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Abstract 

Reading aloud performance in children is typically assessed 

by teachers on an individual basis, manually marking reading 

time and incorrectly read words. A computational tool that 

assists with recording reading tasks, automatically analyzing 

them and providing performance metrics could be a significant 

help. Towards that goal, this work presents an approach to 

automatically predicting the overall reading aloud ability of 

primary school children (6-10 years old), based on the reading 

of sentences and pseudowords. The opinions of primary 

school teachers were gathered as ground truth of performance, 

who provided 0-5 scores closely related to the expectations at 

the end of each grade. To predict these scores automatically, 

features based on reading speed and number of disfluencies 

were extracted, after an automatic disfluency detection. Vari-

ous regression models were trained, with Gaussian process 

regression giving best results for automatic features. Feature 

selection from both sentence and pseudoword reading tasks 

gave the closest predictions, with a correlation of 0.944. Com-

pared to the use of manual annotation with the best correlation 

being 0.952, automatic annotation was only 0.8% worse. Fur-

thermore, the error rate of predicted scores relative to ground 

truth was found to be smaller than the deviation of evaluators’ 

opinion per child. 

Index Terms: reading level assessment, child speech, Gaussi-

an process regression 

1. Introduction 

Evaluating the reading aloud proficiency of primary school 

children is usually an effort done by teachers or tutors, where 

they provide a level-appropriate reading task to a child and 

manually take notes for accuracy and time. This task cannot be 

accomplished very often during a school year as it can be very 

time consuming and needs to be accomplished in a 1-on-1 

setting. A system that can automatically perform these func-

tions could be an important supplement for teachers and allow 

assessments to be more frequent, as well as less affected by 

evaluator bias. An overall reading performance score can 

provide a clear overview of a child’s level and be used to track 

progress over time. 

This work focuses on providing an overall reading aloud 

performance score automatically, targeting children in primary 

school at 6 to 10 years of age. It should be emphasized that the 

comprehension of what is being read is not measured, and the 

concern is solely for oral reading fluency. However, overall 

reading competence is linked to oral reading fluency [1], and 

the latter can be defined as the ability to read text quickly, 

accurately and with proper expression [2], [3]. Techniques to 

assess fluency are often connected to second language learn-

ing [4], [5], targeted at adults or young adults for whom 

speech technologies are significantly mature. In fact, the 

methods for automatic reading assessment may also be used to 

detect specific reading disorders or in automatic reading tutors 

where a child’s reading is tracked in real time, falling in the 

area of computer assisted language learning (CALL). Exam-

ples of projects that aimed to create reading tutors include 

LISTEN [6], Tball [7], SPACE [8] and FLORA [9]. 

Reading aloud by children often exhibits disfluencies that 

affect reading speed and accuracy. A common metric for 

reading performance is Correct Words per Minute (CWPM) 

[10] that considers reading speed of only correctly pronounced 

words. We develop several more features based on reading 

speed, task difficulty and frequencies of pauses and disfluen-

cies and verify how well they correlate with the opinion of 

school teachers for a score of overall reading ability of several 

children. Furthermore, these features can be combined (with 

multi-feature regression techniques) to provide even closer 

results, since the distinct information given by them may 

correspond to the separate cues that influence a teacher’s 

score.  

Similar works in this field automatically detect correct 

words and common reading mistakes [7], [11]–[14], but read-

ing performance assessments focus mostly on reading of iso-

lated words. Black et al. [11] aimed to automatically evaluate 

reading ability and provide a high-level literacy score for 

individual word reading tasks. Using automatically extracted 

features and a selection of features based on pronunciation, 

fluency and speech rate, a Pearson correlation of 0.946 was 



achieved to predict mean evaluator’s scores (from 1 to 7). 

Duchateau et al. [12] also target the reading of isolated words. 

They evaluate a child’s reading ability by the number of cor-

rectly read words divided by time spent (equivalent to 

CWPM) and show agreement to human evaluation with Co-

hen’s Kappa [15] above 0.6 when considering 5 performance 

classes. Our work will focus on the reading of sentences and 

pseudowords of varying difficulty, to hopefully encompass a 

wider set of reading competencies.  

Section 2 will introduce the data of European Portuguese 

children reading aloud for reading evaluation. Section 3 de-

scribes the process of obtaining and parsing ground truth 

scores of reading performance from teachers. The considered 

features relating to reading speed, disfluencies and word diffi-

culty are presented in Section 4. The regression models and 

feature selection stages to predict overall reading performance 

score are detailed in Section 5. 

2. Dataset of children reading aloud 

A subset of the LetsRead database [16] of European Portu-

guese children reading is used for this evaluation. We consid-

ered 150 children (6-10 years old), with the frequency distri-

bution along the grades (1 to 4) being 43, 40, 35 and 32. From 

each child, utterances of 5 sentences and 5 pseudowords are 

extracted, to a total of 2h36m of audio. Originally, each child 

read 20 sentences and 10 pseudowords, but it was previously 

deemed that the shorter subset provides similar evaluations of 

performance, allowing more children to be evaluated during 

the ground truth effort (or more evaluations per child). 

The sentence prompts were extracted from children’s tales 

and school books for the target group. Pseudowords (such as 

<traba> [tɾˈabɐ], <impemba> [ip̃ˈeb̃ɐ] or <culenes> [kulˈɛnɘʃ]) 

represent non-existing or nonsense words in the native lan-

guage, used to evaluate morphological and phonemic aware-

ness. Pseudowords of 2 to 4 syllables were created by shuf-

fling the most common syllables in a lexicon of European 

Portuguese, maintaining full pronounceability [16]. 

3. Ground truth of reading performance 

We have gathered the ratings of primary school teachers as a 

ground truth for reading performance, which will be the target 

of the trained regression models. A crowd-sourcing like appli-

cation was developed, distributed to primary school teachers 

throughout Portugal. Each evaluator, after listening to 5 sen-

tences and 5 pseudowords of a child, gave a performance 

score between 0 and 5, closely related to the expected reading 

level of grades 1-4, with 0 and 5 for extreme cases. 10 groups 

of evaluators evaluated different sets of 15 children (for a total 

of 150 children), with each group having an average of 10 

evaluators (7 minimum, 13 maximum), for a total of 100 eval-

uators. Therefore, calculations of evaluator performance will 

be done inside its group. Each child was assessed by at least 7 

evaluators. 

3.1. Evaluating evaluators 

To measure agreement between evaluators, we can com-

pute Pearson’s correlation of the 15 scores given by an evalua-

tor to the 15 scores of another evaluator who assessed the 

same children, repeating for all evaluators of the same group. 

This pairwise correlation reflects the agreement between eval-

uators and can be used to identify ‘bad’ evaluators. We found 

clear outliers that did not agree with other evaluators and 

decided to remove any evaluators below 0.65 correlation (iter-

atively computing new correlations after removing the worst 

outliers). Table 1 presents average results after 5 evaluators 

were removed. We also compute correlation to the mean, i.e., 

the correlation of each evaluator to the average of other evalu-

ators of the same group, providing similar conclusions. 

Table 1: Overall mean and standard deviation of 

evaluator pairwise correlation and correlation to the 

mean of other evaluators. 

Correlation Mean ± S.D. Maximum Minimum 

Pairwise 0.796 ± 0.060 0.885 0.657 

To the mean 0.874 ± 0.069 0.967 0.679 

3.2. Normalized scores 

An evaluator can have certain biases: i) constantly giving 

lower scores than the average ones; ii) constantly giving high-

er scores than the average ones; iii) constantly giving scores 

near the minimum and maximum; or iv) constantly giving 

scores near the middle. Applying a z-normalization (z-norm) 

is a method to remove these effects and, for each evaluator, 

their scores are changed by subtracting their mean and divid-

ing by their standard deviation. All values are then recon-

structed to the original scale by multiplying by the overall 

standard deviation of all 1500 scores and adding the overall 

mean. This is an alternative to scaling the minimum and max-

imum to 0 and 5 and can provide values slightly lower than 0 

or higher than 5. The mean of the transformed scores per child 

is the value taken as ground truth of reading performance 

score. 

4. Features 

There may be several sources of information that teachers 

consider when deciding about overall reading aloud perfor-

mance. We explore different types of features, analyze their 

performance individually in predicting performance score, and 

use a combination of them to train regression models. Two 

distinct sources for feature extraction will be considered: 

manual annotation (where several types of disfluencies are 

marked) and automatic annotation (where mispronunciations, 

false starts, repetitions, intra-word pauses and extensions are 

marked). Although using manual annotation may provide the 

purest analysis of which features matter for evaluation, it is 

automatic feature annotation that is needed to build a practical 

system for performance evaluation. 

4.1. Automatic annotation 

The employed methods to automatically annotate an utterance 

while detecting reading disfluencies follow two stages, and are 

described in further detail in [17]. The first is segmentation, 

providing candidate segments for words. Task specific decod-

ing lattices (per utterance) are used where the sequence of the 

original prompt’s words is the most probable, with additional 

arcs that allow repetitions of words and false starts based on 

each word’s syllables. A 4% word error rate is achieved, with-

out considering whether a word is pronounced correctly. In the 

second stage, candidate segments for words are classified as 

mispronounced or not. The classification is based on log-

likelihood ratios between the reference word and the output of 

a phonetic recognizer. 



4.2. Feature description 

Table 2 lists the set of features considered. The same features 

are calculated for the two reading tasks separately (sentences 

and pseudowords), doubling the number of features. Features 

can be split into four groups: reading speed (1-6), silence 

related features (7-9), rate of disfluencies (10-14) and task 

meta-information (15-18), where difficulty is based on a set of 

rules for doubtful or harder pronunciations [16]. Since dele-

tions and insertions are not detected by the automatic annota-

tion, FastR is not computed for that case. Sentence features 

will be addressed with the prefix ‘s’ and pseudoword features 

with the prefix ‘p’ (e.g., s1, s17, p1, p17).  

4.3. Individual feature performance 

To fit a single feature to the ground truth ratings, a simple 

linear regression model can be trained to minimize the sum of 

squared errors, resulting in a linear transformations: 

 𝑦̂ = 𝑎𝑋 + 𝑏 (1) 

where 𝑦̂ is the predicted output, 𝑋 is the observation vector, 𝑎 

is the coefficient (weight) of the input and 𝑏 is the intercept 

(bias) term. For a multi-feature regression, 𝑎 is a vector of 

weights and 𝑋 is a matrix of feature vectors. To evaluate the 

fit of predicted scores to the ground truth, two performance 

metrics will be considered: Pearson’s correlation coefficient 

(𝜌 or Corr) and root mean squared error (RMSE). We will 

consider a leave-one-out cross-validation with 150 folds to 

train and test regression models, where 149 samples are used 

to train a model and 1 is left out for testing. The 150 resulting 

test values are aggregated to compute Corr and RMSE. Table 

2 shows results using each feature individually for linear re-

gression. Random performance leads to a correlation coeffi-

cient of 0 and RMSE of about 1.9. 

The overall best feature for both manual and automatic 

methods is s6: correct characters per minute in sentences 

(CCPM). Other reading speed metrics that do not depend on 

disfluencies (s1, s3 and s5) perform well but slightly worse 

than their counterparts using correctly read units. The opposite 

is observed for pseudoword features, where the best one was 

p5: characters per minute of the original prompt (CharsPM). 

This may be due to the poor performances on pseudoword 

reading, where values of 0 correct words per minute could be 

found, and the time it took to read them may have more in-

formation. It should be noted that the results obtained with 

features 1, 3 and 5 could be dependent on the conditions of our 

data. They may only be relevant features because the reading 

tasks were almost always completed, with very few early 

stoppings. For a live application, features 2, 4, 6 should prob-

ably be preferred. Automatic features performed slightly 

worse, probably due to disfluency detection errors. Figure 1 

displays the best manual features against the ground truth, 

where there is evidence of a linear fit.  

 

Figure 1: Best sentence feature s6 (left) and best 

pseudoword feature p5 (right) from manual annota-

tion versus ground truth, with respective linear fits. 

5. Models of overall performance score 

Although some of the individual features already seem to be 

good predictors of reading aloud ability, it is expected that 

combining several of them will further approach the ratings by 

Table 2: Feature enumeration and performance of using each feature for a linear regression model to predict ground truth 

scores. 

  Sentences Pseudowords 

Features  Manual Auto  Manual Auto 

Abbr. Description Feat. Corr RMSE Corr RMSE Feat. Corr RMSE Corr RMSE 

WPM Words per minute (prompt) s1 0.919 0.459 0.917 0.463 p1 0.744 0.776 0.744 0.776 

CWPM Correct words per minute s2 0.928 0.434 0.923 0.447 p2 0.674 0.858 0.670 0.863 

SyllsPM Syllables per minute (prompt) s3 0.927 0.435 0.926 0.439 p3 0.764 0.750 0.760 0.755 

CSPM Correct syllables per minute s4 0.938 0.402 0.930 0.429 p4 0.684 0.848 0.684 0.848 

CharsPM Characters per minute (prompt) s5 0.931 0.424 0.930 0.428 p5 0.805 0.689 0.803 0.693 

CCPM Correct characters per minute s6 0.940 0.397 0.931 0.425 p6 0.703 0.827 0.691 0.840 

SILrate Total silence / Total time s7 0.647 0.885 0.736 0.787 p7 0.324 1.099 0.397 1.067 

SILini Average initial silence time  s8 0.347 1.091 0.480 1.019 p8 -0.157 1.176 -0.130 1.176 

SILiniRate Initial silence time / Total time s9 0.283 1.115 0.231 1.132 p9 -0.073 1.173 0.005 1.169 

MispR Rate of mispronunciations s10 0.525 0.991 0.615 0.916 p10 0.389 1.070 0.494 1.011 

ExtraR Rate of repetitions + false-starts s11 0.498 1.008 0.555 0.968 p11 0.139 1.154 0.236 1.130 

SlowR Rate of extensions + intra-word pauses  s12 0.540 0.978 0.328 1.098 p12 0.247 1.127 -0.172 1.192 

FastR Rate of insertions + deletions s13 0.171 1.146 N/A N/A p13 0.092 1.160 N/A N/A 

DisfR Rate of all disfluencies s14 0.663 0.872 0.683 0.850 p14 0.490 1.013 0,530 0,985 

nSylls Total number of syllables s15 0.456 1.034 0.456 1.034 p15 0.147 1.151 0.519 0.993 

nChars Total number of characters s16 0.483 1.018 0.483 1.018 p16 0.361 1.084 0.147 1.151 

Diff1 Difficulty 1 – Pronunciation rules s17 0.493 1.011 0.493 1.011 p17 0.464 1.029 0.361 1.084 

Diff2 Difficulty 2 – Rules and length s18 0.491 1.012 0.491 1.0123 p18 0.462 1.031 0.464 1.029 

 



teachers. For this purpose we explore several regression mod-

els: multi-feature linear regression (LR), Gaussian process 

regression (GPR), and neural networks with one linear output 

(NN). GPR trains kernel-based probabilistic models to predict 

continuous values and confidence intervals of a score can be 

calculated. It is especially useful to avoid overfitting [18]. The 

GPR models were trained using a squared exponential kernel 

as the covariance function. A simple neural network for re-

gression was used with one hidden layer followed by a linear 

unit, providing linear outputs in the evaluation’s range. Since 

the amount of data for training is low (149 samples maxi-

mum), we obtained the best results using only a single percep-

tron in the hidden layer. The networks were trained with 

Bayesian regularization to improve generalization [19].  

To tackle overfitting to the training data, feature selection 

methods are also employed. Stepwise regression can decide 

which features to include or remove iteratively for a regression 

model [20]. A feature is added to a linear model if the change 

in sum of squared errors (SSE) from its inclusion is statistical-

ly significant (in this case, a p-value of an F-statistic test lower 

than 0.05). No features were ever removed after inclusion. We 

consider the trained linear regression and also take the selected 

features to train GPR and NN models. Another regression 

method that can be used for feature selection is the least abso-

lute shrinkage and selection operator (LASSO), a regulariza-

tion technique applied here for a regularized least-squares 

regression [21]. SSE is minimized but with constraints on the 

sum of absolute values of coefficients of features, where many 

features will have weights of 0 and the others can be selected 

to apply LR, GPR and NN. 

Table 3 summarizes the test results after training the con-

sidered regression models with leave-one-out cross-validation 

using features obtained either from manual or automatic anno-

tations. The first models use the best sentence feature (s6) and 

the best pseudoword feature (p5). For manual features, NN 

proved to be the best model after a stepwise feature selection 

and the improvement to only using the best features is clearer 

in RMSE. Results were slightly worse with automatic features 

and, contrarily, the best results are without feature selection 

and the best model was GPR.  

Table 3: Performance of multi-feature regression 

models using manual and automatic features. 

 Manual Auto 

Model Corr RMSE Corr RMSE 

LR (s6) 0.940 0.397 0.931 0.425 

LR (s6,p5) 0.943 0.386 0.933 0.419 

GPR (s6,p5) 0.948 0.371 0.938 0.403 

LR all 0.926 0.442 0.931 0.426 

GPR all 0.947 0.375 0.944 0.388 

NN all 0.938 0.403 0.939 0.399 

Stepwise add + LR 0.947 0.373 0.919 0.458 

Stepwise add + GPR 0.949 0.367 0.932 0.422 

Stepwise add + NN 0.952 0.357 0.925 0.442 

LASSO 0.944 0.387 0.932 0.423 

LASSO + LR 0.942 0.392 0.932 0.421 

LASSO + GPR 0.942 0.392 0.939 0.400 

LASSO + NN 0.948 0.368 0.935 0.411 

 

In stepwise selection with automatic features different se-

lections were made across the folds, while in the manual case, 

the same features were consistently selected. This may explain 

why feature selection was especially helpful in the manual 

case. When using all features, GPR seems to be the approach 

generalizing best. Nevertheless, analyzing which features were 

most often selected can provide an important insight. For both 

manual and automatic approaches, s6 (CCPM) and p17 (Diff1) 

are consistently selected. For manual only, s13 (FastR) and p1 

(CWPM) are also selected. For automatic only, s3 (SyllsPM) 

and p14 (DisfR) often appear. This shows that the reading of 

both sentences and pseudowords was relevant to predict the 

ground truth ratings. Although reading speed of pseudowords 

did not appear for the automatic approach, the rate of all de-

tected disfluencies (p14) does. Figure 2 plots the predictions 

from GPR using all automatic features along with the ground 

truth scores, with the 95% confidence interval of GPR and 

standard deviation of GT. Apart from a couple of outliers, 

most of the data and predictions fall inside those intervals. 

 

Figure 2: Ground truth and predictions with 95% con-

fidence of GPR model (left, prediction sorted) and 

ground truth standard deviation (right, GT sorted). 

6. Conclusions 

Aiming to predict the ratings given by primary school teachers 

for overall reading aloud performance of children, we devel-

oped and combined features automatically obtained from 

automatic annotation. Although a good correlation is already 

achieved with typical metrics such as correct words per mi-

nute, a significant improvement was obtained with additional 

features. Gaussian process regression was the best performing 

regression approach when using automatic features, and seems 

to be especially suitable to avoid overfitting when the entire 

set of features is used. 

Since metrics based on both sentence reading and 

pseudowords reading tasks were usually chosen during feature 

selection, we may conclude that teachers gave their overall 

ratings based on both tasks. Although reading speed metrics 

are the most important overall, detecting disfluencies proves to 

be relevant as well, even of specific types of disfluencies. 

Difficulty also seems to be an important normalizing factor, 

especially for pseudowords, since their difficulty is consistent-

ly chosen during feature selection. Further work should focus 

on investigating which unconsidered factors lead to some of 

the outliers that fell outside confidence intervals or ground 

truth standard deviation.  
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