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Abstract

The problem of quantizing the activations of a deep neu-
ral network is considered. An examination of the popu-
lar binary quantization approach shows that this consists
of approximating a classical non-linearity, the hyperbolic
tangent, by two functions: a piecewise constantsign func-
tion, which is used in feedforward network computations,
and a piecewise linear hard tanh function, used in the back-
propagation step during network learning. The problem of
approximating the ReLU non-linearity, widely used in the
recent deep learning literature, is then considered. An half-
wave Gaussian quantizer (HWGQ) is proposed for forward
approximation and shown to have efficient implementation,
by exploiting the statistics of of network activations and
batch normalization operations commonly used in the liter-
ature. To overcome the problem of gradient mismatch, due
to the use of different forward and backward approxima-
tions, several piece-wise backward approximators are then
investigated. The implementation of the resulting quan-
tized network, denoted as HWGQ-Net, is shown to achieve
much closer performance to full precision networks, such as
AlexNet, ResNet, GoogLeNet and VGG-Net, than previously
available low-precision networks, with 1-bit binary weights
and 2-bit quantized activations.

1. Introduction

Deep neural networks have achieved state-of-the-art per-
formance on computer vision problems, such as classifica-
tion [22, 36, 37, 12, 13], detection [7, 33, 1], etc. How-
ever, their complexity is an impediment to widespread de-
ployment in many applications of real world interest, where
either memory or computational resource is limited. This
is due to two main issues: large model sizes (50MB for
GoogLeNet [37], 200M for ResNet-101 [13], 250MB for
AlexNet [22], or 500M for VGG-Net [36]) and large com-
putational cost, typically requiring GPU-based implemen-
tations. This generated interest in compressed models with
smaller memory footprints and computation.

Several works have addressed the reduction of model

size, through the use of quantization [3, 28, 26], low-rank
matrix factorization [19, 6], pruning [11, 10], architecture
design [27, 17], etc. Recently, it has been shown that weight
compression by quantization can achieve very large savings
in memory, reducing each weight to as little as 1 bit, with
a marginal cost in classification accuracy [3, 28]. However,
it is less effective along the computational dimension, be-
cause the core network operation, implemented by each of
its units, is the dot-product between a weight and an ac-
tivation vector. On the other hand, complementing binary
or quantized weights with quantized activations allows the
replacement of expensive dot-products by logical and bit-
counting operations. Hence, substantial speed ups are pos-
sible if, in addition to the weights, the inputs of each unit
are binarized or quantized to low-bit.

It appears, however, that the quantization of activations
is more difficult than that of weights. For example, [4, 32]
have shown that, while it is possible to binarize weights
with a marginal cost in model accuracy, additional quanti-
zation of activations incurs nontrivial losses for large-scale
classification tasks, such as object recognition on ImageNet
[35]. The difficulty is that binarization or quantization of
activations requires their processing with non-differentiable
operators. This creates problems for the gradient descent
procedure, the backpropagation algorithm, commonly used
to learn deep networks. This algorithm iterates between
a feedforward step that computes network outputs and a
backpropagation step that computes the gradients required
for learning. The difficulty is that binarization or quantiza-
tion operators have step-wise responses that produce very
weak gradient signals during backpropagation, compromis-
ing learning efficiency. So far, the problem has been ad-
dressed by using continuous approximations of the operator
used in the feedforward step to implement the backpropa-
gation step. This, however, creates a mismatch between the
model that implements the forward computations and the
derivatives used to learn it. In result, the model learned by
the backpropagation procedure tends to be sub-optimal.

In this work, we view the quantization operator, used
in the feedforward step, and the continuous approxima-
tion, used in the backpropagation step, as two functions
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that approximate the activation function of each network
unit. We refer to these as theforward and backwardap-
proximation of the activation function. We start by consid-
ering the binary±1 quantizer, used in [4, 32], for which
these two functions can be seen as a discrete and a contin-
uous approximation of a non-linear activation function, the
hyperbolic tangent, frequently used in classical neural net-
works. This activation is, however, not commonly used in
recent deep learning literature, where the ReLU nonlinear-
ity [30, 39, 12] has achieved much greater preponderance.
This is exactly because it produces much stronger gradient
magnitudes. While the hyperbolic tangent or sigmoid non-
linearities are squashing non-linearities and mostly flat,the
ReLU is an half-wave rectifier, of linear response to posi-
tive inputs. Hence, while the derivatives of the hyperbolic
tangent are close to zero almost everywhere, the ReLU has
unit derivative along the entire positive range of the axis.

To improve the learning efficiency of quantized net-
works, we consider the design of forward and backward ap-
proximation functions for the ReLU. To discretize its linear
component, we propose to use an optimal quantizer. By
exploiting the statistics of network activations and batch
normalization operations that are commonly used in the lit-
erature, we show that this can be done with an half-wave
Gaussian quantizer (HWGQ) that requires no learning and
is very efficient to compute. While some recent works have
attempted similar ideas [4, 32], their design of a quantizer is
not sufficient to guarantee good deep learning performance.
We address this problem by complementing this design with
a study of suitable backward approximation functions that
account for the mismatch between the forward model and
the back propagated derivatives. This study suggests op-
erations such as linearization, gradient clipping or gradi-
ent suppression for the implementation of the backward ap-
proximation. We show that a combination of the forward
HWGQ with these backward operations produces very effi-
cient low-precision networks, denoted as HWGQ-Net, with
much closer performance to continuous models, such as
AlexNet [22], ResNet [13], GoogLeNet [37] and VGG-Net
[36], than other available low-precision networks in the lit-
erature. To the best of our knowledge, this is the first time
that a single low-precision algorithm could achieve suc-
cesses for so many popular networks. According to [32],
theoretically HWGQ-Net (1-bit weights and 2-bit activa-
tions) has∼32× memory and∼32× convolutional com-
putation savings. These suggest that the HWGQ-Net can
be very useful for the deployment of state-of-the-art neural
networks in real world applications.

2. Related Work

The reduction of model size is a popular goal in the deep
learning literature, due to its importance for the deployment
of high performance neural networks in real word applica-

tions. One strategy is to exploit the widely known redun-
dancy of neural network weights [5]. For example, [19, 6]
proposed low-rank matrix factorization as a way to decom-
pose a large weight matrix into several separable small ma-
trices. This approach has been shown most successful for
fully connected layers. An alternative procedure, known as
connection pruning [11, 10], consists of removing unimpor-
tant connections of a pre-trained model and retraining. This
has been shown to reduce the number of model parameters
by an order of magnitude without considerable loss in clas-
sification accuracy. Another model compression strategy is
to constrain the model architecture itself, e.g. by removing
fully connected layers, using convolutional filters of small
size, etc. Many state-of-the-art deep networks, such as NIN
[27], GoogLeNet [37] and ResNet [13], rely on such design
choices. For example, SqueezeNet [17] has been shown to
achieve a parameter reduction of∼50 times, for accuracy
comparable to that of AlexNet. Moreover, hash functions
have also been used to compress model size [2].

Another branch of approaches for model compression is
weight binarization [3, 32, 4] or quantization [28, 26, 8].
[38] used a fixed-point representation to quantize weights
of pre-trained neural networks, so as to speed up testing on
CPUs. [8] explored several alternative quantization meth-
ods to decrease model size, showing that procedures such
as vector quantization, withk-means, enable 4∼8 times
compression with minimal accuracy loss. [26] proposed a
method for fixed-point quantization based on the identifica-
tion of optimal bit-width allocations across network layers.
[24, 28] have shown that ternary weight quantization into
levels{−1, 0, 1} can achieve16× or 32× model compres-
sion with slight accuracy loss, even on large-scale classifi-
cation tasks. Finally, [3] has shown that filter weights can
be quantized to±1 without noticeable loss of classification
accuracy on datasets such as CIFAR-10 [21].

Beyond weight binarization, the quantization of activa-
tions has two additional benefits: 1) further speed-ups by
replacement of the expensive inner-products at the core of
all network computations with logical and bit-counting op-
erations; 2) training memory savings, by avoiding the large
amounts of memory required to cache full-precision acti-
vations. Due to these, activation quantization has attracted
some attention recently [38, 26, 4, 32, 40, 25, 28]. In [38],
activations were quantized with 8 bits, to achieve speed-
ups on CPUs. By performing the quantization after net-
work training, this work avoided the issues of nondifferen-
tiable optimization. [26] developed an optimal algorithm
for bit-width allocation across layers, but did not propose
a learning procedure for quantized neural networks. Re-
cently, [4, 32, 40] tried to tackle the optimization of net-
works with nondifferentiable quantization units, by usinga
continuous approximation to the quantizer function in the
backpropagation step. [25] proposed several potential so-



lutions to the problem of gradient mismatch and [28, 40]
showed that gradients can be quantized with a small num-
ber of bits during the backpropagation step. While some of
these methods have produced good results on datasets such
as CIFAR-10, none has produced low precision networks
competitive with full-precision models on large-scale clas-
sification tasks, such as ImageNet [35].

3. Binary Networks

We start with a brief review of the issues involved in the
binarization of a deep network.

3.1. Goals

Deep neural networks are composed by layers of pro-
cessing units that roughly model the computations of the
neurons found in the mammalian brain. Each unit computes
an activation function of the form

z = g(wT x), (1)

wherew ∈ R
c·w·h is a weight vector,x ∈ R

c·w·h an in-
put vector, andg(·) a non-linear function. A convolutional
network implements layers of these units, where weights
are usually represented as a tensorW ∈ R

c×w×h. The di-
mensionsc, w andh are defined by the number of filter
channels, width and height, respectively. Since this basic
computation is repeated throughout the network and mod-
ern networks have very large numbers of units, the structure
of (1) is the main factor in the complexity of the overall
model. This complexity can be a problem for applications
along two dimensions. The first is the large memory foot-
print required to store weightsw. The second is the compu-
tational complexity required to compute large numbers of
dot-productswT x. Both difficulties are compounded by the
requirement of floating point storage of weights and float-
ing point arithmetic to compute dot-products, which are not
practical for many applications. This has motivated interest
in low-precision networks [4, 32, 40].

3.2. Weight Binarization

An effective strategy to binarize the weightsW of con-
volutional filters, which we adopt in this work, has been
proposed by [32]. This consists of approximating the full
precision weight matrixW, used to compute the activations
of (1) for all the units, by the product of a binary matrix
B ∈ {+1,−1}c×w×h and a scaling factorα ∈ R

+, such
that W ≈ αB. A convolutional operation on inputI can
then be approximated by

I ∗ W ≈ α(I ⊕ B), (2)

where⊕ denotes a multiplication-free convolution. [32] has
shown that an optimal approximation can be achieved with
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Figure 1. Forward and backward functions for binarysign (left)
and half-wave Gaussian quantization (right) activations.

B∗ = sign(W) andα∗ = 1
cwh

‖W‖1. More details can be
found in [32].

While binary weights tremendously reduce the memory
footprint of the model, they do not fully solve the prob-
lem of computational complexity. SinceI consists of either
the activations of a previous layer or some transformation
of the image to classify, it is usually represented with full
precision. Hence, (2) requires floating point arithmetic and
produces a floating point result. Substantial further reduc-
tions of complexity can be obtained by the binarization of
I , which enables the implementation of dot products with
logical and bit-counting operations [4, 32].

3.3. Binary Activation Quantization

This problem has been studied in the literature, where
the use of binary activations has recently become popular
[32, 4, 40]. This is usually implemented by replacingg(x)
in (1) with thesign non-linearity

z = sign(x) =

{
+1, if x ≥ 0,
−1, otherwise

(3)

shown in Figure1. [32] has also considered rescaling the
binarized outputsz by a factorβ, but found this to be un-
necessary.

While the adoption of (3) greatly simplifies the feedfor-
ward computations of the deep model, it severely increases
the difficulty of learning. This follows from the fact that the
derivative of the sign function is zero almost everywhere.
Neural networks are learned by minimizing a costC with
respect to the weightsw. This is done with the backpropa-
gation algorithm, which decomposes these derivatives into
a series of simple computations. Consider the unit of (1).
The derivative ofC with respect tow is

∂C

∂w
=

∂C

∂z
g′(wT

x)x. (4)

These derivatives are computed for all units during the
backpropagation step. Wheng(x) is replaced by (3), the
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Figure 2. Dot-product distributions on different layers ofAlexNet with binary weights and quantized activations (100random images).

derivativeg′(wT
x) is zero almost everywhere and the gra-

dient magnitudes tend to be very small. In result, the gra-
dient descent algorithm does not converge to minima of the
cost. To overcome this problem, [4] proposed to use an al-
ternative function,hard tanh, which we denote bỹsign, in
the backpropagation step. This function is shown in Figure
1, and has derivative

s̃ign
′

(x) =

{
1, if |x| ≤ 1
0, otherwise.

(5)

In this work, we denote (3) as the forward and (5) as
the backward approximations of the activation non-linearity
g(x) of (1). These approximations have two main problems.
The first is that they approximate the hyperbolic tangent

g(x) = tanh(x) =
ex − e−x

ex + e−x
.

This (and the closely related sigmoid function) is a squash-
ing non-linearity that replicates the saturating behaviorof
neural firing rates. For this reason, it was widely used
in the classical neural net literature. However, squashing
non-linearities have been close to abandoned in recent deep
learning literature, because the saturating behavior empha-
sizes the problem of vanishing derivatives, compromising
the effectiveness of backpropagation. The second problem
is that the discrepancy between the approximation ofg(x)

by the forwardsign and by the backward̃sign creates a
mismatch between the feedforward model and the deriva-
tives used to learn it. In result, backpropagation can be
highly suboptimal. This is called the “gradient mismatch”
problem [25].

4. Half-wave Gaussian Quantization

In this section, we propose an alternative quantization
strategy, which is based on the approximation of the ReLU
non-linearity.

4.1. ReLU

The ReLU is the half-wave rectifier defined by [30]

g(x) = max(0, x). (6)

It is now well known that, when compared to squashing
non-linearities, its use in (1) significantly improves the ef-
ficiency of the backpropagation algorithm. It thus seems

more sensible to rely on ReLU approximations for network
quantization than those of the previous section. We propose
a quantizerQ(x) to approximate (6) in the feedforward step
and a suitable piecewise linear approximationQ̃(x) for the
backpropagation step.

4.2. Forward Approximation

A quantizer is a piecewise constant function

Q(x) = qi, if x ∈ (ti, ti+1], (7)

that maps all values ofx within quantization interval
(ti, ti+1] into a quantization levelqi ∈ R, for i = 1, · · · ,m.
In general,t1 = −∞ andtm+1 = ∞. This generalizes the
sign function, which can be seen as a1-bit quantizer. A
quantizer is denoted uniform if

qi+1 − qi = ∆, ∀i, (8)

where∆ is a constant quantization step. The quantization
levels qi act as the reconstruction values forx, under the
constraint of reduced precision. Since, for anyx, it suffices
to store the quantization indexi of (7) to recover the quanti-
zation levelqi, non-uniform quantizer requireslog2 m bits
of storage per activationx. However, it usually requires
more thanlog2 m bits to representx during arithmetic op-
erations, in which it isqi to be used instead of indexi. For
a uniform quantizer, where∆ is a universal scaling factor
that can be placed in evidence, it is intuitive to store anyx
by log2 m bits without storing the indexes. The same holds
for arithmetic computation.

Optimal quantizers are usually defined in the mean-
squared error sense, i.e.

Q∗(x) = argmin
Q

Ex[(Q(x) − x)2] (9)

= argmin
Q

∫
p(x)(Q(x) − x)2dx

wherep(x) is the probability density function ofx. Hence,
the optimal quantizer of the dot-products of (1) depends on
their statistics. While the optimal solutionQ∗(x) of (9) is
usually non-uniform, a uniform solutionQ∗(x) is available
by adding the uniform constraint of (8) to (9). Given dot
product samples, the optimal solution of (9) can be obtained
by Lloyd’s algorithm [29], which is similar tok-means al-
gorithm. This, however, is an iterative algorithm. Since a



different quantizer must be designed per network unit, and
this quantizer changes with the backpropagation iteration,
the straightforward application of this procedure is compu-
tationally intractable.

This difficulty can be avoided by exploiting the statisti-
cal structure of the activations of deep networks. For ex-
ample, [16, 18] have noted that the dot-products of (1) tend
to have a symmetric, non-sparse distribution, that is close
to Gaussian. Taking into account the fact that ReLU is a
half-wave rectifier, this suggests the use of the half-wave
Gaussian quantizer (HWGQ),

Q(x) =

{
qi, if x ∈ (ti, ti+1],
0, x ≤ 0,

(10)

where qi ∈ R
+ for i = 1, · · · ,m and ti ∈ R

+ for
i = 1, · · · ,m + 1 (t1 = 0 andtm+1 = ∞) are the optimal
quantization parameters for the Gaussian distribution. The
adoption of the HWGQ guarantees that these parameters
only depend on the mean and variance of the dot-product
distribution. However, because these can vary across units,
it does not eliminate the need for the repeated application of
Lloyd’s algorithm across the network.

This problem can be alleviated by resorting to batch nor-
malization [18]. This is a widely used normalization tech-
nique, which forces the responses of each network layer to
have zero mean and unit variance. We apply this normaliza-
tion to the dot-products, with the result illustrated in Figure
2, for a number of AlexNet units of different layers. Al-
though the distributions are not perfectly Gaussian and there
are minor differences between them, they are all close to
Gaussian with zero mean and unit variance. It follows that
the optimal quantization parametersq∗i andt∗i are approx-
imately identical across units, layers and backpropagation
iterations. Hence, Lloyd’s algorithm can be applied once,
with data from the entire network. In fact, because all distri-
butions are approximately Gaussian of zero mean and unit
variance, the quantizer can even be designed from samples
of this distribution. In our implementation, we drew106

samples from a standard Gaussian distribution of zero mean
and unit variance, and obtained the optimal quantization pa-
rameters by Lloyd’s algorithm. The resulting parameterst∗i
andq∗i were used to parametrize a single HWGQ that was
used in all layers, after batch normalization of dot-products.

4.3. Backward Approximation

Since the HWGQ is a step-wise constant function, it has
zero derivative almost everywhere. Hence, the approxima-
tion of g(x) by Q(x) in (4) leads to the problem of vanish-
ing derivatives. As in Section3, a piecewise linear function
Q̃(x) can be used during the backpropagation step to avoid
weak convergence. In summary, we seek a piece-wise func-
tion that provides a good approximation to the ReLU and to
the HWGQ. We next consider three possibilities.

q2

q2

Log-tailed 

ReLU
q2

q2

Clipped ReLU

Figure 3. Backward piece-wise activation functions of clipped
ReLU and log-tailed ReLU.

4.3.1 Vanilla ReLU

Since the ReLU of (6) is already a piece-wise linear func-
tion, it seems sensible to use the ReLU itself, denoted
thevanilla ReLU, as the backward approximation function.
This corresponds to using the derivative

Q̃′(x) =

{
1, if x > 0,
0, otherwise

(11)

in (4). The forward and backward approximationsQ(x)

andQ̃(x) of the ReLU are shown in Figure1. Note that,
while the backward approximation is exact, it is not equal
to the forward approximation. Hence, there is a gradient
mismatch. This mismatch is particularly large for large val-
ues ofx. Note that, forx > 0, the approximation ofQ(x)
by the ReLU has error|Q(x) − x|. This is usually upper
bounded by(ti+1 − qi) for x ∈ (ti, ti+1] but unbounded
whenx ∈ (tm,∞). Since these are the values on the tail
of the distribution ofx, the ReLU is said to have a large
mismatch withQ(x) “on the tail.” Due to this, when the
ReLU is used to approximateg′(x) in (4), it can originate
very inaccurate gradients for dot-products on the tail of the
dot-product distribution. In our experience, these inaccurate
gradients can make the learning algorithm unstable.

This is a classical problem in the robust estimation liter-
ature, where outliers can unduly influence the performance
of a learning algorithm [15]. For quantization, whereQ(x)
assumes that values ofx beyondqm have very low proba-
bility, large dot-products are effectively outliers. The clas-
sical solution to mitigate the influence of these outliers is
to limit the growth rate of the error function. Since this is
|Q(x) − x|, the problem is the monotonicity of the ReLU
beyondx = qm. To address it, we investigated alternative
backwards approximation functions of slower growth rate.

4.3.2 Clipped ReLU

The first approximation, denoted theclipped ReLU, is iden-
tical to the vanilla ReLU in(−∞, qm] but constant beyond
x = qm,

Q̃c(x) =





qm, x > qm,
x, x ∈ (0, qm],
0, otherwise.

(12)



Its use to approximateg′(wT
x) in (4) guarantees that there

is no mismatch on the tail. Gradients are non-zero only
for dot-products in the interval(0, qm]. We refer to this as
ReLU clipping. As illustrated in Figure3, the clipped ReLU
is a better match for the HWGQ than the vanilla ReLU. This
idea is similar to the use of gradient clipping in [31]: clip-
ping gradients to enable stable optimization, especially for
very deep networks, e.g. recurrent neural network. In our
experiments, ReLU clipping is also proved very useful to
guarantee stable neural network optimization.

4.3.3 Log-tailed ReLU

Ideally, a network with quantized activations should ap-
proach the performance of a full-precision network as the
number of quantization levelsm increases. The sensitiv-
ity of the vanilla ReLU approximation to outliers limits the
performance of low precision networks (lowm). While the
clipped ReLU alleviates this problem, it can impair network
performance due to the loss of information in the clipped in-
terval (qm,∞). An intermediate solution is to use, in this
interval, a function whose growth rate is in between that
of the clipped ReLU (zero derivative) and the ReLU (unit
derivative). One possibility is to enforce logarithmic growth
on the tail, according to

Q̃l(x) =





qm + log(x− τ), x > qm,
x, x ∈ (0, qm],
0, x ≤ 0,

(13)

whereτ = qm−1. This is denoted thelog-tailed ReLUand
is compared to the ReLU and clipped ReLU in Figure3. It
has derivative

Q̃
′

l(x) =





1/(x− τ), x > qm,
1, x ∈ (0, qm],
0, x ≤ 0.

(14)

When used to approximateg′(x) in (4), the log-tailed ReLU
is identical to the vanilla ReLU for dot products of ampli-
tude smaller thanqm, but gives decreasing weight to ampli-
tudes larger than this. It behaves like the vanilla ReLU (unit
derivative) forx ≈ qm but converges to the clipped ReLU
(zero derivative) asx grows to infinity.

5. Experimental Results

The proposed HWGQ-Net was evaluated on Ima-
geNet (ILSVRC2012) [35], which has∼1.2M training
images from 1K categories and 50K validation images.
The evaluation metrics were top-1 and top-5 classifica-
tion accuracy. Several popular networks were tested:
AlexNet [22], ResNet [13], a variant of VGG-Net [36,
12], and GoogLeNet [37]. Our implementation is based
on Caffe [20], and the source code is available at
https://github.com/zhaoweicai/hwgq.

Table 1. Full-precision Activation Comparison for AlexNet.
Full FW+s̃ign FW+Q̃ BW+s̃ign BW+Q̃

Top-1 55.7 46.7 55.7 43.9 53.9
Top-5 79.3 71.0 79.3 68.3 77.3

5.1. Implementation Details

In all ImageNet experiments, training images were re-
sized to 256×256, and a 224×224 (227×227 for AlexNet)
crop was randomly sampled from an image or its hori-
zontal flip. Batch normalization [18] was applied before
each quantization layer, as discussed in Section4.2. Since
weight binarization provides regularization constraints, the
ratio of dropout [14] was set as 0.1 for networks with bi-
nary weights and full activations, but no dropout was used
for networks with quantized activations regardless of weight
precision. All networks were learned from scratch. No data
augmentation was used other than standard random image
flipping and cropping. SGD was used for parameter learn-
ing. No bias term was used for binarized weights. Simi-
larly to [32], networks with quantized activations used max-
pooling before batch normalization, which is denoted “layer
re-ordering”. As in [32, 40], the first and last network layers
had full precision. Evaluation was based solely on central
224×224 crop.

On AlexNet [22] experiments, the mini-batch size was
256, weight decay 0.0005, and learning rate started at 0.01.
For ResNet, the parameters were the same as in [13]. For
the variant of VGG-Net, denoted VGG-Variant, a smaller
version of model-A in [12], only 3 convolutional layers
were used for input size of 56, 28 and 14, and the “spp”
layer was removed. The mini-batch size was 128, and learn-
ing rate started at 0.01. For GoogLeNet [37], the branches
for side losses were removed, in the inception layers, max-
pooling was removed and the channel number of the “re-
duce” 1×1 convolutional layers was increased to that of
their following 3×3 and 5×5 convolutional layers. Weight
decay was 0.0002 and the learning strategy was similar to
ResNet [13]. For all networks tested, momentum was 0.9,
batch normalization was used, and when mini-batch size
was 256 (128), the learning rate was divided by 10 after
every 50K (100K) iterations, 160K (320K) in total. Only
AlexNet, ResNet-18 and VGG-Variant were explored in the
following ablation studies. In all tables and figures, “FW”
indicates full-precision weights, “BW” binary weights, and
“Full” full-precision weights and activations.

5.2. Full-precision Activation Comparison

Before considering the performance of the forward quan-
tized activation functionssign(x) andQ(x), we compared
the performance of the continuous̃sign(x) (hard tanh) and
Q̃(x) (ReLU) as activation function. In this case, there is no
activation quantization nor forward/backward gradient mis-
match. AlexNet results are presented in Table1, using iden-



Table 2. Low-bit Activation Comparison.
Model Full BW FW+Q BW+sign BW+Q

AlexNet
Top-1 55.7 52.4 49.5 39.5 46.8
Top-5 79.3 75.9 73.7 63.6 71.0

ResNet-18
Top-1 66.3 61.3 37.5 42.1 33.0
Top-5 87.5 83.6 61.9 67.1 56.9

VGG-Variant
Top-1 68.6 65.5 48.3 50.1 44.1
Top-5 88.9 86.5 72.3 74.3 68.7
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Figure 4. The error curves of training (thin) and test (thick) for
sign(x) andQ(x) (HWGQ) activation functions.

tical settings fors̃ign(x) and Q̃(x), for fair comparison.
As expected from the discussion of Sections3 and4, Q̃(x)

achieved substantially better performance thañsign(x), for
both FW and BW networks. The fact that these results up-
per bound the performance achievable when quantization
is included suggests thatsign(x) is not a good choice for
quantization function.Q(x), on the other hand, has a fairly
reasonable upper bound.

5.3. Low-bit Activation Quantization Results

We next compared the performance achieved by adding
thesign and HWGQQ(x) (backward vanilla ReLU) quan-
tizers to the set-up of the previous section. The results of
AlexNet, ResNet-18 and VGG-Variant are summarized in
Table 2. At first, notice that BW is worse than BW+Q
of AlexNet in Table1 due to the impact of the layer re-
ordering [32] introduced in Section5.1. Next, comparing
BW to FW+Q, where the former binarizes weights only
and the latter quantizes activations only, we observed that
weight binarization causes a minor degradation of accu-
racy. This is consistent with the findings of [32, 4]. On the
other hand, activation quantization leads to a nontrivial loss.
This suggests that the latter is a more difficult problem than
the former. This observation is not surprising since, unlike
weight binarization, the learning of an activation-quantized
networks needs to propagate gradients through every non-
differentiable quantization layer.

When weight binarization and activation quantization

Table 3. Backward Approximations Comparison.
Model BW no-opt vanilla clipped log-tailed

AlexNet
Top-1 52.4 30.0 46.8 48.6 49.0
Top-5 75.9 53.6 71.0 72.8 73.1

ResNet-18
Top-1 61.3 34.2 33.0 54.5 53.5
Top-5 83.6 59.6 56.9 78.5 77.7

VGG-Variant
Top-1 65.5 42.8 44.1 60.9 60.6
Top-5 86.5 68.3 68.7 83.2 82.9

were combined, recognition performance dropped even fur-
ther. For AlexNet, the drop was much more drastic for
BW+sign (backward hard tanh) than for BW+Q (back-
ward vanilla ReLU). These results support the hypotheses
of Section3 and 4, as well as the findings of Table1.
The training errors of BW+sign and BW+Q of AlexNet
are shown in Figure4. Note the much lower training er-
ror of Q(x), suggesting that it enables a much better ap-
proximation of the full precision activations thansign(x).
Nevertheless, the gradient mismatch due to the use ofQ(x)
as forward and the vanilla ReLU as backward approxima-
tors made the optimization somewhat instable. For exam-
ple, the error curve of BW+Q is bumpy during training.
This problem becomes more serious for deeper networks.
In fact, for the ResNet-18 and VGG-Variant, BW+Q per-
formed worse than BW+sign. This can be explained by the
fact that thesign has a smaller gradient mismatch problem
than the vanilla ReLU. As will be shown in the following
section, substantial improvements are possible by correct-
ing the mismatch between the forward quantizerQ(x) and
its backward approximator.

5.4. Backward Approximations Comparison

We next considered the impact of the backward approx-
imators of Section4.3. Table 3 shows the performance
achieved by the three networks under the different approx-
imations. In all cases, weights were binarized and the
HWGQ was used as forward approximator (quantizer). “no-
opt” refers to the quantization of activations of pre-trained
BW networks. This requires no nondifferentiable approx-
imation, but fails to account for the quantization error.
We attempted to minimize the impact of cumulative errors
across the network by recomputing the means and variances
of all batch normalization layers. Even after this, “no-opt”
had significantly lower accuracy than the full-precision ac-
tivation networks.

Substantial gains were obtained by training the activa-
tion quantized networks from scratch. Although the vanilla
ReLU had reasonable performance as backwards approxi-
mator for AlexNet, much better results were achieved with
the clipped ReLU of (12) and the log-tailed ReLU of (13).
Figure 5 shows that the larger gradient mismatch of the
vanilla ReLU created instabilities in the optimization, for
all networks. However, these instabilities were more seri-
ous for the deeper networks, such as ResNet-18 and VGG-
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Figure 5. The error curves of training (thin) and test (thick) for alternative backward approximations.

Table 4. Bit-width Comparison of Activation Quantization.
quantization type non-uniform uniform none

# levels 2 3 7 15 3∗ 7∗ BW

AlexNet
Top-1 48.6 50.6 52.4 52.6 50.5 51.9 52.4
Top-5 72.8 74.3 75.8 76.2 74.6 75.7 75.9

ResNet-18
Top-1 54.5 57.6 60.3 60.8 56.1 59.6 61.3
Top-5 78.5 81.0 82.8 83.4 79.7 82.4 83.6

Variant. This explains the sharper drop in performance of
the vanilla ReLU for these networks, in Table3. Note, in
Figure5, that the clipped ReLU and the log-tailed ReLU
enabled more stable learning and reached a much better
optimum for all networks. Among them, the log-tailed
ReLU performed slightly better than the clipped ReLU
on AlexNet, but slightly worse on ResNet-18 and VGG-
Variant. To be consistent, “clipped ReLU” was used in the
following sections.

5.5. Bit-width Impact

The next set of experiments studied the bit-width impact
of the activation quantization. In all cases, weights were bi-
narized. Table4 summarizes the performance of AlexNet
and ResNet-18 as a function of the number of quantiza-
tion levels. While the former improved with the latter, there
was a saturation effect. The default HWGQ configuration,
also used in all previous experiments, consisted of two non-
uniform positive quantization levels plus a “0”. This is de-
noted as “2” in the table. For AlexNet, this very low-bit
quantization sufficed to achieve recognition rates close to
those of the full-precision activations. For this network,
quantization with seven non-uniform levels was sufficient
to reproduce the performance of full-precision activations.
For ResNet-18, however, there was a more noticeable gap
between low-bit and full-precision activations. For exam-
ple, “3” outperformed “2” by 3.1 points for ResNet-18, but
only 2.1 points for AlexNet. These results suggest that in-
creasing the number of quantization levels is more benefi-
cial for ResNet-18 than for AlexNet.

So far we have used non-uniform quantization. As dis-
cussed in Section4.2, this requires more bits than uniform
quantization during arithmetic computation. Table4 also

Table 5. The results of various popular networks.
Model Reference Full HWGQ

AlexNet
Top-1 57.1 58.5 52.7
Top-5 80.2 81.5 76.3

ResNet-18
Top-1 69.6 67.3 59.6
Top-5 89.2 87.9 82.2

ResNet-34
Top-1 73.3 69.4 64.3
Top-5 91.3 89.1 85.7

ResNet-50
Top-1 76.0 71.5 64.6
Top-5 93.0 90.5 85.9

VGG-Variant
Top-1 - 69.8 64.1
Top-5 - 89.3 85.6

GoogLeNet
Top-1 68.7 71.4 63.0
Top-5 88.9 90.5 84.9

Table 6. Comparison with the state-of-the-art low-precision meth-
ods. Top-1 gap to the corresponding full-precision networks is also
reported.

Model
AlexNet ResNet-18

XNOR DOREFA HWGQ XNOR HWGQ
Top-1 44.2 47.7 52.7 51.2 59.6
Top-5 69.2 - 76.3 73.2 82.2

Top-1 gap -12.4 -8.2 -5.8 -18.1 -7.7

shows the results obtained with uniform quantization, with
superscript “∗”. Interestingly, for the same number of quan-
tization levels, the performance of the uniform quantizer
was only slightly worse than that of its non-uniform coun-
terpart. But for the same bit width, the uniform quantizer
was noticeably superior than the non-uniform quantizer, by
comparing “2” and “3∗” (both of them need 2-bit represen-
tation during arithmetic computation).

5.6. Comparison with the state-of-the-art

Table51 presents a comparison between the full preci-
sion and the low-precision HWGQ-Net of many popular
network architectures. For completeness, we consider the
GoogLeNet, ResNet-34 and ResNet-50 in this section. In
all cases, the HWGQ-Net used 1-bit binary weights, a 2-bit
uniform HWGQ as forward approximator, and the clipped

1The reference performance of AlexNet and GoogLeNet
is at https://github.com/BVLC/caffe, and of ResNet is at
https://github.com/facebook/fb.resnet.torch. Our worse ResNet im-
plementations are probably due to fewer training iterations and no further
data augmentation.



ReLU as backwards approximator. Comparing to the pre-
vious ablation experiments, the numbers of training itera-
tions were doubled and polynomial learning rate anneal-
ing (power of 1) was used for HWGQ-Net, where it gave
a slight improvement over step-wise annealing. Table5
shows that the HWGQ-Net approximates well all popular
networks, independently of their complexity or depth. The
top-1 accuracy drops from full- to low-precision are similar
for all networks (5∼9 points), suggesting that low-precision
HWGQ-Net will achieve improved performance as better
full-precision networks become available.

Training a network with binary weights and low-
precision activations from scratch is a new and challeng-
ing problem, only addressed by a few previous works
[4, 32, 40]. Table6 compares the HWGQ-Net with the re-
cent XNOR-Net [32] and DOREFA-Net [40], on the Ima-
geNet classification task. The DOREFA-Net result is for
a model of binary weights, 2-bit activation, full precision
gradient and no pre-training. For AlexNet, the HWGQ-Net
outperformed the XNOR-Net and the DOREFA-Net by a
large margin. Similar improvements over the XNOR-Net
were observed for the ResNet-18, where DOREFA-Net re-
sults are not available. It is worth noting that the gaps be-
tween the full-precision networks and the HWGQ-Net (-
5.8 for AlexNet and -7.7 for ResNet-18) are much smaller
than those of the XNOR-Net (-12.4 for AlexNet and -18.1
for ResNet-18) and the DOREFA-Net (-8.2 for AlexNet).
This is strong evidence that the HWGQ is a better activa-
tion quantizer. Note that, in contrast to the experimentation
with one or two networks by [4, 32, 40], the HWGQ-Net
is shown to perform well for various network architectures.
To the best of our knowledge, this is the first time that a
single low-precision network is shown to successfully ap-
proximate many popular networks.

5.7. Results on CIFAR-10

In addition, we conducted some experiments on the
CIFAR-10 dataset [21]. The network structure used, de-
noted VGG-Small, was similar to that of [4] but relied on a
cross-entropy loss and without two fully connected layers.
The learning strategy was that used in the VGG-Variant of
Section5.1, but the mini-batch size was 100 and the learn-
ing rate was divided by 10 after every 40K iterations (100K
in total). The data augmentation strategy of [13] was used.
As in Section5.6, polynomial learning rate decay was used
for low-precision VGG-Small. The HWGQ-Net results are
compared with the state-of-the-art in Table7. It can be
seen that the HWGQ-Net achieved better performance than
various popular full-precision networks, e.g. Maxout [9],
NIN [27], DSN [23], FitNet [34], and than various low
precision networks. The low-precision VGG-Small drops
0.67 points when compared to its full-precision counterpart.
These findings are consistent with those on ImageNet.

Table 7. The results on CIFAR-10. The bit width before and after
“+” is for weights and activations respectively.

precision Method error (%)

Full + Full

Maxout [9] 9.38
NIN [27] 8.81
DSN [23] 8.22
FitNet [34] 8.39

ResNet-110 [13] 6.43
VGG-Small 6.82

1-bit + Full BinaryConnect [3] 8.27
2-bit + Full Ternary Weight Network [24] 7.44
1-bit + 1-bit BNN [4] 10.15
1-bit + 2-bit VGG-Small-HWGQ 7.49

6. Conclusion

In this work, we considered the problem of training high
performance deep networks with low-precision. This was
achieved by designing two approximators for the ReLU
non-linearity. The first is a half-wave Gaussian quantizer,
applicable in the feedforward network computations. The
second is a piece-wise continuous function, to be used in
the backpropagation step during learning. This design over-
comes the learning inefficiency of the popular binary quan-
tization procedure, which produces a similar approxima-
tion for the less effective hyperbolic tangent nonlinearity.
To minimize the problem of gradient mismatch, we have
studied several backwards approximation functions. It was
shown that the mismatch is most affected by activation out-
liers. Insights from the robust estimation literature were
then used to propose the clipped ReLU and log tailed ReLU
approximators. The network that results from the combi-
nation of these with the HWGQ, denoted HWGQ-Net was
shown to significantly outperform previous efforts at deep
learning with low precision, substantially reducing the gap
between the low-precision and full-precision various state-
of-the-art networks. These promising experimental results
suggest that the HWGQ-Net can be very useful for the de-
ployment of state-of-the-art neural networks in real world
applications.
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