
ar
X

iv
:1

61
2.

09
14

7v
2

 [
cs

.L
G

]
 2

6
Ja

n
20

17

Linear Learning with Sparse Data

Ofer Dekel

oferd@microsoft.com

January 27, 2017

Abstract

Linear predictors are especially useful when the data is high-dimensional and sparse. One of
the standard techniques used to train a linear predictor is the Averaged Stochastic Gradient

Descent (ASGD) algorithm. We present an efficient implementation of ASGD that avoids dense
vector operations. We also describe a translation invariant extension called Centered Averaged
Stochastic Gradient Descent (CASGD).

Keywords machine learning, linear predictor, stochastic gradient descent, Polyak-Ruppert aver-

aging, sparsity, efficient implementation

1 Introduction

We are given a training set of labeled examples, {(xi, yi)}
m
i=1, where each xi ∈ R

n is called a feature

vector and yi ∈ R is its corresponding label. We are also given a loss function ℓ : R2 7→ R, defined
over pairs of labels, where ℓ(p, y) is understood to be the penalty associated with predicting the
label p when the correct label is known to be y. We restrict our discussion to loss functions that
are convex in their first argument. Different choices of ℓ lead to different learning problems. For
example, choosing ℓ to be the absolute loss or squared loss induces a regression problem, whereas
choosing the hinge loss or log-loss induces a binary classification problem (see Table 1 for the
definitions of these loss functions).

A linear predictor is a pair (w, b), where w ∈ R
n is called the weights vector and b ∈ R is

called the bias. Given a feature vector x ∈ R
n, the linear predictor predicts the real-valued label

w ·x+ b. Therefore, the loss incurred by the linear predictor (w, b) on the training example (xi, yi)
is ℓ(w · xi + b , yi), and the average loss on the entire training set is

1

m

m∑

i=1

ℓ(w · xi + b , yi) .

To promote statistical generalization, we add a regularization term to the average loss and arrive

1

http://arxiv.org/abs/1612.09147v2

name definition (sub)derivative

absolute loss ℓ(p, y) = |p − y| ℓ′(p, y) =

{

−1 if p ≤ y

1 otherwise

squared loss ℓ(p, y) = 1
2 (p− y)2 ℓ′(p, y) = p− y

hinge loss ℓ(p, y) = max
{
1− py, 0

}
ℓ′(p, y) =

{

−y if py ≤ 1

0 otherwise

log-loss ℓ(p, y) = log
(
1 + exp(−py)

)
ℓ′(p, y) = −y

1+exp(py)

Table 1: Examples of convex loss functions and their (sub)derivatives.

at the objective function

F (w, b) =
λ

2

(
‖w‖2 + b2

)
+

1

m

m∑

i=1

ℓ(w · xi + b , yi) , (1)

where λ is a user-defined regularization parameter. The goal of our algorithms is to efficiently find
the linear predictor that minimizes F . As mentioned above, we solve this optimization problem
using the Averaged Stochastic Gradient Descent (ASGD) algorithm.

2 Sparse Vector Operations

In many high dimensional machine learning problems, the feature vectors are sparse. Namely,
only a small subset of each feature vector’s entries are non-zero. Concretely, we assume that, on
average, there are k non-zero elements in each feature vector, where k ≪ n. A good example of a
supervised machine learning problem with high dimensional sparse data is text categorization using
a bag-of-words feature representation. In this setting, the dimension, n, is the number of words
in the dictionary, which could be in the millions. On the other hand, the number of non-zeros in
each featuer vector, k, is the number of unique words in a single document, which could be a few
hundreds.

Although the feature vectors are sparse, the linear predictor that optimizes Eq. (1) can have a
dense weights vector. To emphasize that some vectors are sparse and others are dense, we denote
dense vectors using boldface roman letters, such as w, v, and u.

Sparse vectors can be stored using a space-efficient representation. For example, the non-zero vector
elements can be stored as a list of index-value pairs. Moreover, many standard operations involving
sparse feature vectors can be done in O(k) steps, rather than O(n) steps. We call these operations
sparse vector operations and distinguish them from the more costly dense vector operations. For
example, if v is a dense vector stored in a random-access representation (such as an array), α is a
scalar, and x is a sparse vector, then the operation v← v+αx is a sparse vector operation: iterate
over the k non-zero elements of x and update the corresponding entries in v. Similarly, calculating
the dot product v · x requires only O(k) steps.

2

Since sparse operations are much faster than dense operations, we want to implement ASGD
using only a small constant number of dense operations. Specifically, this implies that we can
only perform sparse vector operations inside the gradient descent loop. More precisely, if ASGD
performs T gradient descent steps, its total running time should be O(n+Tk) rather than O(Tn).

3 Stochastic Gradient Descent

As a warm-up to ASGD, we first discuss the simpler Stochastic Gradient Descent (SGD) algorithm
[5, 1]. SGD is an interative optimization technique that runs for T steps and produces a sequence

of intermediate linear predictors
(
(wt, bt)

)T

t=0
. The first predictor in the sequence, (w0, b0), is

initialized to zero. SGD performs T gradient descent steps, each one with respect to an individual
training example that is drawn uniformly from the training set. Formally, let π1, . . . , πT be a
sequence of independently drawn random indices, each between 1 andm; on iteration t the algorithm
processes training example πt.

To derive the SGD update, We use the square-bracket notation [w, b] to denote the concatenation
of w and b. Similarly, we use [x, 1] to denote the concatenation of the value 1 to the end of the
vector x. The subgradient of Eq. (1) is,

∇F (w, b) = λ[w, b] +
1

m

m∑

i=1

ℓ′(w · xi + b , yi) [xi, 1] . (2)

If π is a random index, chosen uniformly between 1 and m, then

λ[w, b] + ℓ′(w · xπ + b , yπ) [xπ, 1]

is an unbiased estimator of Eq. (2), also called a stochastic gradient of the objective function in
Eq. (1). Each SGD step subtracts a scaled stochastic gradient from the current predictor. The
algorithms allows for some flexibility in choosing the size of each step, and we choose the size of step
t to be 1/λt, where λ is the regularization parameter in Eq. (1). This step size is motivated by the
theoretical convergence analysis of SGD with strongly convex objective functions [2, 7]. Overall,
the update on iteration t takes the form

[wt, bt] = [wt−1, bt−1] −
1

λt

(
λ [wt−1, bt−1] + ℓ′(wt−1 · xπt

+ bt−1 , yπt
) [xπt

, 1]
)

.

Rearranging terms above gives

[wt, bt] =

(

1−
1

t

)

[wt−1, bt−1] −
ℓ′(pt, yπt

)

λt
[xπt

, 1] where pt = wt−1 · xπt
+ bt−1 . (3)

Recall that our goal is to avoid all dense vector operations when performing each SGD step. The
vector [wt−1, bt−1] on the right-hand side above is likely a dense vector, and therefore a näıve
implementation of the scaling operation (1 − t−1)[wt−1, bt−1] would require O(n) steps. To avoid
this, we introduce the gradient sum variable, defined for each t as

[vt, at] =

t∑

j=1

ℓ′(pj, yπj
) [xπj

, 1] . (4)

3

On one hand, the gradient sum can be computed using sparse vector operations. On the other
hand, we prove that the linear predictor [wt, bt] can be easily recovered from [vt, at].

Lemma 1. Let [wt, bt] be as defined in Eq. (3) and let [vt, at] be as defined in Eq. (4). Then, it

holds for all t ≥ 1 that −1
λt
[vt, at] = [wt, bt].

Proof. It is easier to prove the equivalent opposite direction: we assume that we defined [vt, at] =
−λt [wt, bt] and prove that Eq. (4) follows.

For t = 1, Eq. (3) implies that [w1, b1] =
1
λ
− ℓ′(0, yπt

). Scaling both sides of this equality by λ
and using the assumption gives [v1, a1] = ℓ′(0, yπt

), which is consistent with Eq. (4). For t ≥ 2, we
replace [wt, bt] with

−1
λt
[vt, at] in Eq. (3) to get

−1

λt
[vt, at] =

(

1−
1

t

)
−1

λ(t− 1)
[vt−1, at−1] −

ℓ′(pt, yπt
)

λt
[xπt

, 1] .

Using the fact that (1− 1
t
) 1
t−1 = 1

t
, we multiply both sizes of the equation above by −λt and get

[vt, at] = [vt−1, at−1] + ℓ′(pt, yπt
) [xπt

, 1] .

This implies Eq. (4), which concludes the proof.

We can now rewrite the prediction pt in terms of vt and at. For t = 1, it simply holds that p1 = 0.
For t ≥ 2, we use Lemma 1 and get

pt =
−1

λ(t− 1)

(
vt−1 · xπt

+ at−1

)
.

We are now ready to design an efficient implementation of SGD. Our algorithm computes the

sequence of gradient sums
(
(vt, at)

)T

t=0
using only sparse vector operations. Whenever needed, the

linear predictor (wt, bt) can be recovered from (vt, at) by performing a one-time dense rescaling by
−1
λt
. The pseudocode for this algorithm appears in Algorithm 1.

4 Averaged Stochastic Gradient Descent

The SGD algorithm in Algorithm 1 implicitly constructs a sequence of intermediate linear predictors
and returns the last predictor in the sequence. Ruppert [6] and Polyak [3, 4] independently argued
that the last predictor may be suboptimal, and that the average of the intermediate predictors is
a better choice. Intuitively, the average predictor is more stable than the last predictor, and this
stability allows us to prove strong convergence results.

Specifically, we define

wt =
1

t

t∑

j=1

wj and bt =
1

t

t∑

j=1

bj , (5)

and we wish to modify Algorithm 1 to return (wT , bT). This technique is called Averaged SGD, or
ASGD.

4

Algorithm 1 SGD for regularized linear learning with sparse data

1: function SGD(T, λ, {(xt, yt)}
m
i=1) // number of steps, regularization parameter, training set

2: draw random indices π1, . . . , πT
3: g ← ℓ′(0, yπ1

)

4: v ← gxπ1

5: a ← g

6: for t = 2, . . . , T do

7: d ← v · xπt
// O(k) operation

8: p ← −(d+a)
λ(t−1) // note that p = wt−1 · xπt

+ bt−1

9: g ← ℓ′(p, yπt
)

10: v ← v + gxπt
// O(k) operation

11: a ← a+ g

12: w ← −1
λT

v // O(n) operation outside the loop

13: b ← −a
λT

14: return [w, b]

To compute bt, we use Lemma 1 and write

bt =
1

t

t∑

j=1

bj =
−1

λt

t∑

j=1

aj
j

.

Using the above, we can modify Algorithm 1 to incrementally compute the term

ct =
t∑

j=1

aj
j

, (6)

and when needed, to recover

bt =
−ct
λt

. (7)

Computing wt requires more care, because the vector addition in Eq. (5) involves dense vectors,
and a straightforward computation of wt would require O(tn) operations. To avoid these dense
vector operations, we apply Lemma 1, and get

wj =
−1

λj

j
∑

i=1

ℓ′(pi, yπi
) xπi

.

Plugging the above into Eq. (5) gives

wt =
1

t

t∑

j=1

(

−1

λj

j
∑

i=1

ℓ′(pi, yπi
) xπi

)

.

5

Algorithm 2 ASGD for regularized linear learning with sparse data

1: function ASGD(T, λ, {(xt, yt)}
m
i=1) // num of steps, regularization param, training set

2: draw random indices π1, . . . , πT
3: g ← ℓ′(0, yπ1

) ; v← gxπ1
; a← g // same as SGD

4: u ← 0n // see Eq. (9)

5: c ← a // see Eq. (6)

6: h← 1 // first harmonic number

7: for t = 2, . . . , T do

8: d← v · xπt
; p← −(d+a)

λ(t−1) ; g ← ℓ′(p, yπt
) ; v← v + gxπt

; a← a+ g // same as SGD

9: u ← u+ hgxπt
// O(k) operation, see Eq. (9)

10: c ← c+ a
t

// see Eq. (6)

11: h ← h+ 1
t

// t’th harmonic number

12: w ← −1
λT

(hv − u) // O(n) operation outside the loop, see Eq. (10)

13: b ← −c
λT

// see Eq. (7)

14: return [w, b]

Rearranging the order of the two sums and using hi =
∑i

j=1
1
j
to denote the i’th harmonic number,

we get

wt =
−1

λt

t∑

i=1





t∑

j=i

1

j



 ℓ′(pi, yπi
) xπi

=
−1

λt

t∑

i=1

(ht − hi−1) ℓ
′(pi, yπi

) xπi

=
−1

λt

(

ht vt −
t∑

i=1

hi−1 ℓ
′(pi, yπi

) xπi

)

. (8)

We modify Algorithm 1 to also incrementally compute the harmonic gradient sum,

ut =

t∑

i=1

hi−1 ℓ
′(pj, yπj

) xπj
. (9)

This definition allows us to write Eq. (8) as

wt =
−1

λt

(
ht vt − ut

)
. (10)

With the formula above, wt can be recovered from ht, vt, and ut when needed, via a dense vector
operation. The pseudo-code of the resulting ASGD implementation is presented in Algorithm 2.

6

5 Centering and Translation Invariance

A disadvantage of the problem formulation in Eq. (1) is that it is sensitive to translation (a.k.a.
offset) of the training data (namely, adding a constant vector to each feature vector in the training
set). The root of the problem is the term b2 in Eq. (1), which discourages large values of b. There
are several different ways to make our algorithms translation invariant. A simple but effective
technique is to center the training data. Centering is the process of computing the mean feature
vector, x = 1

m

∑m
j=1 xj , and subtracting it from each xt. After we center the data, a predictor with

a bias of b = 0 is one that passes through the training data’s center-of-mass.

If we apply the transformation x 7→ x − x to the training set and train a predictor (w, b), we
must apply the same centering transformation to new feature vectors before using (w, b) to predict
their labels. There are two equivalent ways of doing this, explicit centering and implicit centering.
Explicit centering involves two consecutive steps: first, create a centered version of the feature
vector x′ = x− x; then, apply the predictor to x′ and predict the value w · x′ + b. A disadvantage
of explicit centering is that it requires us to store x alongside w and b, as part of the predictor
definition. On the other hand, implicit centering hides the centering transformation in the bias
term. Specifically, define a new bias term

b′ = b−w · x , (11)

and apply the predictor directly to the original (uncentered) feature vector x. In other words, the
prediction is computed as w · x+ b′. The two centering techniques are equivalent because

w · x′ + b = w · (x− x) + b = w · x+ (b−w · x) = w · x+ b′ .

The advantage of implicit centering is that it allows us to forget x and to make predictions as if
we had not used the centering technique at all. However, note that b′ cannot be computed until
training concludes and w is available.

The technical difficulty of centering sparse feature vectors is that x is likely a dense vector, and
therefore each centered feature vector, (xt − x), is dense as well. Therefore, explicitly centering
the entire training set would require m dense operations and would prevent us from using sparse
vector operations during training. In this section, we describe how to apply the centering technique
implicitly, without using dense operations.

Imagine repeating the entire derivation from the previous sections, replacing every appearance of
xπt

with (xπt
− x). In particular, we would get

[wt, bt] =
−1

λt

t∑

j=1

ℓ′(pj, yπj
) [(xπj

− x), 1] .

Reusing the definition of [vt, at] from Eq. (4), we rewrite the above as

wt =
−1

λt
(vt − atx) and bt =

−at
λt

. (12)

We can now use Eq. (11) to calculate the bias term of the implicit representation,

b′t = bt −wt · x =
−at
λt
−
−1

λt
(vt − atx) · x =

−1

λt

(
at(1 + ‖x‖

2)− vt · x
)

.

7

Consider the amount of work it would take us to obtain each of the terms above. The term at
can be computed as in Algorithm 2. The mean feature vector x can be precomputed with O(mk)
operations, and (1+ ‖x‖2) can be precomputed using a single dense operation. The only term that
poses a potential problem is vt · x, which is a dot product of two dense vectors. To overcome this
problem, we introduce the projection sum variable, defined as

zt = vt · x =

t∑

j=1

ℓ′(pj , yπj
)x · xπj

.

On one hand, we can modify Algorithm 2 to incrementally compute zt, as

zt = zt−1 + ℓ′(pt, yπt
)x · xπt

. (13)

On the other hand, with zt handy, we can easily compute

b′t =
−rt
λt

where rt = at(1 + ‖x‖
2)− zt . (14)

Plugging Eq. (12) and Eq. (14) into pt = wt−1 · xπt
+ b′t−1 gives

pt =
−1

λ(t− 1)

(
vt−1 · xπt

+ rt−1 − at−1 x · xπt

)
. (15)

We have everything we need to implement a centered version of SGD using sparse operations,
but we are really after a centered version of ASGD, a.k.a. CASGD. Namely, we need to modify
Algorithm 2 to return (wT , b

′

T), where

wt =
1

t

t∑

j=1

wj and b
′

t =
1

t

t∑

j=1

b′j . (16)

To help us compute b
′

t, we further modify Algorithm 2 to incrementally compute

st =
t∑

j=1

rj
j

. (17)

The value of b
′

t can be recovered as

b
′

t =
1

t

t∑

j=1

b′j =
−1

λt

t∑

j=1

rj
j

=
−st
λt

. (18)

To compute wt, we plug the definition of wt from Eq. (12) into Eq. (16) to get

wt =
1

t

t∑

j=1

−1

λj
(vj − ajx)

=
−1

λt

(
t∑

j=1

1

j

j
∑

i=1

ℓ′(pi, yπi
) xπi

︸ ︷︷ ︸

(i)

−
t∑

j=1

aj
j
x

︸ ︷︷ ︸

(ii)

)

.

8

Algorithm 3 CASGD for regularized linear learning with sparse data

1: function CASGD(T, λ, {(xt , yt)}
m
i=1) // num of steps, regularization param, training set

2: x ← 1
m

∑m
i=1 xi // O(mk) operation outside the loop

3: θ ← 1 + ‖x‖2 // O(n) operation outside the loop

4: draw random indices π1, . . . , πT
5: g ← ℓ′(0, yπ1

) ; v← gxπ1
; a← g ; u← 0n ; c← a ; h← 1 // same as ASGD

6: q ← x · xπ1
// O(k) operation

7: z ← gq // see Eq. (13)

8: r ← aθ − z // see Eq. (14)

9: s ← r // see Eq. (17)

10: for t = 1, . . . , T do

11: d ← v · xπt
// same as ASGD

12: q ← x · xπt
// O(k) operation

13: p ← −(d+r−aq)
λ(t−1) // see Eq. (15)

14: g ← ℓ′(p, yπt
) ; v← v + gxπt

; a← a+ g // same as ASGD

15: u← u+ hgxπt
; c← c+ a

t
; h← h+ 1

t
// same as ASGD

16: z ← z + gq // see Eq. (13)

17: r ← aθ − z // see Eq. (14)

18: s ← s+ r
t

// see Eq. (17)

19: w ← −1
λT

(
hv − u− cx

)
// O(n) operation outside the loop, see Eq. (19)

20: b
′

← −s
λT

// see Eq. (18)

21: return [w, b
′

]

Both (i) and (ii) above should look familiar, as we encountered them in the previous section. We
rewrite the double sum in (i) as we did in Eq. (10), and we rewrite the sum in (ii) using Eq. (6),
to get

wt =
−1

λt

(
htvt − ut − ctx

)
. (19)

The pseudo-code the resulting CASGD implementation appears in Algorithm 3

9

References

[1] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-Nımes,
91(8), 1991.

[2] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

[3] Boris T. Polyak. A new method of stochastic approximation type. Avtomatika i telemekhanika,
(7):98–107, 1990.

[4] Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[5] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of

mathematical statistics, pages 400–407, 1951.

[6] David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

[7] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

10

	1 Introduction
	2 Sparse Vector Operations
	3 Stochastic Gradient Descent
	4 Averaged Stochastic Gradient Descent
	5 Centering and Translation Invariance

