have rejected before round M. We now claim
that there is a round M™* < M such that a positive measure of types accept in every one of
rounds 1,..., M* — 1, but all such agents reject in round M*. If not, then it must be that a
positive measure of agents accept in every round up to and including M, a contradiction. Let
the interval of such agents be [a*,t). (The upper bound being ¢ is implied by the threshold
property.)

Finally, we show that the existence of M*, combined with natural prices and the Markovian
on path property, implies a profitable deviation for some buyer with type in [a*,t). First
note that the beliefs conditioned on acceptance in rounds 1,..., M* — 1 do not change after
round M?*, as all agents who accepted in rounds 1,..., M* — 1 will reject in round M*.
Because beliefs don’t change, the Markovian in path property implies that actions don’t
change - hence, in this continuation, no agent in [a*,t) accepts after round M* — 1. On the
other hand, the requirement of natural prices on path implies that the seller offers a price
p € [a*,t) in every round after M* — 1. Some type in (p,t) would clearly prefer to accept at
least once rather than reject forever, yielding a contradiction. O

PROOF OF THEOREM 4.2. Fix a § > 1/2, and consider a round of the game in which the
beliefs are supported on [a, b] and for which the buyer has a nontrivial threshold ¢ (i.e. above
the bottom of the support of the current beliefs). Subgame perfection implies that we may
assume this round is the first. We know from Lemma 4.6 that there is a value ¢’ < ¢ such
that X (¢') > 1. We will show that we may break ties so that X (¢) = 1, which contradicts
Lemma 4.4.

By the definition of threshold equilibrium, the buyer with type ¢ accepts this round.
Natural prices implies that upon seeing an acceptance, the seller will never price below ¢. It
follows that the buyer with value ¢ will not get utility from any subsequent round. We may
therefore assume they reject in every round without changing their utility. Moreover, such
tiebreaking doesn’t change the incentives of the seller, as the type ¢ buyer has measure 0.
Hence, there is an equilibrium with X (¢t) = 1 and X (¢') > 1 for some ¢’ < ¢, contradicting
Lemma 4.4. ([l

In Appendix C we give an alternate refinement which similarly eliminates learning equilibria.
Theorem 4.2 and Appendix C together strongly suggest that with just one buyer, one should
not expect the seller to learn from purchasing behavior. This strengthens the conclusions
of [Hart and Tirole, 1988, Schmidt, 1993] and extends them to continuous distributions. In
Sections 5.1 and 6, we show that these conclusions are critically dependent on the presence
of only a single buyer. With multiple buyers, we give a simple PBE with natural prices in
which the seller learns from buyers’ actions. Moreover, the seller is able to use this knowledge
to obtain revenue comparable with the revenue of the optimal auction run in every round.
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5 EQUILIBRIUM WITH TWO BUYERS

In what follows, we describe a simple equilibrium with two buyers whose values are indepen-
dent and identically distributed, with distribution function F', and discount factor § > 2/3.
This equilibrium has two desirable properties: first, it survives the refinements proposed in
Section 4, and can therefore be considered robust. Second, the seller gets nontrivial revenue,
which stands in contrast to the robust no-learning equilibrium of the single-buyer case. We
describe the main ideas of the equilibrium in section 5.1 and leave the full formal description
to Appendix D. In Section 5.2, we derive revenue guarantees for our equilibrium.

5.1 Equilibrium Description

The equilibrium consists of two phases: an exploration phase, and an exploitation phase. In
the exploration phase, which starts in the very first round and lasts until one or more agents
reject, the seller offers prices which will be rejected with positive probability. Consequently,
the buyers’ response to the seller’s exploration prices cause nontrivial updates to the seller’s
beliefs.

Once an agent rejects, the equilibrium enters the exploitation phase, which lasts until
the end of the game. If a single agent triggered the phase by rejecting, the seller ignores
this agent, and posts a price at the bottom of the support of the beliefs for the stronger
agent. This price is offered and accepted for the rest of the game. If both agents rejected to
trigger exploitation, then the seller posts a price at the bottom of the common support of
their beliefs. Below, we informally describe the optimization problems of the seller and the
buyers to convey the main ideas of the equilibrium.

Buyers. In any given round of the exploration phase, neither buyer has rejected a price
yet. The seller offers a new price, say, p, and the buyers, whose beliefs are distributed i.i.d.
according to some posterior F' supported on [a, b], behave according to a threshold ¢ solving
the equation:

(524 P @) (- 9) = gyt - ) F(O), )

The lefthand side represents the utility of a buyer with type ¢ who accepts the price p,
which is ¢t — p times the probability of winning in the current round, with a continuation
utility of zero. The righthand side represents the threshold buyer’s utility from rejection -
if the other buyer accepts, then the seller will only post prices above ¢ in the subsequent
game yielding zero continuation utility for the threshold buyer. If both buyers reject, then
they share the item for the rest of the game at price a. In Appendix D, we show that as
expected, higher-valued buyers will prefer to accept, and lower-valued buyers will reject.

In the exploitation phase, the seller targets the buyers with the strongest value distribution
conditioned on past behavior, and prices at the bottom of their support. The buyer incentives
in this phase of the game are similar to those of the no-learning equilibrium.

Seller. In the explore phase, the seller’s optimization problem is an algorithmic pricing
problem. Each round, the seller must jointly choose a threshold and a price satisfying the
threshold equation (2), for current beliefs F' supported on [a, b]. They know from the buyers’
strategies that such prices will be met with a threshold response. It therefore suffices for the
seller to maximize the following value function:

R(a,b,p) = (1= F(t(p)))*(p+SR(t(p), b)) +2(F (¢(p)) — F (t(p))*) (p+ T28) + F (1(p))* (25),
3)
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where R(x,y) is the optimal continuation revenue from the equilibrium with values distributed
according to F' conditioned to [z, y] and ¢(p) is the threshold corresponding to price p. The
three terms of this function represent the three possible outcomes to the current round:
both buyers accept, exactly one accepts, and both reject.

In our presentation of the equilibrium, we leave the specific price path selected by the seller
as the implicit solution to the above optimization, and note that any policy for choosing
prices and corresponding thresholds satisfying the threshold equation will support threshold
behavior by the buyers. To find a policy arbitrarily close to optimal, one may discretize
value space and solve the Markov decision problem associated with the value function (3)
by value iteration, though we make no claim as to the computational efficiency of this
method. For a computationally constrained buyer, we give in the next section a particular
threshold-supported pricing policy which obtains provably high revenue.

5.2 Revenue Guarantees

We now argue that if distributions are well-behaved, the revenue of the equilibrium outlined
in the previous section (and discussed in full detail in Appendix D) has high revenue.
Specifically, we assume that the hazard rate ; f g]()v) of the distribution is increasing in v - a
standard assumption in mechanism design. As a benchmark, we use the revenue that the
seller would obtain if they used the optimal auction in every round. For example, with two
U[0,1] buyers (as is considered in Devanur et al. [2015]), the seller obtains 5/12 every round
in expectation, yielding a benchmark of ﬁ. By Theorem 3.3, this revenue is an upper

bound on the seller’s revenue in any PBE. The result is the following:

THEOREM 5.1. Assume the value distribution F of the two buyers has a monotone hazard
rate, and assume 6 > 2/3. In the equilibrium described in Section 5.1 and Appendiz D, the
seller obtains revenue which is at least ﬁ of the revenue of the optimal auction run each
round.

To argue the theorem, we first observe that in the exploration phase of the equilibrium,
the seller may offer any price which has a threshold response, and the arguments in the
previous section ensure that buyers will be incentivized to adhere to threshold responses. It
follows that we may analyze any sequence of prices for the exploration phase, and as long
as each price has a threshold response, the resulting revenue will be a lower bound on the
actual revenue of the seller.

As our upper bound on our benchmark, we use , where p* is the single-buyer
monopoly price. This corresponds to selling two items optimally every round. Because the
optimal revenue for the sale of a single item is concave in the number of buyers, this upper
bound will always exceed the revenue of the optimal single-item auction every round.

To relate our equilibrium to this upper bound, we imagine the seller choosing a sequence
of prices which increases the threshold quickly until it reaches p*, after which the seller
voluntarily enters the exploit phase. Assuming both agents have value above p*, the seller
will receive revenue of p* in perpetuity starting as soon as the threshold reaches this point.
By upperbounding the time it takes for this to occur, we can lowerbound the expected
revenue from this sequence of prices, and therefore the revenue from the price sequence
actually selected by the seller in equilibrium.

First, consider an arbitrary step of the explore phase, where the current beliefs are over
an interval [a,b] with CDF F?. We argue that there is always a way for the seller to induce
a threshold ¢ which learns “quickly.” Formally:

2(1=F(p*))p"*
-3
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LEMMA 5.2. In the explore phase with beliefs supported on [a,b], there always exists a

price p > a inducing the threshold t which satisfies F2(t) = 152.

PrOOF. Note that the threshold equation for this stage implies:

§
(t— G)Ff(t)m = (F2(t) + 1)(t — p).
Substituting in F?(t) = 152 and solving for p yields p =t — §(t — a). O

To obtain our bound, we will assume the seller offers the following sequence of prices:

e If there exists some p € [a, b] inducing threshold p*, offer p.
e Otherwise, offer a price which induces ¢ satisfying F(t) = 15;5.

We now argue that such a sequence of prices will eventually induce a threshold of p*, if
buyers’ values are above p*.

LEMMA 5.3. If both sellers have value at least p*, then the above sequence of prices
eventually induces threshold p*.

PrOOF. By Lemma 5.2, the seller will eventually reach a stage where the threshold ¢
satisfying F(t) = %}5 is greater than p*. We show that in this case, there is a price inducing
a threshold ¢t = p*.

To see this, assume the current beliefs for buyers who haven’t rejected are distributed
according to F with support [a,b]. Let ¢t* be the threshold for which F'(¢*) = 12, and
assume t* > p*. Note that the threshold equation can be rearranged as:

t—p  F:t) 6
t—a FP(t)+11-6
The righthand side is obviously increasing in ¢. Since t* > p*, we therefore have:

Fb(p* ) Fo(t* )
N (o N R 1
Fb(p)+11—-6  Fb(t*)+11-4
If we set t = p*, we see that the lefthand side ranges from 0 at p = p* to 1 at p = a, hence,
there is a price p that induces the desired threshold. (Il

(4)

<1.

We can now argue that under the above sequence of prices, the exploration phase will
reach threshold p* quickly if both agents have values above p*. Formally:

LEMMA 5.4. Let z = %;5. If both sellers have value at least p* and F(p*) <1—1/e then
after 1/x + 1 rounds of the exploration phase using the price sequence defined above, we will
have that the lower bound of the support is p*.

PRrooOF. Let t; be the threshold induced in the jth stage of the exploration phase, and
assume t; < p*. We will first lowerbound F'(t;). Note that F(t;) is exactly the probability
that an agent will reject one of the prices in first j stages of the learning phase. This
probability can also be written as F(t;_1) + (1 — F'(t;—1))z, since conditioned on an agent
accepting the first j — 1 prices, the price in round p; was chosen to be accepted with
probability x. This yields the recurrence:

F(ty) = Ftj—1) + (1 = F(tj-1))a,
which is solved by F(t;) =1— (1 — z)7. If we set j = 1/z, we obtain
Ftj))=1—-(1—-z)"/*>1-1/e.
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It therefore must be that after at most 1/x rounds, the exploration phase terminates with
the threshold reaching p*. In the subsequent round, the lower bound of the support will be
the previous round’s threshold, p*. O

LEMMA 5.5. If F(p*) < 1—1/e then the equilibrium obtains revenue at least 5 =p* (1 —
F(p))2.

PrROOF. We lower bound the revenue with the revenue from the sequence of prices
described above. The probability that both agents have values above p*, and therefore
that the threshold reaches p*, is (1 — F(p*))%. By Lemma 5.4 the discount factor after
reaching p* is at most st > % After p* is reached the seller prices the item at p* for
all remaining rounds and the item is accepted with probability one for a total of ﬁp*
revenue. Overall the revenue obtained by the seller with this price sequence is therefore at

least 1i—(;%p*(l — F(p*))2. O

PrOOF OF THEOREM 5.1. Let OPT denote the total revenue from running the optimal
auction for two buyers on F. Our benchmark for revenue is OPT/(1 — §). By concavity
of the revenue we have that OPT < 2p*(1 — F(p*)). By Lemma 5.5 the equilibrium gets
revenue

For distributions satisfying the monotone hazard rate assumption, it is a standard fact
that F(p*) > 1 — 1/e. We therefore have that the revenue of our equilibrium is at least
3(1071?)62 > %1:;7 proving the theorem. (Il

6 EQUILIBRIUM WITH MANY BUYERS

In Section 5, we showed that the dynamic pricing game with 6 > 2/3 supports an equilibrium
with nontrivial revenue and learning. Moreover, in contrast to the one-buyer case, this
equilibrium is robust to the refinements laid out in Section 4 and Appendix C. We now
generalize these conclusions to games with n > 3 buyers and § > 41+ In particular, we
give a recursively-constructed equilibrium, built on the two-buyer equilibrium as a base
case, in which the seller obtains non-trivial revenue, learning occurs, and which survives the
refinements of Section 4 and Appendix C. We derive revenue guarantees in Section 6.2 and
Appendix F.

6.1 Equilibrium Description

Much like the two-buyer equilibrium, the multibuyer version has an exploration phase and
an exploitation phase. In the exploration phase, the seller posts a price which induces a
threshold response among the buyers. Those buyers that reject are priced out of the game,
while the k£ buyers who accept continue in the k-buyer version of the equilibrium. This
continues until all or all but one buyer rejects, at which point the seller exploits the buyers
who most recently accepted, posting the bottom of their support in perpetuity. We give the
full description of the equilibrium in Appendix E.

Buyers. In the exploration phase, the seller targets the set of buyers S who have not yet
rejected a price. The not in S, i.e. those who have rejected, are ignored by the seller and
priced out of the market. We may therefore continue our discussion with |S| = n. For the
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sellers in S, the price offered by the seller induces a threshold response. For n buyers, the
threshold equation is

6 F(t)"!
Pt —p) = T ) 6)
where P, (t) = Z;L:_Ol nlfj(n;l)F(t)J(l — F(t))"177 and F is the common distribution of

buyers in S, supported on [a, b]. The lefthand side again corresponds to the utility of a buyer
with type t from accepting, which is made more complicated now by the fact that anywhere
from 0 to n — 1 other buyers could accept. Meanwhile, the righthand side is again the utility
of the threshold agent from rejecting, which is only positive from the case where all other
buyers also reject, in which case all buyers split the item in perpetuity. In the exploitation
phase, the seller continues targeting either the set of agents who have never rejected, or the
agents who only rejected in the previous round, if everyone rejected that round. As in the
two-buyer equilibrium, the buyer incentives are similar to the no-learning equilibrium.

Seller. As in the two buyer equilibrium, the seller is faced with an algorithmic pricing
problem, where each round they are restricted to prices which support threshold responses.
To do so, they optimize the value function

R(a,b,p,n) = Fp)"(£%5) +n(l = FE@)F(EE)" " (p+ 55

+ 30 (1) (L= F(t(p) Y F(6)" 7 (p+ SR(t(p), b, ),

where ¢(p) is the corresponding threshold price solving (5) for p and R(¢(p),b,j) is the
expected continuation revenue from the j-buyer equilibrium with the belief distribution
conditioned to [t(p),b]. Note that for n > 3 buyers, the recurrence has an additional
argument, which is the number of players who have not yet rejected. As before, this problem
can be solved to arbitrary precision using discretization and value iteration. In Section 6.2,
we extend the ideas of Section 5.2 to give a computationally efficient and simple strategy
which secures for the seller a constant fraction of the maximum revenue possible while
lowerbounding the revenue of the seller’s best response.

6.2 Approximate Optimality of Multibuyer Equilibrium

In this section, we state our revenue guarantees, assuming buyers’ value distributions are
sufficiently well-behaved. As with n > 2 buyers, the proof demonstrates a squence of prices
which the seller could select in equilibrium, for which buyers would behave according to
their threshold responses. This lowerbounds the revenue of the seller if they best respond.
Intuitively, our sequence of prices learns from “accept” decisions of the buyers as aggressively
as possible, seeking high thresholds until it is possible to offer the price with quantile 1/n
according to the original distribution. Our analysis shows that this sequence of prices quickly
reaches this price, and that offering this price every round approximates the optimal revenue.
Formally:

Definition 6.1. A distribution is regular if the Myerson virtual value function ¢(v) =

_1-F(1)

v is increasing in v.
() &

THEOREM 6.2. For all reqular value distributions F with monopoly quantile at least
1/n, the equilibrium described in Section 6 and Appendiz E earns the seller at least a

-~ In3
217(2/3)1 n(1-1/v2) a2 . 1202-fraction of the revenue of the revenue-optimal auction for F' run
each round.
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We reiterate that all MHR distributions are regular with monopoly quantile at least 1/e.
Hence, the requirements for Theorem 6.2 are weaker than for two buyers. The proof can be
found in Appendix F.
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A NO-LEARNING EQUILIBRIUM

In this appendix, we give the full description of the no-learning equilibrium. The seller’s
strategy can be found in Algorithm 1, and the buyer’s strategy in Algorithm 2. The beliefs
which support this strategy profile are simple: if a buyer has ever accepted a positive price or
rejected O (neither of which is on-path), the seller believes the buyer’s value is 1. Otherwise,
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the seller learns nothing about the buyer’s value and offers the item for free every round.
Moreover, it is clear from inspection that this equilibrium survives the simplicity refinement.
ALGORITHM 1: Zero-Revenue Equilibrium - Seller’s Strategy

Input :Purchasing history h*, belief support [a, b].

Output : Price prt1

if Buyer has ever accepted a positive price then

| prr =1

else if Buyer has ever rejected a price of 0 then
| e =1

else
L Prt1 = 0;

ALGORITHM 2: Zero-Revenue Equilibrium - Buyer’s Strategy

Input :Purchasing history h*, belief support [a, b], value v, price prt1
Output : Purchasing decision for round k£ + 1

if pr+1 = 0 then
‘ Accept;

else if pr+1 > 0 then

if Buyer has ever accepted a positive price then
‘ Accept;

else if Buyer has ever rejected a price of 0 then
‘ Accept;

else
L Reject;

B PROOF OF THEOREM 3.2

We will explicitly construct an equilibrium where the seller offers price p every round, no
matter the buyer’s action. We give the buyer’s strategy in Algorithm 4, and the seller’s
strategy in Algorithm 3. Beliefs are simple - on-path, they are updated after the first buying
decision and remain constant thereafter. If the seller has caused an off-path history by
posting a price other than p, then they expect positive prices to be rejected for the rest of
time, as in the zero-revenue equilibrium. As in the latter equilibrium, if a buyer accepts a
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positive price, then the seller assumes that they have value 1 and posts a price of 1 until the
end of time.

ALGORITHM 3: Folk Theorem Equilibrium - Seller’s Strategy

Input :History h*, Support bounds (aj,b}),..., (af,by)
Output : Price pgy1
if p[k—1]=(p,...,p) then

Pk+1 = D
else if Any buyer has accepted a price other than p or 0 then
| Petr =15
else
L pk+1=0

ALGORITHM 4: Folk Theorem Equilibrium - Buyer i’s Strategy

Input :History h*, Support bounds (at,b}),..., (ay,by), Value v;, Price pri1
Output : Purchasing decision for round &k + 1
if plk] = (p,...,p) then

Accept if and only if v; > pry1;

else if Buyer ¢ has accepted a positive price other than p or 0 then
‘ Accept if and only if v; > pry1;

else if pr1+1 # 0 then
‘ Reject;

else

| Accept;

To see that the strategies in Algorithms 3 and 4 are a PBE, we first argue that the seller
is best responding. We consider the cases as they are stated in Algorithm 3:

e All prices offered have been p: In this case, buyers will behave as price takers if

Pr+1 = p, which might yield positive revenue. If the seller offers any other positive
price, buyers will reject and demand the item for free for the rest of the game.

A price other than p has been offered and accepted by buyer i: This is off-path. We
may therefore set the seller’s beliefs to be that v; = 1. Moreover, according to the
buyers’ strategy, ¢ will be a price-taker from now on. It follows that it is optimal for
the seller to set a price of 1.

A price other than p has been offered, but no buyer has accepted a positive price
other than p: In this case, buyers will only accept a price of 0, so the seller cannot
get any utility with any price; they might as well post 0.

We now argue that an arbitrary buyer i is best responding, using the cases in Algorithm 4.

o All prices offered have been p: The seller will continue offering this price no matter

what the buyer does. It follows that the buyer should accept if they could get
positive utility from doing so.

Buyer i has accepted a positive price other than p or 0: In this case, the seller
believes that v; = 1, and will post price 1 forever. Buyer ¢ should therefore reject,
unless their value is 1, in which case they weakly prefer to accept.

A price other than p has been offered, the only positve price accepted has been p,
and pir1 # 0. Buyer i will get at most utility v; — pry1 from accepting, as all
future prices will be 1. Rejecting, meanwhile, will yield utility of ﬁ, as the seller
will offer the item for free for all subsequent rounds, and all buyers will accept. If

0 > 5, then rejecting will be preferable for any choice of v; and py41.
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e A price other than p has been offered, the only positive price accepted has been p, and
pr+1 = 0: Rejecting will not change the seller’s subsequent prices, and accepting
will yield positive expected utility, so accepting is optimal.

C ALTERNATE SUFFICIENT CONDITIONS FOR ELIMINATING LEARNING
EQUILIBRIA

In this appendix, we give an alternate refinement which selects out all but the equilibrium
in which the seller learns nothing about the buyer. As in Section 4, we require that the
seller posts prices which are above the bottom of the support of beliefs. Rather than
upperbounding prices offered by the seller, we require that the buyers accept a price at the
bottom of the support, whenever it is offered. Formally:

Definition C.1. A threshold PBE of the single-buyer game respects lower bounds if the
following conditions hold for every history h* with beliefs lower bounded by a:

o t(h* p) = p, for all p < a.
o ok(hF) > a.

THEOREM C.2. In the single-buyer game, let the value distribution F be supported on
[a,b], with a > 0. If 6 > aLer’ then in any threshold PBE which respects lower bounds, the
seller posts a every round, which is accepted by all buyers. In other words, no learning will

occur.

Note that Theorem C.2 does not require that strategies be Markovian on path, though
adding this requirement obviously does not change the result.

To prove the theorem, we show that any threshold PBE that respects lowerbounds and
must have a non-monotone cumulative allocation function around any threshold other than
a or b. To simplify our analysis, we will consider only threshold PBE in which the threshold
buyer for each round accepts in the first round. Moreover, since the seller never will offer
a subsequent price below ¢, we may have the threshold type reject for the remainder of
the game. For any threshold PBE, one can change the strategies of threshold buyers to an
accept followed by nonstop rejection without violating equilibrium, as such a sequence of
actions is one of their optimal choices. The change doesn’t affect the seller’s expected utility
because such agents are a measure zero set.

PrROOF OF THEOREM C.2. Consider a threshold PBE with value distribution supported
on [a,b]. Assume the threshold buyer in the first round behaves as described above: they
accept in the first round, and then reject in every subsequent round. In this equilibrium, we
have X (t) = 1. We will show that there is a lower-valued agent with with total discounted
allocation strictly greater than 1. This violates Lemma 4.4 unless t = a, proving the theorem.

We will first find a buyer with value less than ¢ with high total discounted payments. To
do this, note that after seeing a rejection in the first round, the seller could offer a for the

rest of the game, which by the natural threhsolds assumption would yield revenue a%&.

Since the seller is best responding, this implies that E[P(v) |v < t] > at%5. Since P(v) is
increasing, it must be that there is a set of values with positive measure in [a, t] with total

discounted payments at least a%. Choose some v from this set. We have P(v) > a15T5'

We now lowerbound X (v). To do this, note that the buyer could choose to reject
every round, so U(v) > 0. This in turn implies that vX (v) > P(v), and therefore that
b

X(v) > %1f5. By our assumption that § > -2, we have:

) )
X))z 415 2515 > 1
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This yields the desired non-monotonicity of X (-), contradicting Lemma 4.4. Tt must therefore
be that ¢ = a. The seller does not learn in such an equilibrium, as the same arguments will
hold for every subsequent round. O

D FULL DESCRIPTION OF TWO-BUYER EQUILIBRIUM

In this appendix, we describe an equilibrium for two buyers with natural thresholds in
which the seller makes nontrivial revenue and updates their beliefs in a nontrivial way. The
equilibrium has two phases: an “explore” phase in which learning occurs, and an “exploit”
phase, where the seller ceases to learn from buying behavior and instead posts the bottom
of the strongest player’s support for the rest of the game. The “explore” phase lasts from
the beginning of the game until any buyer rejects a price. The “exploit” phase begins when
a buyer rejects and continues for the rest of the game.

We first describe the “explore” phase of the game. Assume buyers are identically distributed
according to the distribution F?, with support [a,b], and let p* be the revenue-optimal
anonymous price for two buyers with such a distribution. If p* = a, then the seller posts a
for the rest of the game (resulting in a voluntary end to the “explore” phase). Otherwise,
the seller selects a price p, and assumes that the buyers (who have all accepted in every
previous round, and therefore have the same distribution F? after beliefs are updated) will
respond according to a threshold t satisfying the threshold equation:

(¢~ p) (o) + =50) = 0RO 0
The lefthand side represents the utility of buyer ¢ with value ¢ when they accept. If the
other buyer rejects, which occurs with probability F?(¢), then buyer i gets the item with
certainty, at price p. Otherwise, they get it with probability 1/2 at that same price. The
righthand side represents the expected utility from rejection. Rejecting triggers the “exploit”
phase of the game. If the other buyer rejects as well, then the seller will post a for the
remainder of the game, and both buyers will accept for the remainder of the game, yielding
the righthand side of (6). If the other buyer accepts, the seller will post t for the rest of the
game, yielding no utility for buyer i.
If there are multiple thresholds ¢ satisfying (6), we will assume buyers use the highest value.
Formally, define T?(p) to be the set of solutions to (6). Further let p* be the monopoly price
for the initial value distribution. Define t2(p) to be p* if p* € T(p), else t%(p) = max;es(p) t

if T?(p) # 0 and infinity otherwise. Given this threshold function, the seller optimizes their
revenue, which is given by the recurrence:

Rip) = (1= F2 (¢ )" (p+ 0RY )
+mem@—m@@»@+
2 ad
() (125).

where th ) is the seller’s optimal revenue from the continuation game where the buyers

)

are both distributed acccording to F tb,, ) This equation comes from a straightforward
breakdown of the seller’s revenue. If both buyers accept, the seller makes revenue p, and
both buyers must have value at least t%(p), so the seller is faced the next round with a fresh
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game with distributions F/ tli, )" If exactly one rejects, then the seller receives revenue p and

prices at ¢ (p) until the end of the game, and this price is accepted. If neither accepts, then
the seller prices at a for the rest of the game. Note that the seller may solve the above
recurrence for the optimal price p by value iteration.

We now give a full description of the seller’s strategy in Algorithm 5, and the buyers’
strategy in Algorithm 6. Note that responses to off-path actions will be dictated by careful
updates of the beliefs, which we will explain after presenting the strategies.

ALGORITHM 5: Seller’s Strategy

Input :Purchasing history h*, Support bounds (a¥,b}), (a5, %)
Output : Price pry1
if h* == (AA)* then

a¥ = ab = a;

by =05 =b;

if a > p* then
| Prk+1=a

else

L Pk+1 = arg mI?X Rg(p)

else
k _ky.
L Pk+1 = max{a17a2}7

ALGORITHM 6: Buyer i Strategy

Input :Purchasing history kY, Support bounds (a¥,b%), (a5, b%), value v;, price ps,
Output : Purchasing decision for round k + 1
if K == (AA)* then
a=af = a3;
b= b} = bs;
if a > p* then
| Accept if and only if pr, < a
else
L Accept if and only if v; > t&(p)

else
if p; < max{a¥,a}} then

| Accept if and only if v; > pry1
else

| Reject

We now describe the belief updates. On-path, beliefs are dictated by standard Bayesian
updates. In the “explore” phase, the buyers have the same initial support, [a,b]. Any buyers
who accept price pj, have their support updated to [t%(py),b]. Those who reject have new
support [a, 2 (py)]. In the “exploit” phase, each buyer either always accepts or always rejects,
so updates are trivial.

Off-path, we use belief updates to implement punishments for deviation. In particular, if
all buyers are expected to take the same action but one deviates, the seller will update their
beliefs to the maximum value of the support. For the rest of the game, the seller will post
this value, and with probability 1, all buyers will reject. The details of the belief update



Nicole Immorlica, Brendan Lucier, Emmanouil Pountourakis, and Samuel Taggart 21

algorithm are given in Algorithm 7. Together with Algorithms 5 and 6, this fully specifies
equilibrium.
ALGORITHM 7: Belief updates

Input :Purchasing history h**' Current support bounds (af,b¥), (af,b%), First-round
common support bounds (a, b).

Output : Updated support bounds (a¥+* p51) (abt pEF1).

for i € {1,2} do

if all types for ¢ should reject pr then

if buyer i rejected pr then

k+1 _ k pk+1 _ 3k
‘ Cli =a;, bz = bz

else
| ot =0b, 0F T =b

else if all types should accept then

if buyer ¢ accepted then
‘ af"'l =ak, bf“ = bk

else

| af T =0, 05t =0
else
if buyer i accepted then

bk

| =, o =t

else
k

k+1 _ k gk+1 _ b
L a; " =ai, by =1 (px)

THEOREM D.1. The strategies and beliefs specified by Algorithms 5, 6, and 7 is a PBE
for 6 >2/3.

In Section D.1, we show that the buyers are best-responding, and in Section D.2, we show
that the seller is best-responding. Together, these results prove the theorem.

D.1 Buyer Incentives

As discussed, the belief updates of Algorithm 7 are designed to punish agents for out-of-
equilibrium actions. We will use this as a tool for enforcing equilibrium for the buyers. We
must first argue that the punishment is effective.

LEMMA D.2. If any buyer takes an out of an equilibrium action in round k, i.e., an action
that has zero probability according to the public beliefs, then that buyer does not obtain any
utility from rounds k + 1 and on.

PRrROOF. As described in Algorithm 7, once a buyer ¢ accepts or rejects when all buyers
should have behaved in the opposite fashion according to their strategy, the public belief
about this buyer’s type becomes a pointmass on the top of their original distribution’s
support, b. As a result, in all future rounds the seller posts a price of at least b. O

We now argue that the buyers are in equilibrium.

LeMMA D.3. For § > 2/3, each buyer is best-responding to the strategies of the seller and
the other buyer.
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PROOF. We break our analysis into two parts: the exploration phase, which occurs when
no buyer has rejected yet, and the exploitation phase, where at least one buyer has rejected.
These encompass the on-path incentives, but in fact also apply to any history in which only
the seller has deviated from equilibrium. If a buyer has taken an off-path action in the
history, then Lemma D.2 implies that incentives are trivial.

Exploration Phase. Assume the seller has offered some sequence of prices, all of which have
been accepted by both buyers. Then the beliefs about the buyers’ values are distributed
IID according to F?, for some support interval [a,b]. For notational convenience, we will
suppress the subscripts and superscripts for the distribution and simply write F. Now
assume that in the current round, the seller has posted price p, and assume that there is at
least one threshold ¢ satisfying equation (6). We will show that for buyer 1 (without loss of
generality), accepting p is a best response if v; > ¢, and rejecting is a best response if v; < ¢.

Assume v1 > t. The utility for buyer i from accepting, U 4, satisfies

Un 2 (F(0)+ 50 (01— p) + 12 (00— F (1) (7)
The first term comes from the current round: buyer 1 wins at price p with probability 1 if
buyer 2 rejects, and with probability 1/2 if buyer 2 accepts. The second term comes from
the event that buyer 2 rejects this round, in which case the seller will enter the exploitation
phase and offer a price of ¢ for the remainder of the game.

Meanwhile, if buyer 1 rejects this round, the seller will enter the exploitation phase
regardless of the action of buyer 2. This leaves us with two cases. If buyer 2 rejects, then
the seller will post a price of a for the rest of the game (assuming buyer 1 does not attempt
further deviations, which by Lemma D.2 are not profitable). If buyer 2 accepts, then the
seller will instead post ¢ in the next round. Note that buyer 1 may now accept ¢t next round.
Doing so will be profitable, as v; > t, and because the seller expects rejection from buyer
1, the seller will update their beliefs for buyer 1 to be a pointmass on the highest possible
value, yielding no further utility. It follows that if buyer 1 rejects this round, their expected
utility Ug satisfies:

V] —a 0 v — ¢
—— 4+ (1= F(t)—. 8
ey R LRI (5)
Write = v; — t. By assumption, > 0. By subtracting expression (7) from expression
(8) and rearranging, we obtain the following lower bound on the margin by which buyer 1
would prefer to accept:

Ur < F(t)

1+ F(t)
2

Ua—Ur = (t+z—p) —(t+x—a)

226 B

F(t)6 SE() 81— F(t))
+m(16 2 )'

Next, note that we can rearrange the threshold equation (6) to get:

(F(0)+ 1)t~ p) = F()(t —a) Q

Applying equation (9) to the first two terms of expression (9) allows us to write the as a
product of x and another term which is clearly positive:

UAURz:c<1F(t)F(t) ’ +5F(t)5(1F(t))>.

2 2 1-§ 1-96 2 (10)
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Finally, note that when p < a, the corresponding threshold from (9) is ¢ = p. In this case,
the incentive to accept is even stronger than the above analysis would suggest, as rejection
yields no utility in the present round, and by Lemma D.2, no utility in the future.

Assume vy < t. If buyer 1 accepts this round, they will win with probability F'(¢) + (1 —
F(t))/2 = (1 + F(t))/2. All subsequent prices will be above ¢, so they will receive no
continuation payoff. Their utility from accepting is therefore:

L, ), (1)

Meanwhile, if buyer 1 rejects, they trigger the exploitation phase. If buyer 2 also rejects,
then the seller offers a for the remainder of the game. If buyer 2 accepts, then the price for
the rest of the game is ¢, in which case buyer 1 cannot obtain any utility. The utility from
rejecting is therefore:

Uy =

_F(t)6(v1 —a)
Ur = 5 =5 (12)
Combining equations (11) and (12) yields:
_F(@)o(vi —a) 1+ F(t)
Up—Us=—"—7—5 ——5 (1-p)

After substituting x = ¢t — v; and applying equation (9), we have:

UR—UA:m<1+F<t>_F(t) 5 )

13
2 2 1-9¢ (13)
Note that v < t only if p > a. In this case, t — p < t — a, and hence equation (9) implies
that the term in parentheses in (13) is positive. It follows that agents with value below ¢
will reject.

Assume (6) has no solution. It is possible for the price p to be such that the threshold
equation has no solution. In this case, we require that all buyers reject as a best response.

If buyer 1 accepts, they get utility Us = v; — p, as buyer 2 will reject this round, and
by Lemma D.2; they will receive no utility in the future. If they reject, then the seller will
enter the exploit phase of the equilibrium and post a for the rest of the game. This yields
utility Up = 15529

When the threshold equation (6) has no solution, it must be that the lefthand side of the
rearranged threshold equation (9) is less than the righthand side. This follows from the
fact that for ¢ < p, the lefthand side is negative side, while the righthand side is positive.
Since both sides are continuous functions of ¢, it cannot be that the lefthand side grows
larger than the right, or else they would cross to yield a solution. Consequently, if (9) has
no solution, it must be that

(14 FO)E—p) < o (t — a)F (1)
Rearranging yields:
5 F(t)
(t_p)<ﬁF(t) (t—a)
1 6
SEIETAY

This inequality holds for every value of ¢ - in particular, setting t = vy yields that Ur > Uy,
as desired.
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Ezxploitation Phase: In the exploitation phase, the seller prices at the bottom of the belief
support of the strongest buyer. If the seller offers this price or lower, the buyers act as
price-takers. If the seller offers a higher price, both buyers reject. We must show that each
of these behaviors is a best response.

Seller offers p < max(aj,aq). Note that if an agent who is expected to accept chooses
instead to reject, they get no utility in the current round, and no utility in the future, by
Lemma D.2. Accepting the current price is clearly preferable. The only case this does not
cover is if a; # ag and p lies in between. Assume without loss of generality that a; > as.
Buyer 2’s purchasing decision does not affect future prices, so they should act as a price
taker.

Seller offers p > max(a1, as). We first argue in the case where a3 = as = a. In this case,
the utility of buyer 1 (without loss of generality) from rejecting is %5 “-% as they will
win the item with probability 1/2 for the rest of the game. If they accept, they will receive
utility v; — p, as by Lemma D.2, they will not receive utility in subsequent rounds. Since
§ > 2/3, we have that ﬁ > 1. Since p > a as well, we have that %”12_“ > vp — P.
Hence, rejection is optimal.

In the case where a; # ao, the incentive to reject is even greater, due to the fact that the
higher-valued agent may receive the item with probability 1 in every subsequent round if
they reject. Hence, rejection is optimal here as well.

It follows that in both the exploration and exploitation phases, the buyers are best

responding to the strategy of the seller. O

D.2 Seller Incentives
LEMMA D.4. The seller is best responding to the actions of the buyers.

PRrROOF. We break our analysis into three cases: exploration phase, exploitation phase,
and off-path analysis.

Ezploration Phase. In the exploration phase both buyers have the same support, and the
seller has three options: price below the common support, post a price p such that there
is a threshold response solving equation (6), or post a price p such that no solution to (6)
exists. We will show that the second option, posting a price within the common support
such that there is a threshold response, is optimal. Since the seller’s equilibrium strategy is
defined implicitly to be the optimal such price, it will follow that they are best responding
in the exploration phase.

Let a be the lower bound of the common support. We will first show that pricing below a
yields less expected revenue than pricing at a. This implies that the seller prefers to post a
price within the common support. To prove this claim, observe that any price p < a will
be accepted with probability 1 by both buyers and cause the beliefs to remain unchanged.
Clearly the seller would prefer to induce this outcome with a higher price.

We now argue that posting a price for which a threshold response does not exist is
suboptimal. This follows from the fact that both buyers will reject, yielding no revenue
and no update to the beliefs. The next round’s decision problem is identical to that of the
current round, but with payoffs discounted by §. The seller clearly does not benefit from
skipping a round in this manner.
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Ezploitation Phase. In the exploitation phase, the seller posts max(aq,as). We will show
that the seller prefers this to their other options, which are posting a lower price, or posting
a higher price.

The seller prefers not to post a lower price for the same reason that they would prefer
not to post below the common support in the exploration phase. As long as the price p
satisfies p < max(a1, az2), it will be accepted with probability 1, and will not cause the beliefs
about the stronger of the two buyers to change. Posting the largest price which induces this
outcome is preferable to other such prices.

If the seller posts a price p > max(a1,as), then this price is rejected by all agents, and
beliefs do not change. The seller effectively skips the round and is faced with the same
decision next round, with a discount. This is not optimal. Hence, the optimal price to post
in the exploitation phase is max(a1, az).

Off-Path Analysis. We finally analyze the case where a buyer has taken an action in the
current history that was not expected of any type. In this case, the seller updates their
beliefs to the highest possible value b, and the buyer strategy dictates that they behave as a
price-taker. The optimal response to such a scenario is to post b every round. O

E EQUILIBRIUM FOR THREE OR MORE BUYERS

In this appendix, we provide a full description of our equilibrium for three or more buyers.
The full formal descriptions of the seller’s strategy, the buyers’ strategies, and the belief
updates are given in Algorithms 8, 9, and 10.

The seller’s strategy has two phases: an explore phase and an exploit phase. In the
explore phase, the seller offers the revenue p each round such that there exists a threshold ¢
satisfying the threshold equation

6 F(t)"!
Pt —p) = T ) (14)
where P,(t) = Z;:Ol n—iy("]_l)F(t)J(l — F(t))""'=7 and F(-) is the CDF of the current

beliefs of buyers who have not yet rejected, supported on [a, b]. Formally, define T(p; n) to be
the set of solutions to (6) with n buyers, and let p* be the price with quantile 1/n according
to the original distribution of buyers’ values. Define % (p;n) to be p* if p* € T?(p;n), else
th (p;n) = MaX;e b (pin) ¢ if T?(p;n) # 0 and infinity otherwise. Given this threshold function,
the seller optimizes their revenue, which is given by the recurrence:

R(a,b,p.m) = F(th(pim)" (£5) + n(L = F(th(pin)) ) F (¢ ()" (p+ 2452 )
+ 30 (5) (1= F(t (p:n)) F(th(p;n))" 7 (p + OR(t (p;n), b, 7)),

where R(t%(p;n),b,j) is the seller’s optimal revenue from the continuation game with j
strong buyers, all distributed acccording to F’ tbb )"

This will result in a price which increases eveary round until the explore phase ends. Three
different events may end the explore phase and trigger the exploit phase: all buyers reject,
all but one buyer rejects, or the price reaches the optimal anonymous price p* for n buyers
with the original distribution Fy(-), which is given by p* = max, p(1 — Fy(p)").

When the exploit phase begins, there will be a set of buyers whose beliefs have a common
interval of support [a,b] which is strictly above those of all other buyers. The seller posts
the minimum value of this common support for the rest of the game.
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On-path, the seller (and buyers) update their beliefs with standard Bayesian updating. If,
however, the seller’s beliefs are such that a buyer 7 is expected to always reject or always
accept every round, then the seller’s belief updates will punish buyer ¢ for not adhering to
these expectations. When buyer ¢ deviates to an off-path action, the seller updates their
beliefs for that agent to the maximum value in the support of Fy and then enters the exploit
phase, pricing at this maximum value for the rest of the game.

We now describe the buyers strategies. In the explore phase, the seller offers a price
which elicits a threshold response, and the buyers who have not yet rejected respond in
kind, rejecting below the threshold and accepting above. If the seller offers a price below the
support of the beliefs for these buyers, the buyers accept the price, and if the seller offers
a price above the support or a price such that there is no threshold response, the buyers
reject. If a buyer has rejected in the explore phase, or if they have deviated in the past to
an off-path action, then they become price-takers.
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In the exploit phase, the seller is targeting the set of buyers who have the strongest
support, with lowerbound a. All buyers in this group refuse any price above a, and accept
any price below a. All other buyers act as price takers in this phase.

ALGORITHM 8: Seller’s Strategy

n

Input :Purchasing history h*, Support bounds {(a¥,b5)},

Output: Price pry1

Sk = argmax; a®;

a = max; a¥;

b = max; b¥;

if D = R or |S}| =1 or a > p* then
‘ Pr+1 = @;

else
L Pis1 = argmax R(a, b, p, [Sl) ;

ALGORITHM 9: Buyer i Strategy

Input :Purchasing history hf, Support bounds {(af, b?)};-‘zl, value v;, price pg
Output : Purchasing decision for round k
Sy = argmax; a?;

a = max; a¥;
b = max; b¥;
if D = R" or |Sx| =1 or a > p* then
‘ Accept if and only if p, < a and v; > pg;
else if i ¢ Si then
‘ Accept if and only if pr < v;;
else
L Accept if and only if v; > 4 (p; |Sk|);

ALGORITHM 10: Belief updates

Input :Purchasing history h**!, Current support bounds {(a¥,b¥)}™ ,, First-round common
support bounds (a,b).

Output : Updated support bounds {(af“, bf“) 1.

Sk = argmax; a?;
forie{l,...,n} do
if all types for ¢ should reject pi then
if buyer ¢ rejected pr then
|t = b 2
else

|t =p, 0 =0
else if all types should accept then
if buyer ¢ accepted then
‘ af"'l =af, bf“ =bf
else

| af ™ =0, 05t =0
else
if buyer i accepted then

bk

| = s, o = ot

else
bl
| ekt = ab B =t S
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THEOREM E.1. The strategies and belief updates laid out in Algorithms 8, 9, and 10 is a
PBE as long as § > ;15

We prove the theorem in much the same manner as Theorem D.1, by analyzing the buyer
and seller incentives separately, in Sections. Before we proceed, we note that a common term
in much of the analysis is the probability a buyer ¢ winning the item when the threshold is
t, the common distribution is F(-), and the number of buyers other than i is n — 1. This
value is given by P, (t) = Z;:Ol %_J(”;l)F(t)J(l — F(t))"~17J. This can be simplified by
the following lemma:

LEmMA E.2. For alln > 2 and t in the support of F(-),

SRy
5=0

PROOF. We give a combinatorial proof. The probability P, (t) was generated as follows:
j buyers out of buyer i’s n — 1 competitors will have values below threshold ¢ (and therefore
buy) with probability (";1)F(t)j(1 — F(t))"~17J. Conditioned on this event, the probability

of winning the item is n—ij This same process can be executed in a different way: first

P,(t) =

S|

permute the n buyers (including i) uniformly at random, and then give the item to the
first buyer in the order whose value is over ¢ (or to buyer i, who we have assumed accepts).
The probability that buyer 4 is jth in the order is 1/n, and conditioned on this event, their
probability of winning is F(t)7~1. O

E.1 Buyer Incentives

As in the two-buyer equilibrium, the seller punishes buyers for out-of-equilibrium actions
such as accepting a price with no threshold or rejecting a price with a threshold ¢ and then
accepting a price above t in subsequent rounds. We first formalize this:

LEMMA E.3. If a buyer takes an out of equilibrium action, then they cannot get positive
utility from subsequent rounds.

PROOF. When an agent i takes an out-of-path action in round k, the beliefs on their
value are updated to a pointmass the upper bound b of the initial distribution’s support.
Moreover, since af“ = bf“ = b is clearly greater than the optimal anonymous price p* for
the initial distribution, the seller will only post b in subsequent rounds. No buyer can get
positive utility from such prices. O

LEmMA E.4. For § > s all buyers are best responding to the strategies of the seller
and other buyers.

PROOF. We argue from the perspective of buyer ¢ in round &, and break our analysis into
the exploration and exploitation phases.

FExploration Phase. There are two cases to consider: either buyer 7 has accepted in all
previous rounds, and therefore i € Si, or buyer i has rejected in a previous round.

First, note that if buyer i has rejected in a previous round buy following the threshold
strategy for that round, then they will continue rejecting all subsequent prices. This follows
from the fact that all subsequent prices will be above the threshold for the round where &
rejected.
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If i € Si, then they are among the agents with a common support, say [a, b], being targeted
by the seller. We first argue that buyers in Sy will respond according to the threshold
strategy for the |Sk|-player version of our equilibrium. All other buyers will reject, by the
previous paragraph. We analyze the incentives of an arbitrary buyer in the exploration
phase. Without loss of generality, consider the perspective of buyer 1, and consider their
decision in the first round of the game. Let F(:) be the CDF of the beliefs, supported on
[a,b].

Assume vy < t. We argue that the buyer would prefer to reject. If they were to accept,
they would win at price p with probability P, (¢). They would not receive any utility in the
future, as all future prices would be at least t. Hence their utility from accepting is exactly
ug = Pp(t)(v1 — p).

If they reject, then future prices will be below ¢ only if all other agents also reject (triggering
the exploit phase), which occurs with probability F(¢)"~!. If this occurs, then buyer 1

F(t)n—l 5

receives utility 1‘%5 . Hence up = ———1%5(v1 — a).

To show that ur > ua, note that the threshold equation (14) implies that

v1—a
n

o F

P, >
"(t)_l—é n

(15)

Plugging t = v; + « for z > 0 into equation (14) and applying inequality (15) proves that
UR > U4, as desired.

Now assume v1 > t. We will show that accepting is preferable to rejecting. To lowerbound
buyer 1’s utility for accepting, notice that if they accept, they will win the item in the
current round at price p with probability P, (¢). They will also likely receive utility in future
rounds. As a lower bound on this future utility, they will receive utility % “ln_t in the event
that all other buyers reject the current price, which occurs with probability F(¢)"~!. Hence,

wa = Pyt —p)+ =T, ),

If buyer 1 rejects, their utility in future rounds depends on the actions of the other buyers.
If all other buyers reject (which occurs with probability F(t)"~!, they receive utility % s
from acccepting for the rest of the game. Otherwise, at least one other buyer accepts, driving
future prices above t. The seller believes buyer 1 to have value less than ¢ because of their
rejection. If buyer 1 chooses to accept in future rounds, this is seen as an off-path deviation,
which will cause the seller to post prohibitively high prices for the rest of the game. Hence,
if at least one other buyer accepts, buyer 1 can only get utility from the next round. The

expected utility contribution of this event can be shown to be P, (t)(v; — ¢). Hence:
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Write v =t + 2. The utility difference between accepting and rejecting satisfies:

Ua — UR 2@+x—MP@H15F%7(+x t)
—OP,(t)(t 4+ 3 — t) — 2 TO @+x—@

=&WF)-%(

(16)

The last line is obviously nonnegative, so buyer 1 prefers to accept.

The only case left to argue is that sellers will choose to reject a price that has no threshold
response. In this case, the buyer strategies dictate that they must all reject. We show that
this is a best response. We argue from the perspective of the first round, in which all buyers
are in the targeted set S. If there are buyers outside of Sk, the argument does not change.

If buyer ¢ accepts the current price p, then they receive utility Us = (vi — p), and by
Lemma E.3, they will not receive any utility from future rounds. If buyer i rejects, then
because all other buyers also reject, the exploitation phase will begin in the next round,
yielding utility Ug = % =

Becuase there is no threshold response, it must be that the threshold equation (14) has
no solution. The argument mirrors the two-buyer case: for ¢t < p, the lefthand side of (14)
is negative, while the righthand side is always nonnegative. By continuity, it must be that
the lefthand side is always less than the righthand side, or else they would cross, yielding a
threshold response. Hence,

5 F()"!

P,(t)(t—p) < mT(t —a).

By Lemma E.2, P,(t) = Z? 01 F(t)7. This is an average of n terms which are all larger than

F(t)"~L. Hence, P,(t) > F( )"~ for all t. We may therefore conclude that ¢t —p <7 (t a)
for all values of ¢, including vy, proving the claim.

Exploitation Phase. In the exploitation phase, the seller prices at the bottom of the belief
support of set of targeted buyers Sy, with common support [a, b]. If the seller offers a lower,
the buyers act as price-takers. If the seller offers a higher price, all buyers reject. We must
show that each of these behaviors is a best response.

Seller offers p < a. Note that if a buyer who is expected to accept chooses instead to
reject, they get no utility in the current round, and no utility in the future, by Lemma D.2.
Accepting the current price is clearly preferable. If a buyer is not in Si, then they cannot
affect future prices, and should consequently act as a price taker.

Seller offers p > a. We ﬁrst argue from the perspective of buyer ¢ in Si. The utility of

buyer 4 from rejecting is 6 = | o ‘ as they will win the item with probability 1/|Sk| for the

rest of the game. If they accept they will receive utlhty v1 — p, as by Lemma D.2, they will
not receive utility in subsequent rounds. Since § > 27 > | 5‘*S|k-s|-1’
Since p > a as well, we therefore have that rejection is optimal.

5
we have that B =) > 1.
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It follows that in both the exploration and exploitation phases, the buyers are best
responding to the strategy of the seller. a

E.2 Seller Incentives
LEMMA E.5. The seller is best responding to the actions of the buyers.

PROOF. As in the two-buyer case, we break our analysis into three cases: exploration
phase, exploitation phase, and off-path analysis.

Ezxploration Phase. In round k of the exploration phase the seller has three options: price
below the common support of the targeted set |Sk|, post a price p such that there is a
threshold response solving equation (14) for n = Sk, or post a price p such that no solution
to (14) exists. We will show that posting a price which induces threshold response is optimal.
Since the seller’s equilibrium strategy is defined implicitly to be the optimal such price, it
will follow that they are best responding in the exploration phase.

Let a be the lower bound of the common support of Sk, which we assume to be [a, b].
Pricing below a yields less expected revenue than pricing at a. To see this, note that any
price p < a will be accepted with probability 1 by all buyers and cause the beliefs to remain
unchanged. The seller would prefer to induce this outcome with a higher price.

Posting a price for which a threshold response does not exist is suboptimal. This follows
from the fact that all buyers will reject, yielding no revenue and no update to the beliefs.
The seller effectively skips a round, which is obviously suboptimal.

Ezxploitation Phase. In the exploitation phase, the seller posts at the bottom a of the
common support of the targeted set Sx. We will show that the seller prefers this to their
other options, which are posting a lower price, or posting a higher price.

The seller prefers not to post a lower price for the same reason that they would prefer
not to post below the common support in the exploration phase. As long as the price p is
at most a, it will be accepted with probability 1, and will not cause the beliefs about the
stronger of the two buyers to change. Posting the largest price which induces this outcome
is preferable to other such prices.

If the seller posts a price p > a, then this price is rejected by all agents, and beliefs do not
change. As in the exploitation phase, this is suboptimal.

Off-Path Analysis. We finally analyze the case where a buyer has taken an action in the
current history that was not expected of any type. In this case, the seller updates their
beliefs to the highest possible value b, and the buyer strategy dictates that they behave as a
price-taker. The optimal response to such a scenario is to post b every round. O

F PROOF OF THEOREM 6.2

We now give our pricing algorithm: let ' be the common distribution of all sellers who have
not yet rejected. Further let p* be the price such that F(p*) =1 — 1/n.
e If there is a price p with threshold ¢(p) = p*, post p.
e Otherwise, post a price p which induces threshold ¢(p) = "7 1—55.
LEMMA F.1. For any continuation where at least two buyers have accepted every round,
let F be the distribution of the common beliefs of the buyers who have not rejected. Let t*

be the unique value satisfying F(t*) = "7/ 1T75' There is a price p solving the threshold

equation for t = t*.
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PrOOF. We may rearrange the threshold equation as

t— p n—1 0
nPn(t)m = F(t) 15 (17)
For t = t*, the righthand side has value 1. We must simply show that there is a value
of p € [a,b] satisfying nP(t*)iI—:Z = 1. Note that as a function of p, nP(t*)E::Z ranges
continuously from nP(t*) at p = a to 0 at p = t*. From Lemma E.2, it is obvious that

nP(t*) > 1. Hence, there must be a price satisfying (17). O
LEMMA F.2. If at least two buyers have value at least p*, then the above sequence of
prices eventually induces threshold p*. In particular, let A = "‘11/%;6, and let k solve

1—(1—A)k = F(p*). Then at most k + 1 steps are required before the above price sequence
begins posting price p*.

PROOF. Assume there are at least two buyers with value at least p*. Lemma F.1 guarantees
that until the seller offers a price with threshold p*, round j’s threshold ¢; will satisfy
F(tj) =1—(1—A)J, where F is the initial distribution of values. We show that as soon as
1—(1—A) > F(p*), i.e. t; > p*, the seller will post p* in the subsequent round.

Consider a round where the common beliefs of the buyers who have not yet rejected are
distributed according to F. Let t* be the threshold satisfying F(t*) = A, and assume that
t* > p*. We show that in this round, there will be a price p and corresponding threshold ¢
such that ¢t = p*. Note that the threshold equation can be rewritten as

t— F@)»t §

t—Z: n(Pi(t) 1-4 (18)
Note that by applying Lemma E.2, we see that the righthand side is equal to

F@r=t 3§
Yo F(t)i 10’
which is increasing in ¢. Since t* > p*, we have
FEe)t 5 F@)"t g

Yoo Fpr)i 1=0 " g F(t+)i1-9
If we set t = p*, we see that the lefthand side ranges from 0 at p = p* to 1 at p = a, hence,
there is a price p that induces the desired threshold. O

0< < 1.

LEMMA F.3. For § > 5, as long as there are two or more buyers with value at
least p*, the discount factor in the round where the seller first posts p* will be at most

(2/3)1 WO-VE A 4638,

PrOOF. By Lemma F.2, it will take at most k£ + 1 stages for the seller to post p* for the
first time, where k solves 1 — (1 — A)* = F(p*) = 1 — 1/n. In other words, the discount
factor in this round will be at least y(J,n) = §Hosi-a &

We first show that (4, n) is increasing in § for all n. The derivative of (8, n) with respect
to d is
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First, since
1
NP
In(1—( 2 "—1)
5 ( (55%) > 0,

we need only analyze the quantity in the outermost parentheses. We first show that
In L

1n<1_((51;6)n—1> o

This follows from noting that for 6 > 2/3 and n > 3, the arguments of both logarithms are
less than 1, and hence both logarithms are negative, causing their signs to cancel. What
remains is obviously positive. We next show

_ sy —1
- (} +j25) (59 1n<51n%L -
(1= (5™ ) = (1= (552)77)

To do so, we note the sign of each of the factors in the numerator and denominator:

1+

e — (1 +13%): negative
1 __1
° (1%5) "1 7 positive
In d: negative
In %: negative
1
o 1— (%5) "~': positive
n — 1: positive
1

In (1 — (15;5) "‘1>: negative.
Taking these signs into account yields that the term in question is positive, proving that
7(6,n) is increasing in §. It therefore suffices to analyze (%5, n).

We next show that v(-%+,n) is increasing in n. Hence, the worst case will be when n = 3.

n+1?
To do so, treat n as a continuous variable. We have

In L
n

d noo 1 n 1+1n(1,%)ﬁ »
dn/y n+1’ T n\n+1

Where

ﬁ n,il nil
ay, = <1—(1> )(n—l)an (1— (1) >—|—<1) 1n1<nlnl+n—1> In — .
n n n n n n+1

As with the derivative of (8, n) with respect to §, one may check term-by-term that the
quantities above come out positive. We omit the analysis for brevity.

It follows that v(d,n) > (2/3)171““1—“13/\/5) ~ .4638. O

LEMMA F.4. For n > 3, the probability that at least two buyers have value p* is at least
7/27.
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PROOF. The probability that two or more buyers have value at least p* is

NGORG] 2

This function is increasing in n, and hence we may take the worst case, where n = 3, with
value 7/27. O

PROOF OF THEOREM 6.2. A standard upper bound on the revenue of a single-item
mechanism is the ex ante relaxation benchmark, the revenue of the optimal mechanism for
the unlimited supply setting which sells with probability at most 1 (see [Alaei, 2011, Cai
and Daskalakis, 2011]). For regular distributions with monopoly quantile at least 1/n, this
benchmark has value exactly p* for each round, or % in total. Combining Lemmas F.2
and F.4 yields that the expected revenue from the exploit phase of the price sequence we

_ In3
give is at least 2—77(2/3)1 n(1-1/v2) p*, O



	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Discussion

	2 Model
	3 Folk Theorem
	4 Non-Robustness of One-Buyer Learning Equilibria
	5 Equilibrium with Two Buyers
	5.1 Equilibrium Description
	5.2 Revenue Guarantees

	6 Equilibrium With Many Buyers
	6.1 Equilibrium Description
	6.2 Approximate Optimality of Multibuyer Equilibrium

	A No-Learning Equilibrium
	B Proof of Theorem 3.2
	C Alternate Sufficient Conditions for Eliminating Learning Equilibria
	D Full Description of Two-Buyer Equilibrium
	D.1 Buyer Incentives
	D.2 Seller Incentives

	E Equilibrium for Three or More Buyers
	E.1 Buyer Incentives
	E.2 Seller Incentives

	F Proof of Theorem 6.2

