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Abstract size, through the use of quantizatici) P8, 26], low-rank

matrix factorization {9, 6], pruning [L1, 10], architecture

The problem of quantizing the activations of a deep neu- design 27, 17], etc. Recently, it has been shown that weight
ral network is considered. An examination of the popu- compression by quantization can achieve very large savings
lar binary quantization approach shows that this consists in memory, reducing each weight to as little as 1 bit, with
of approximating a classical non-linearity, the hyperlgoli a marginal cost in classification accuracy?8]. However,
tangent, by two functions: a piecewise constant: func- it is less effective along the computational dimension, be-
tion, which is used in feedforward network computations, cause the core network operation, implemented by each of
and a piecewise linear hard tanh function, used in the back- its units, is the dot-product between a weight and an ac-
propagation step during network learning. The problem of tivation vector. On the other hand, complementing binary
approximating the ReLU non-linearity, widely used in the or quantized weights with quantized activations allows the
recent deep learning literature, is then considered. Ar-hal replacement of expensive dot-products by logical and bit-
wave Gaussian quantizer (HWGQ) is proposed for forward counting operations. Hence, substantial speed ups are pos-
approximation and shown to have efficient implementation, sible if, in addition to the weights, the inputs of each unit
by exploiting the statistics of of network activations and are binarized or quantized to low-bit.

batch normalization operations commonlly useq inthe liter- appears, however, that the quantization of activations
ature. To overcome the problem of gradient mismatch, dueig ore difficult than that of weights. For examplé, B7]

to the use of dllfferent. forward and backw_ard approxima- payve shown that, while it is possible to binarize weights
tions, several piece-wise backward approximators are then,yit, 4 marginal cost in model accuracy, additional quanti-
investigated.  The implementation of the resulting quan- ;aiion of activations incurs nontrivial losses for largeie
tized network, denoted as HWGQ-Net, is shown to achieve,pssification tasks, such as object recognition on ImageNe
much closer performance to full precision networks, suf:h as 35. The difficulty is that binarization or quantization of
AlexNet, ResNet, GoogLeNetand VGG-Net, than previously, oty ations requires their processing with non-diffeiete
available low-precision networks, with 1-bit binary wefgh operators. This creates problems for the gradient descent

and 2-bit quantized activations. procedure, the backpropagation algorithm, commonly used
to learn deep networks. This algorithm iterates between

i a feedforward step that computes network outputs and a
1. Introduction backpropagation step that computes the gradients required

Deep neural networks have achieved state-of-the-art per—f_or learning. The difficulty is_ that binarization or quargiz
formance on computer vision problems, such as classifica-ioN OPerators have step-wise responses that produce very

tion [22, 36, 37, 12, 13, detection [, 33, 1], etc. How- yveak gra_dient §ignals during backpropagation, compromis-
ever, their complexity is an impediment to widespread de- N9 learning efficiency. So far, the problem has been ad-
ployment in many applications of real world interest, where dress_ed by using continuous app_rOX|mat|ons of the operator
either memory or computational resource is limited. This US€d in the feedforward step to implement the backpropa-
is due to two main issues: large model sizes (50MB for gation step._Thls, however, creates a mlsmatch between the
GoogLeNet B7], 200M for ResNet-101713, 250MB for merI _that implements the forward computations and the
AlexNet [27], or 500M for VGG-Net Bé]) and large com- derivatives used to learn it. In result, the model Iearned by
putational cost, typically requiring GPU-based implemen- the backpropagation procedure tends to be sub-optimal.
tations. This generated interest in compressed models with In this work, we view the quantization operator, used
smaller memory footprints and computation. in the feedforward step, and the continuous approxima-
Several works have addressed the reduction of modeltion, used in the backpropagation step, as two functions
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that approximate the activation function of each network tions. One strategy is to exploit the widely known redun-

unit. We refer to these as tHerward and backwardap- dancy of neural network weights][ For example, 19, 6]
proximation of the activation function. We start by consid- proposed low-rank matrix factorization as a way to decom-
ering the binaryt1 quantizer, used in4} 32], for which pose a large weight matrix into several separable small ma-

these two functions can be seen as a discrete and a contintrices. This approach has been shown most successful for
uous approximation of a non-linear activation functiorg th  fully connected layers. An alternative procedure, known as
hyperbolic tangent, frequently used in classical neur&l ne connection pruningl[1, 10], consists of removing unimpor-
works. This activation is, however, not commonly used in tant connections of a pre-trained model and retrainings Thi
recent deep learning literature, where the ReLU nonlinear-has been shown to reduce the number of model parameters
ity [30, 39, 17] has achieved much greater preponderance.by an order of magnitude without considerable loss in clas-
This is exactly because it produces much stronger gradiensification accuracy. Another model compression strategy is
magnitudes. While the hyperbolic tangent or sigmoid non- to constrain the model architecture itself, e.g. by remgvin
linearities are squashing non-linearities and mostly ftet,  fully connected layers, using convolutional filters of smal
ReLU is an half-wave rectifier, of linear response to posi- size, etc. Many state-of-the-art deep networks, such as NIN
tive inputs. Hence, while the derivatives of the hyperbolic [27], GoogLeNet B7] and ResNet]3], rely on such design
tangent are close to zero almost everywhere, the ReLU hashoices. For example, SqueezeNei][has been shown to
unit derivative along the entire positive range of the axis. achieve a parameter reduction-560 times, for accuracy

To improve the learning efficiency of quantized net- comparable to that of AlexNet. Moreover, hash functions
works, we consider the design of forward and backward ap-have also been used to compress model sige [

proximation functions for the ReLU. To discretize its linea Another branch of approaches for model compression is
component, we propose to use an optimal quantizer. By\yeight binarization §, 32, 4] or quantization P8, 26, g].
eprmtmg f[he statistics of network activations and batgh [39] used a fixed-point representation to quantize weights
normalization operatlons_that are commonly used in the lit- ¢ pre-trained neural networks, so as to speed up testing on
erature, we show that this can be done with an half-wave cpys, p] explored several alternative quantization meth-
Gaussian quantizer (HWGQ) that requires no learning andq s 1o decrease model size, showing that procedures such
is very efficient to compute. While some recent works have 55 vector guantization, with-means, enable~48 times
attempt_e_d similar ideag[37], their design of_a guantizer is compression with minimal accuracy los26] proposed a

not sufficient to guarantee good deep learning performance method for fixed-point quantization based on the identifica-
We address this problem by complementing this design with o of optimal bit-width allocations across network lager

a study of suitable backward approximation functions that [24, 2€] have shown that ternary weight quantization into
account for the mismatch between the forward model andlevels{—l 0,1} can achieve 6x or 32x model compres-
the back propagated derivatives. This study suggests Opsjon with slight accuracy loss, even on large-scale classifi
erations such as linearization, gradient clipping or gradi cation tasks. Finally, 9] has shown that filter weights can

ent suppression for the implementation of the backward ap-pe quantized ta-1 without noticeable loss of classification
proximation. We show that a combination of the forward accuracy on datasets such as CIFAR-A(.[

HWGQ with these backward operations produces very effi- . L o .
cient low-precision networks, denoted as HWGQ-Net, with Beyond weight .b_lnar|zat|0n,.the quantization of activa-

much closer performance to continuous models, such adions has two additional benefits: 1) further speed-ups by
AlexNet [27], ResNet [ 9, GoogLeNet B7] and VGG-Net replacement of the expensive inner-products at the core of

[3€], than other available low-precision networks in the lit- all n_etwork computations with Iogical and bitjcpunting op-
erature. To the best of our knowledge, this is the first time erations; 2) training memory savings, by avoiding the large

that a single low-precision algorithm could achieve suc- amounts of memory required to cache full-precision acti-
cesses for so many popular networks. Accordingd,[ vations. Due to these, activation quantization has a#cact
theoretically HWGQ-Net (1-bit weights and 2-bit activa- some r_alttenuon recentlﬁg, 26, 4 32 4.0’ 25 24, _In (3],
tions) has~32x memory and~32x convolutional com- activations were quantized _Wlth 8 bits, t(_) a(_:hleve speed-
putation savings. These suggest that the HWGQ-Net candPs on CPUs. By performing the quantization after net-

be very useful for the deployment of state-of-the-art neura work training, this work avoided the issues of nondifferen-
networks in real world applications tiable optimization. ?6] developed an optimal algorithm

for bit-width allocation across layers, but did not propose
2 Related Work a learning procedure for quantized neural networks. Re-
cently, [4, 32, 40] tried to tackle the optimization of net-
The reduction of model size is a popular goal in the deep works with nondifferentiable quantization units, by using
learning literature, due to its importance for the deplogine continuous approximation to the quantizer function in the
of high performance neural networks in real word applica- backpropagation step.2§] proposed several potential so-



lutions to the problem of gradient mismatch ar,[40]
showed that gradients can be quantized with a small num-
ber of bits during the backpropagation step. While some of

these methods have produced good results on datasets such

as CIFAR-10, none has produced low precision networks
competitive with full-precision models on large-scalesela
sification tasks, such as ImageNef].

3. Binary Networks

We start with a brief review of the issues involved in the
binarization of a deep network.

3.1. Goals

Deep neural networks are composed by layers of pro-
cessing units that roughly model the computations of the
neurons found in the mammalian brain. Each unit computes
an activation function of the form

(1)

wherew € R*" is a weight vectorx € R“™"" an in-

put vector, andy(-) a non-linear function. A convolutional
network implements layers of these units, where weights
are usually represented as a tendbre Re***", The di-
mensionse, w and h are defined by the number of filter
channels, width and height, respectively. Since this basic
computation is repeated throughout the network and mod-

z = g(WTX),
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Figure 1. Forward and backward functions for binatyn (left)
and half-wave Gaussian quantization (right) activations.
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B* = sign(W) anda* =
foundin [32].

While binary weights tremendously reduce the memory
footprint of the model, they do not fully solve the prob-
lem of computational complexity. Sindeconsists of either
the activations of a previous layer or some transformation
of the image to classify, it is usually represented with full
precision. Hence ) requires floating point arithmetic and
produces a floating point result. Substantial further reduc
tions of complexity can be obtained by the binarization of
I, which enables the implementation of dot products with
logical and bit-counting operationg,[37].

[[W|l1. More details can be

3.3. Binary Activation Quantization

ern networks have very large numbers of units, the structure

of (1) is the main factor in the complexity of the overall
model. This complexity can be a problem for applications
along two dimensions. The first is the large memory foot-
print required to store weightg. The second is the compu-
tational complexity required to compute large numbers of
dot-productsv”'x. Both difficulties are compounded by the
requirement of floating point storage of weights and float-
ing point arithmetic to compute dot-products, which are not
practical for many applications. This has motivated irdere
in low-precision networks/, 32, 40].

3.2. Weight Binarization

An effective strategy to binarize the weighté of con-
volutional filters, which we adopt in this work, has been
proposed by 3Z]. This consists of approximating the full
precision weight matrixV, used to compute the activations
of (1) for all the units, by the product of a binary matrix
B € {+1,—1}°***" and a scaling facton € R*, such
thatW =~ aB. A convolutional operation on inputcan
then be approximated by

~
~

| «W =~ ol ®B), (2)

whered denotes a multiplication-free convolutiofZ] has
shown that an optimal approximation can be achieved with

This problem has been studied in the literature, where
the use of binary activations has recently become popular
[32, 4, 40]. This is usually implemented by replaciggx)
in (1) with the sign non-linearity

{

shown in Figurel. [37] has also considered rescaling the
binarized outputg by a factorg, but found this to be un-
necessary.

While the adoption of3) greatly simplifies the feedfor-
ward computations of the deep model, it severely increases
the difficulty of learning. This follows from the fact thateh
derivative of the sign function is zero almost everywhere.
Neural networks are learned by minimizing a céstvith
respect to the weights. This is done with the backpropa-
gation algorithm, which decomposes these derivatives into
a series of simple computations. Consider the unitldf (
The derivative ofC with respect tow is

if x>0,
otherwise

+1,
-1,

z = sign(x) 3)

oc  oC

T
ow Bzg

W X

(W' x)x. (4)
These derivatives are computed for all units during the

backpropagation step. Wheyix) is replaced by ), the
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Figure 2. Dot-product distributions on different layersAdéxNet with binary weights and quantized activations (t@dom images).

derivativeg’(w”'x) is zero almost everywhere and the gra- more sensible to rely on ReLU approximations for network
dient magnitudes tend to be very small. In result, the gra- quantization than those of the previous section. We propose
dient descent algorithm does not converge to minima of thea quantize)(x) to approximateg) in the feedforward step
cost. To overcome this problemi][proposed to use an al-  and a suitable piecewise linear approximaiigfx) for the

ternative functionhard tanh which we denote byign, in backpropagation step.
the backpropagation step. This function is shown in Figure . .
1. and has derivative 4.2. Forward Approximation
—_— 1, if 2] < 1 A quantizer is a piecewise constant function
sign () = 0 otherwise () .
’ ' Q(I) = qi, Zf HAS (t’iati+1]7 (7)
In this work, we denote3) as the forward and5j as - T
o L . . that maps all values ofc within quantization interval
the backward approximations of the activation non-lirtgari ' o .
L - (t;, ti+1] into a quantization leve);, € R, fori = 1,--- ,m.
g(z) of (1). These approximations have two main problems. . .
The first is that they approximate the hyperbolic tangent In general/, = —oo andty, 1 = oo. This generalizes the
sign function, which can be seen aslait quantizer. A
et —e " guantizer is denoted uniform if
g(z) = tanh(z) = pr—
et e * .
di+1— ¢ = A, Vi, (8)

This (and the closely related sigmoid function) is a squash-

ing non-linearity that replicates the saturating behawior ~ whereA is a constant quantization step. The quantization
neural firing rates. For this reason, it was widely used levelsg; act as the reconstruction values farunder the

in the classical neural net literature. However, squashingconstraint of reduced precision. Since, for anyt suffices
non-linearities have been close to abandoned in recent deefp store the quantization indéxf (7) to recover the quanti-
learning literature, because the saturating behavior emph zation levelg;, non-uniform quantizer requirésg, m bits
sizes the problem of vanishing derivatives, compromising of storage per activatiom. However, it usually requires
the effectiveness of backpropagation. The second problenimore thanlog, m bits to represent during arithmetic op-

is that the discrepancy between the approximation(of erations, in which it ig; to be used instead of indeéx For

by the forwardsign and by the backwardfi% creates a @ uniform quantizer, wherd is a universal scaling factor
mismatch between the feedforward model and the deriva-that can be placed in evidence, it is intuitive to store any
tives used to learn it. In result, backpropagation can be Py log, m bits without storing the indexes. The same holds
highly suboptimal. This is called the “gradient mismatch” for arithmetic computation.

problem p3]. Optimal quantizers are usually defined in the mean-
squared error sense, i.e.
4. Half-wave Gaussian Quantization . ,
Q*(z) = argmin F;[(Q(z) — 2)?] 9)
In this section, we propose an alternative quantization @
strategy, which is based on the approximation of the ReLU = arg min/p(a:)(Q(x) — x)2dx
non-linearity. Q
4.1. RelLU wherep(x) is the probability density function aof. Hence,
) N ] the optimal quantizer of the dot-products @j lepends on
The ReLU is the half-wave rectifier defined by their statistics. While the optimal solutiad* (z) of (9) is
g(z) = max(0, z). (6) usually non-uniform, a uniform solutioR* (x) is available

by adding the uniform constraint o8) to (9). Given dot
It is now well known that, when compared to squashing product samples, the optimal solution 8j €an be obtained
non-linearities, its use inlj significantly improves the ef- by Lloyd’s algorithm P9], which is similar tok-means al-
ficiency of the backpropagation algorithm. It thus seems gorithm. This, however, is an iterative algorithm. Since a



different quantizer must be designed per network unit, and
this quantizer changes with the backpropagation iteration
the straightforward application of this procedure is compu
tationally intractable.

This difficulty can be avoided by exploiting the statisti-
cal structure of the activations of deep networks. For ex-
ample, [L6, 18] have noted that the dot-products &) (end Figure 3. Backward piece-wise activation functions of jtig
to have a symmetric, non-sparse distribution, that is closeReLU and log-tailed ReLU.
to Gaussian. Taking into account the fact that ReLU is a
half-wave rectifier, this suggests the use of the half-wave
Gaussian quantizer (HWGQ),

Log-tailed

Clipped ReLU Q@ ReLU @

q2 q2

4.3.1 Vanilla ReLU

Since the ReLU of®) is already a piece-wise linear func-

Qz) = { %i’ g"z% (t:, tisal, (10)  tion, it seems sensible to use the RelU itself, denoted
’ -7 thevanilla ReLU as the backward approximation function.
whereq; € Rt fori = 1,---,m andt; € R+ for This corresponds to using the derivative
t=1,--- ,m+1(t; = 0andt,,+1 = o) are the optimal i
quantization parameters for the Gaussian distributiore Th Q'(x) = { 1, Tz >0, (11)
0, otherwise

adoption of the HWGQ guarantees that these parameters
only depend on the mean and variance of the dot—producﬁn (4). The forward and backward approximatiof$z)
distribution. However, because these can vary across, units ~ o
. o . andQ(z) of the ReLU are shown in Figure Note that,
it does not eliminate the need for the repeated applicafiono S I

; . while the backward approximation is exact, it is not equal
Lloyd’s algorithm across the network.

. . , to the forward approximation. Hence, there is a gradient
This problem can be alleviated by resorting to batch nor- . Lo . .
malization [L8]. This is a widely used normalization tech- mismatch. This mismatch is particularly I_arge_ forlarge val
nique, which forces the responses of each network layer togestr?;xﬁglLotﬁehtzsté:?c;IrQ > )O,_thel a'prmg)?smuﬁnog;lo?;(x)er
have zero mean and unit variance. We apply this normaliza-bg nded bv(. } fo(rx xt 1 but nb)cl) r?dped
tion to the dot-products, with the result illustrated in (g u Mtiv1s = gi) for @ € (f, L] but unbou .
) . whenz € (t,,,00). Since these are the values on the tail
2, for a number of AlexNet units of different layers. Al- of the distribu’tion ofz, the ReLU is said to have a large
though the distributions are not perfectly Gaussian angthe o 9

. . mismatch with@Q(z) “on the tail.” Due to this, when the
are minor differences between them, they are all close to . . , . o

. . . . ReLU is used to approximatg(z) in (4), it can originate
Gaussian with zero mean and unit variance. It follows that

the optimal quantization parametegsand¢* are approx- very inaccurate gradients for dot-products on the tail ef th

. . . . . dot-productdistribution. In our experience, these inaat
imately identical across units, layers and backpropagatio radients can make the learning alaorithm unstable
iterations. Hence, Lloyd’s algorithm can be applied once, 9 . ) ng aig T
with data from the entire network. In fact, because all distr This is a cIaSS|_caI problem in the robust estimation liter-
butions are approximately Gaussian of zero mean and unitature’ whgre outlle_rs can unduly '”“‘%e”?e the performance
variance, the quantizer can even be designed from sampleglc alearning algorithm17]. For quantization, where)(z)

of this distribution. In our implementation, we drei@® assumes that values ofbeyondg, _have very low proba-
samples from a standard Gaussian distribution of zero mearP.'“ty' Iargg dot-pro_d.ucts are e_ffectlvely outliers. THQS' .
and unit variance, and obtained the optimal quantizatien pa sical solution to mitigate the influence of these outliers is
rameters by Loné’s algorithm. The resulting parameters to limit the growth rate of the error funct.iqn. Since this is
andg; were used to parametrize a single HWGQ that was |Q(x) — 2|, the problem is the monotonicity of the ReL.U

used in all layers, after batch normalization of dot-prdduc beyondz = . TO. address I, we investigated alternative
backwards approximation functions of slower growth rate.

4.3. Backward Approximation

Since the HWGQ is a step-wise constant function, it has 4-3-2  Clipped ReLU

zero derivative almost everywhere. Hence, the approxima-Tne first approximation, denoted thipped ReLUis iden-

tion of g(x) by Q(x) in (4) leads to the problem of vanish- ¢4 to the vanilla ReLU in—oc, ¢,,,] but constant beyond
ing derivatives. As in SectioB, a piecewise linear function . _ dm

Q(z) can be used during the backpropagation step to avoid '

weak convergence. In summary, we seek a piece-wise func- Ums T > Gm,

tion that provides a good approximation to the ReLU and to Q.(7) = x, x € (0, ¢m), (12)
the HWGQ. We next consider three possibilities. 0, otherwise.



Its use to approximatg (w’x) in (4) guarantees that there ~ Table 1. Full-precision Activation Comparison for AlexNet

is no mismatch on the tail. Gradients are non-zero only Full | FW+sign | FW+Q | BW+sign | BW+Q
. . . Top-1 || 55.7 46.7 55.7 43.9 53.9
for dot-products in the intervdD, ¢,,,]. We refer to this as Top-5 || 79.3 71.0 793 683 773

ReLU clipping As illustrated in Figuré, the clipped ReLU

is a better match for the HWGQ than the vanilla ReLU. This ] )

idea is similar to the use of gradient clipping i]: clip- 5.1. Implementation Details

ping gradients to enable stable optimization, especialty f In all ImageNet experiments, training images were re-

very d_eep networks, e.g. recurrent neural network. In our gj;ad to 256256, and a 224224 (227227 for AlexNet)
experiments, ReLU clipping is also proved very useful to crop was randomly sampled from an image or its hori-

guarantee stable neural network optimization. zontal flip. Batch normalizationlf] was applied before
each quantization layer, as discussed in Seecti@n Since
4.3.3 Log-tailed ReLU weight binarization provides regularization constraitite

ratio of dropout [4] was set as 0.1 for networks with bi-

nary weights and full activations, but no dropout was used

for networks with quantized activations regardless of Weig

ity of the vanilla ReLU approximation to outliers limits the precision. A” networks were learned from scratch. No fjata
augmentation was used other than standard random image

performance of low precision networks (low). While the 2 .
clipped ReLU alleviates this problem, it can impair network fllpp|ng and cropping. SGD was used for parameter learn-

performance due to the loss of information in the clipped in- :2?' t,c\)l?3t2)]la2(:tev;21rlg av‘:i tlrjlsel?a];c;irzzldn:rcltzi\(/a;jti\cl)vr?éguhst:a ?\I;?(I—-
terval (¢, 00). An intermediate solution is to use, in this y ! q

interval, a function whose growth rate is in between that pooling before batch normalization, which is denoted “taye

of the clipped ReLU (zero derivative) and the ReLU (unit Le'g:cdi”ng ._Asm BEZ' 4|O]’ ';_he first arl;d Iazt ne;(vxllorklayerf |
derivative). One possibility is to enforce logarithmic gith ad 1u? precision. Evaluation was based solely on centra

Ideally, a network with quantized activations should ap-
proach the performance of a full-precision network as the
number of quantization levels, increases. The sensitiv-

: . 224x 224 crop.
on the tail, according to On AlexNet 2] experiments, the mini-batch size was
N qm + log(x — 1), T > G, 256, weight decay 0.0005, and learning rate started at 0.01.
Qi(z) = x, r€(0,qn], (13) For ResNet, the parameters were the same as5n For
0, z <0, the variant of VGG-Net, denoted VGG-Variant, a smaller

version of model-A in 7], only 3 convolutional layers

wherer = g, —1. This is denoted thipg-tailed ReLUand  \yee ysed for input size of 56, 28 and 14, and the “spp”

is compared to the ReLU and clipped ReLU in Fig@ret layer was removed. The mini-batch size was 128, and learn-
has derivative ing rate started at 0.01. For GoogLeNegf]| the branches
1/(x—1), > G, for side losses were removed, in the inception layers, max-
@l (z) = 1, z € (0, qm), (14) pooling was removed and the channel number of the “re-
0, x <0. duce” 1x1 convolutional layers was increased to that of

_ _ _ their following 3x3 and 5<5 convolutional layers. Weight
When used to approximaié(x) in (4), the log-tailed ReLU  decay was 0.0002 and the learning strategy was similar to
is identical to the vanilla ReLU for dot prOdUCtS of ampli- ResNet u_g] For all networks tested, momentum was 0.9,
tude smaller than,,,, but gives decreasing weight to ampli- patch normalization was used, and when mini-batch size
tudes larger than this. It behaves like the vanilla ReLUt(uni was 256 (128), the learning rate was divided by 10 after
derivative) forz ~ g, but converges to the clipped ReLU every 50K (100K) iterations, 160K (320K) in total. Only

(zero derivative) as grows to infinity. AlexNet, ResNet-18 and VGG-Variant were explored in the
) following ablation studies. In all tables and figures, “FW”
5. Experimental Results indicates full-precision weights, “BW” binary weights,dn

The proposed HWGQ-Net was evaluated on Ima- “Full” full-precision weights and activations.

geNet (ILSVRC2012) ¢, which has~1.2M waining 52 Fuyll-precision Activation Comparison

images from 1K categories and 50K validation images.

The evaluation metrics were top-1 and top-5 classifica- Before considering the performance of the forward quan-
tion accuracy. Several popular networks were tested:tized activation functionsign(xz) and@Q(xz), we compared
AlexNet [27], ResNet [3, a variant of VGG-Net §6, tbe performance of the continuosign(x) (hard tanh) and
17], and GoogLeNet37]. Our implementation is based Q(z) (ReLU) as activation function. In this case, there is no
on Caffe p(], and the source code is available at activation quantization nor forward/backward gradierg-mi
https://github.com/zhaoweicai/hwgq. match. AlexNet results are presented in Tahlesing iden-



Table 2. Low-bit Activation Comparison. Table 3. Backward Approximations Comparison.

Model [[ Ful T BW [ FW+Q [ BW+sign [ BW+Q Model [[ BW [ no-opt ] vanilla | clipped | Tog-tailed
Top1 || 557 | 524 | 495 395 76.8 Top-1]| 524 ] 30.0 | 468 | 486 79.0
AlexNet | o5 || 793 | 759 | 737 63.6 71.0 AlexNet | roo5 || 759 | 536 | 710 | 728 73.1
Top-1 || 663 | 613 | 375 2.1 33.0 Top-1]|| 613 | 342 | 330 | 545 53.5
ResNet18 | 1o 5 || 875 | 836 | 619 67.1 56.9 ResNet-18 | o5 || 836 | 596 | 56.9 | 785 77.7
) Top-1 || 68.6 | 655 | 483 50.1 741 | Top-1| 655 428 | 441 | 609 0.6
VGG-Variant | 5 || g8 | 865 | 72.3 74.3 68.7 VGG-Variant | o 5 Il 865 | 683 | 687 | 832 82.9
AlexNet
100 T T T T T T T . o
were combined, recognition performance dropped even fur-
o —BW+Q | ther. For AlexNet, the drop was much more drastic for

BW+sign (backward hard tanh) than for BVQ+ (back-
ward vanilla ReLU). These results support the hypotheses
of Section3 and 4, as well as the findings of Tablé.

The training errors of BWsign and BW+)) of AlexNet

are shown in Figuré. Note the much lower training er-
ror of Q(z), suggesting that it enables a much better ap-
proximation of the full precision activations thaiyn(z).
Nevertheless, the gradient mismatch due to the us¥ of

as forward and the vanilla ReLU as backward approxima-
‘ ‘ ‘ ‘ ‘ ‘ ‘ tors made the optimization somewhat instable. For exam-
Y leratonesy 0 ® ple, the error curve of BW@ is bumpy during training.
This problem becomes more serious for deeper networks.
In fact, for the ResNet-18 and VGG-Variant, B\W+per-
formed worse than BWstign. This can be explained by the
fact that thesign has a smaller gradient mismatch problem
tical settings forsign(z) and Q(x), for fair comparison. than_ the vanilla R_eL_U. As will be shown in t_he following
As expected from the discussion of SectiGend4, @(x) _sectlon, s_ubstantlal improvements are poss@le by cerrect
achieved substantially better performance tk%(a:), for Ing the mismatch be.tween the forward quantiger) and
both FW and BW networks. The fact that these results up- 1S Packward approximator.

per bound the performance achievable when quantization kward . . .
is included suggests thatgn(x) is not a good choice for >.4. Backward Approximations Comparison

quantization functionQ(x), on the other hand, has a fairly  \we next considered the impact of the backward approx-
reasonable upper bound. imators of Sectiord.3 Table 3 shows the performance
achieved by the three networks under the different approx-
imations. In all cases, weights were binarized and the
We next compared the performance achieved by addingHWGQ was used as forward approximator (quantizer). “no-
the sign and HWGQQ(x) (backward vanilla ReLU) quan-  opt” refers to the quantization of activations of pre-teain
tizers to the set-up of the previous section. The results of BW networks. This requires no nondifferentiable approx-
AlexNet, ResNet-18 and VGG-Variant are summarized in imation, but fails to account for the quantization error.
Table 2. At first, notice that BW is worse than BW» We attempted to minimize the impact of cumulative errors
of AlexNet in Tablel due to the impact of the layer re- across the network by recomputing the means and variances
ordering B7] introduced in Sectiorb.1. Next, comparing  of all batch normalization layers. Even after this, “no-opt
BW to FW+Q, where the former binarizes weights only had significantly lower accuracy than the full-precision ac
and the latter quantizes activations only, we observed thattivation networks.
weight binarization causes a minor degradation of accu- Substantial gains were obtained by training the activa-
racy. This is consistent with the findings 64, 4]. On the tion quantized networks from scratch. Although the vanilla
other hand, activation quantization leads to a nontriaiss| ReLU had reasonable performance as backwards approxi-
This suggests that the latter is a more difficult problem than mator for AlexNet, much better results were achieved with
the former. This observation is not surprising since, wnlik the clipped ReLU of 12) and the log-tailed ReLU ofi@3).
weight binarization, the learning of an activation-quaed Figure 5 shows that the larger gradient mismatch of the
networks needs to propagate gradients through every nonvanilla ReLU created instabilities in the optimizationy fo
differentiable quantization layer. all networks. However, these instabilities were more seri-
When weight binarization and activation quantization ous for the deeper networks, such as ResNet-18 and VGG-

Top-1 Error (%)

30
0

Figure 4. The error curves of training (thin) and test (thitd
sign(z) andQ(x) (HWGQ) activation functions.

5.3. Low-bit Activation Quantization Results
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Figure 5. The error curves of training (thin) and test (thick alternative backward approximations.

Table 4. Bit-width Comparison of Activation Quantization. Table 5. The results of various popular networks.
quantization type || non-uniform [[ uniform ] none Model [[ Reference[ Full [ HWGQ
#leves [ 2 [ 3 [ 7 [I5]3 [ 7 [[BW AexNet | 1P| 571 [585] 527
Aexiet | TOP-1|[ 486 50.6 | 524 ] 526 ][ 50.5] 519 52.4 exie Top-5 802 | 81s5| 763
Top-5 || 72.8| 74.3| 75.8 | 76.2 || 746 | 75.7 || 75.9 ResNet-18 | TOPT 69.6 67.3| 59.6
ResNet.1g| ToP-1 || 545 57.6 | 60.3 | 60.8 | 56.1 | 59.6 || 61.3 Top-5 89.2 87.9| 822
Top-5 || 78.5| 81.0| 82.8 | 83.4 || 79.7 | 82.4|| 83.6 ResNet-34 | TOPT 73.3 69.4| 643

Top-5 91.3 89.1 85.7
Top-1 76.0 715 64.6

_ _ _ _ ResNet-50 | ron5|| 930 | 905| 859
Variant. This explains the sharper drop in performance of VGG.Varant | TP - 69.8 | 64.1
; : ; vanant | ron 5 - 89.3| 856

the vanilla ReLU for these networks, in Tate Note, in p : :
. . : Top-1 687 | 714 63.0
Figure5, that the clipped ReLU and the log-tailed ReLU GoogleNet | ron5 || 889 | 90.5| 84.9

enabled more stable learning and reached a much better
optimum for all networks. Among them, the log-tailed Table 6. Comparison with the state-of-the-art low-prewrisheth-
ReLU performed slightly better than the clipped ReLU ods. Top-1 gap to the corresponding full-precision netwaslalso
on AlexNet, but slightly worse on ResNet-18 and VGG- reported.

; f ‘i ” ; AlexNet ResNet-18
Varlant. To bg consistent, “clipped ReLU” was used in the Model | R T DOREFA T AWGQ [ XNOR | AWGG
following sections. Top-1 4432 477 52.7 512 | 596

Top-5 69.2 - 76.3 732 | 822
5.5. Bit-Width Impact Top-1gap|| -12.4 -8.2 -5.8 -18.1 -7.7

The next set of experiments studied the bit-width impact
of the activation quantization. In all cases, weights wére b  shows the results obtained with uniform quantization, with
narized. Tablel summarizes the performance of AlexNet superscript#”. Interestingly, for the same number of quan-
and ResNet-18 as a function of the number of quantiza-tization levels, the performance of the uniform quantizer
tion levels. While the former improved with the latter, teer was only slightly worse than that of its non-uniform coun-
was a saturation effect. The default HWGQ configuration, terpart. But for the same bit width, the uniform quantizer
also used in all previous experiments, consisted of two non-was noticeably superior than the non-uniform quantizer, by
uniform positive quantization levels plus a “0”. This is de- comparing “2” and “3” (both of them need 2-bit represen-
noted as “2” in the table. For AlexNet, this very low-bit tation during arithmetic computation).
guantization sufficed to achieve recognition rates close to ) )
those of the full-precision activations. For this network, 9-6- Comparison with the state-of-the-art

quantization with seven non-uniform levels was sufficient  Taple 5! presents a comparison between the full preci-

to reproduce the performance of full-precision activation  gion and the low-precision HWGQ-Net of many popular
For ResNet-18, however, there was a more noticeable gametwork architectures. For completeness, we consider the
between low-bit and full-precision activations. For exam- GoogLeNet, ResNet-34 and ResNet-50 in this section. In
ple, “3” outperformed “2” by 3.1 points for ResNet-18, but g cases, the HWGQ-Net used 1-bit binary weights, a 2-bit

creasing the number of quantization levels is more benefi-
cial for ResNet-18 than for AlexNet. 1The reference performance of AlexNet and GooglLeNet
i At ie_ is at https://github.com/BVLC/caffe, and of ResNet is at
So fa.r we h"?“’e useq non L.mlform qua.ntlzatlon' AS dis https://github.com/facebook/fb.resnet.torch. Our worBesNet im-
cussed in Sectiod.2, this requires more bits than uniform  pementations are probably due to fewer training iteratiand no further

guantization during arithmetic computation. Taldlalso data augmentation.




RelLU as backwards approximator. Comparing to the pre- Table 7. The results on CIFAR-10. The bit width before anéraft
vious ablation experiments, the numbers of training itera- “+" is for weights and activations respectively.

tions were doubled and polynomial learning rate anneal- precision M'Z'fé:?‘[jg] error (0)
ing (power of 1) was used for HWGQ-Net, where it gave NIN [27] 8.81
a slight improvement over step-wise annealing. Teble Full + Full F':i’tﬁgt[éj] o
shows that the HWGQ-Net approximates well all popular ResNet-11013] 6.43
H : H VGG-Small 6.82
networks, independently of their complexn_y_or depth_. '_rhe THTTET BinaryConnectT] 557
top-1 accuracy drops from full- to low-precision are simila 2-bit + Full Ternary Weight Network{4] 7.44
; ; _ ‘i T-bit + 1-bit BNN [1] 10.15
for all networks (5-9 points), suggesting that low-precision Lbit + 2.0t VGG-Small HWGO 749

HWGQ-Net will achieve improved performance as better
full-precision networks become available.

Training a network with binary weights and low- 6. Conclusion
precision activations from scratch is a new and challeng-

ing problem, only addressed by a few previous works |n this work, we considered the problem of training high
[4, 32, 4(]. Table6 compares the HWGQ-Net with the re-  performance deep networks with low-precision. This was
cent XNOR-Net 7] and DOREFA-Net {(], on the Ima-  chieved by designing two approximators for the ReLU
geNet classification task. The DOREFA-Net result is for non-linearity. The first is a half-wave Gaussian quantizer,
a model of binary weights, 2-bit activation, full precision gpplicable in the feedforward network computations. The
gradient and no pre-training. For AlexNet, the HWGQ-Net second is a piece-wise continuous function, to be used in
outperformed the XNOR-Net and the DOREFA-Net by a the hackpropagation step during learning. This design-over
large margin. Similar improvements over the XNOR-Net ¢omes the learning inefficiency of the popular binary quan-
were observed for the ResNet-18, where DOREFA-Net re-tjzation procedure, which produces a similar approxima-
sults are not available. Itis worth noting that the gaps be-tion for the less effective hyperbolic tangent nonlingarit
tween the full-precision networks and the HWGQ-Net (- T minimize the problem of gradient mismatch, we have
5.8 for AlexNet and -7.7 for ResNet-18) are much smaller stydied several backwards approximation functions. It was
than those of the XNOR-Net (-12.4 for AlexNet and -18.1 shown that the mismatch is most affected by activation out-
for ResNet-18) and the DOREFA-Net (-8.2 for AlexNet). |igrs. Insights from the robust estimation literature were
This is strong evidence that the HWGQ is a better activa- then used to propose the clipped ReLU and log tailed ReLU
tion quantizer. Note that, in contrast to the experimeatati approximators. The network that results from the combi-
with one or two networks by4 32, 4], the HWGQ-Net  nation of these with the HWGQ, denoted HWGQ-Net was
is shown to perform well for various network architectures. shown to significantly outperform previous efforts at deep
To the best of our knowledge, this is the first time that a learning with low precision, substantially reducing thega
single low-precision network is shown to successfully ap- petween the low-precision and full-precision variousestat

proximate many popular networks. of-the-art networks. These promising experimental result
suggest that the HWGQ-Net can be very useful for the de-
5.7. Results on CIFAR-10 ployment of state-of-the-art neural networks in real world

In addition, we conducted some experiments on the applications.
CIFAR-10 dataset{1]. The network structure used, de-
noted VGG-Small, was S|m|lar to that of][but relied on a References
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