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Abstract

We analyze the minimax regret of the adversarial bandit convex optimization prob-
lem. Focusing on the one-dimensional case, we prove that the minimax regret is Θ̃(

√
T )

and partially resolve a decade-old open problem. Our analysis is non-constructive, as
we do not present a concrete algorithm that attains this regret rate. Instead, we use
minimax duality to reduce the problem to a Bayesian setting, where the convex loss
functions are drawn from a worst-case distribution, and then we solve the Bayesian
version of the problem with a variant of Thompson Sampling. Our analysis features a
novel use of convexity, formalized as a “local-to-global” property of convex functions,
that may be of independent interest.

1 Introduction

Online convex optimization with bandit feedback, commonly known as bandit convex opti-
mization, can be described as a T -round game, played by a randomized player in an adversar-
ial environment. Before the game begins, the adversarial environment chooses an arbitrary
sequence of T bounded convex functions f1, . . . , fT , where each ft : K 7→ [0, 1] and K is a
fixed convex and compact set in Rn. On round t of the game, the player chooses a point
Xt ∈ K and incurs a loss of ft(Xt). The player observes the value of ft(Xt) and nothing else,
and she uses this information to improve his choices going forward. The player’s performance
is measured in terms of his T -round regret, defined as

∑T
t=1 ft(Xt)−minx∈K

∑T
t=1 ft(x). In

∗Parts of this work were done while the author was at Microsoft Research, Redmond.

1

ar
X

iv
:1

50
2.

06
39

8v
1 

 [
cs

.L
G

] 
 2

3 
Fe

b 
20

15



words, the regret compares the player’s cumulative loss to that of the best fixed point in
hindsight.

While regret measures the performance of a specific player against a specific loss sequence,
the inherent difficulty of the game is measured using the notion of minimax regret. Informally,
the game’s minimax regret is the regret of an optimal player when she faces the worst-case
loss sequence. Characterizing the minimax regret of bandit convex optimization is one of the
most elusive open problems in the field of online learning. For general bounded convex loss
functions, Flaxman et al. (2005) presents an algorithm that guarantees a regret of Õ(T 5/6)—
and this is the best known upper bound on the minimax regret of the game. Better regret
rates can be guaranteed if additional assumptions are made: for Lipschitz functions the
regret is Õ(T 3/4) (Flaxman et al., 2005), for Lipschitz and strongly convex losses the regret
is Õ(T 2/3) (Agarwal et al., 2010), and for smooth functions the regret is Õ(T 2/3) (Saha
and Tewari, 2011). In all of the aforementioned settings, the best known lower bound on
minimax regret is Ω(

√
T ) (Dani et al., 2008), and the challenge is to bridge the gap between

the upper and lower bounds. In a few special cases, the gap is resolved and we know that the
minimax regret is exactly Θ̃(

√
T ); specifically, when the loss functions are both smooth and

strongly-convex (Hazan and Levy, 2014), when they are Lipschitz and linear (Dani et al.,
2008; Abernethy et al., 2008), or when they are Lipschitz and drawn i.i.d. from a fixed and
unknown distribution (Agarwal et al., 2011).

In this paper, we resolve the open problem in the one-dimensional case, where K = [0, 1],
by proving that the minimax regret with arbitrary bounded convex loss functions is Θ̃(

√
T ).

Formally, we prove the following theorem.

Theorem 1 (main result). There exists a randomized player strategy that relies on bandit
feedback and guarantees an expected regret of O(

√
T log T ) against any sequence of convex

loss functions f1, . . . , fT : [0, 1] 7→ [0, 1].

The one-dimensional case has received very little special attention, and the best published
result is the Õ(T 5/6) bound mentioned above, which holds in any dimension. However, by
discretizing the domain [0, 1] appropriately and applying a standard multi-armed bandit
algorithm, one can prove a tighter bound of Õ(T 2/3); see Appendix D for details. It is worth
noting that replacing the convexity assumption with a Lipschitz assumption also gives an
upper bound of Õ(T 2/3) (Kleinberg, 2004). However, obtaining the tight upper bound of
Õ(
√
T ) requires a more delicate analysis, which is the main focus of this paper.

Our tight upper bound is non-constructive, in the sense that we do not describe an
algorithm that guarantees a Õ(

√
T ) regret for any loss sequence. Instead, we use minimax

duality to reduce the problem of bounding the adversarial minimax regret to the problem
of upper bounding the analogous maximin regret in a Bayesian setting. Unlike our original
setting, where the sequence of convex loss functions is chosen adversarially, the loss functions
in the Bayesian setting are drawn from a probability distribution, called the prior, which is
known to the player. The idea of using minimax duality to study minimax regret is not new
(see, e.g., Abernethy et al., 2009; Gravin et al., 2014); however, to the best of our knowledge,
we are the first to apply this technique to prove upper bounds in a bandit feedback scenario.
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After reducing our original problem to the Bayesian setting, we design a novel algorithm
for Bayesian bandit convex optimization (in one dimension) that guarantees Õ(

√
T ) regret

for any prior distribution. Since our main result is non-constructive to begin with, we are
not at all concerned with the computational efficiency of this algorithm. We first discretize
the domain [0, 1] and treat each discrete point as an arm in a multi-armed bandit problem.
We then apply a variant of the classic Thompson Sampling strategy (Thompson, 1933) that
is designed to exploit the fact that the loss functions are all convex. We adapt the analysis of
Thompson Sampling in Russo and van Roy (2014) to our algorithm and extend it to arbitrary
joint prior distributions over sequences of loss functions (not necessarily i.i.d. sequences).

The significance of the convexity assumption is that it enables us to obtain regret bounds
that scale logarithmically with the number of arms, which turns out to be the key property
that leads to the desired Õ(

√
T ) upper bound. Intuitively, convexity ensures that a change to

the loss value of one arm influences the loss values in many of the adjacent arms. Therefore,
even the worst case prior distribution cannot hide a small loss in one arm without globally
influencing the loss of many other arms. Technically, this aspect of our analysis boils down
to a basic question about convex functions: given two convex functions f : K 7→ [0, 1] and
g : K 7→ [0, 1] such that f(x) < miny g(y) at some point x ∈ K, how small can ‖f − g‖ be
(where ‖ · ‖ is an appropriate norm over the function space)? In other words, if two convex
functions differ locally, how similar can they be globally? We give an answer to this question
in the one-dimensional case.

The paper is organized as follows. We begin in Section 2 where we define the setting of
Bayesian online optimization, establish basic techniques for the analysis of Bayesian online
algorithms, and demonstrate how to readily recover some of the known minimax regret
bounds for the full information case by bounding the Bayesian regret. Then, in Section 3,
we prove the key structural lemma by which we exploit the convexity of the loss functions.
Section 4 is the main part of the paper, where we give our algorithm for Bayesian bandit
convex optimization (in one dimension) and analyze its regret. We conclude the paper in
Section 5 with a few remarks and open problems.

2 From Adversarial to Bayesian Regret

In this section, we show how regret bounds for an adversarial online optimization setting
can be obtained via a Bayesian analysis. Before explaining this technique in detail, we first
formalize two variants of the online optimization problem: the adversarial setting and the
Bayesian setting.

We begin with the standard, adversarial online optimization setup. As described above,
in this setting the player plays a T -round game, during which he chooses a sequence of points
X1:T ,1 where Xt ∈ K for all t. The player’s randomized policy for choosing X1:T is defined
by a sequence of deterministic functions ρ1:T , where each ρt : [0, 1]t−1 7→ ∆(K) (here ∆(K)
is the set of probability distributions over K). On round t, the player uses ρt and his past

1Throughout the paper, we use the notation as:t as shorthand for the sequence as, . . . , at.
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observations to define the probability distribution

πt = ρt
(
f1(X1), . . . , ft−1(Xt−1)

)
,

and then draws a concrete point Xt ∼ πt. Even though ρt is a deterministic function, the
probability distribution πt is itself a random variable, because it depends on the player’s
random observations f1(X1), . . . , ft−1(Xt−1).

The player’s cumulative loss at the end of the game is the random quantity
∑T

t=1 ft(Xt)
and his expected regret against the sequence f1:T is

R(ρ1:T ; f1:T ) = E

[
T∑
t=1

ft(Xt)

]
− min

x∈K

T∑
t=1

ft(x) .

The difficulty of the game is measured by its minimax regret, defined as

min
ρ1:T

sup
f1:T

R(ρ1:T ; f1:T ) .

We now turn to introduce the Bayesian online optimization setting. In the Bayesian
setting, we assume that the sequence of loss functions F1:T , where each Ft : K 7→ [0, 1] is
convex, is drawn from a probability distribution F called the prior distribution. Note that
F is a distribution over the entire sequence of losses, and not over individual functions in
the sequence. Therefore, it can encode arbitrary dependencies between the loss functions on
different rounds. However, we assume that this distribution is known to the player, and can
be used to design his policy. The player’s Bayesian regret is defined as

R(ρ1:T ;F) = E

[
T∑
t=1

Ft(Xt)−
T∑
t=1

Ft(X
?)

]
,

where X? is the point in K with the smallest cumulative loss at the end of the game, namely
the random variable

X? = arg min
x∈K

T∑
t=1

Ft(x) . (1)

The difficulty of online optimization in a Bayesian environment is measured using the max-
imin Bayesian regret, defined as

sup
F

min
ρ1:T

R(ρ1:T ;F) .

In words, the maximin Bayesian regret is the regret of an optimal Bayesian strategy over
the worst possible prior F .

It turns out that the two online optimization settings we described above are closely re-
lated. The following theorem, which is a consequence of a generalization of the von Neumann
minimax theorem, shows that the minimax adversarial regret and maximin Bayesian regret
are equal.
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Theorem 2. It holds that

min
ρ1:T

sup
f1:T

R(ρ1:T ; f1:T ) = sup
F

min
ρ1:T

R(ρ1:T ;F) .

For completeness, we include a proof of this fact in Appendix A. As a result, instead of
analyzing the minimax regret directly, we can analyze the maximin Bayesian regret. That
is, our new goal is to design a prior-dependent player policy that guarantees a small regret
against any prior distribution F .

2.1 Bayesian Analysis with Full Feedback

As a warm-up, we first consider the Bayesian setting where the player receives full-feedback.
Namely, on round t, after the player draws a point Xt ∼ πt and incurs a loss of Ft(Xt), we
assume that she observes the entire loss function Ft as feedback. We show how minimax du-
ality can be used to recover the known O(

√
T ) regret bounds for this setting. For simplicity,

we focus on the concrete setting where K = ∆n (the n-dimensional simplex), and where the
convex loss functions F1:T are also 1-Lipschitz with respect to the L1-norm (with probability
one).

The evolution of the game is specified by a filtration H1:T , where each Ht denotes the
history observed by the player up to and including round t of the game; formally, Ht is the
sigma-field generated by the random variables X1:t and F1:t. To simplify notations, we use
the shorthand Et[·] = E[ · | Ht−1] to denote expectation conditioned on the history before
round t. The analogous shorthands Pt(·) and Vart(·) are defined similarly.

Recall that the player’s policy can rely on the prior F . A natural deterministic policy is
to choose, based on the random variable X? defined in Eq. (1), actions X1:T according to

∀ t ∈ [T ] , Xt = Et[X?] . (2)

In other words, the player uses his knowledge of the prior and his observations so far to cal-
culate a posterior distribution over loss functions, and then chooses the expected best-point-
in-hindsight. Notice that the sequence X1:T is a martingale (in fact, a Doob martingale),
whose elements are vectors in the simplex.

The following lemma shows that the expected instantaneous (Bayesian) regret of the
strategy on each round t can be upper bounded in terms of the variation of the sequence
X1:T on that round.

Lemma 3. Assume that with probability one, the loss functions F1:T are convex and 1-
Lipschitz with respect to some norm ‖ · ‖. Then the strategy defined in Eq. (2) guarantees
E[Ft(Xt)− Ft(X?)] ≤ E[‖Xt −Xt+1‖] for all t.

Proof. By the subgradient inequality, we have Ft(Xt) − Ft(X?) ≤ ∇Ft(Xt) · (Xt − X?) for
all t. The Lipschitz assumption implies that ‖∇Ft(Xt)‖∗ ≤ 1, where ‖ · ‖∗ is the norm dual
of ‖ · ‖. Using Eq. (2), noting that Xt, Ft ∈ Ht, and taking the conditional expectation, we
get

Et+1

[
Ft(Xt)− Ft(X?)

]
≤ ∇Ft(Xt) · (Xt − Et+1[X?]) = ∇Ft(Xt) · (Xt −Xt+1) .
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Finally, applying Holder’s inequality on the right-hand side and taking expectations proves
the lemma.

To bound the total variation of X1:T , we use a bound of Neyman (2013) on the total
variation of martingales in the simplex.

Lemma 4 (Neyman, 2013). For any martingale Z1, . . . , ZT+1 in the n-dimensional simplex,
one has

E

[
T∑
t=1

‖Zt − Zt+1‖1

]
≤
√

1
2
T log n .

Lemma 4 and Lemma 3 together yield a O(
√
T log n) bound on the maximin Bayesian

regret of online convex optimization on the simplex with full-feedback. Theorem 2 then
implies the same bound over the minimax regret in the corresponding adversarial setting,
recovering the well-known bounds in this case (e.g., Kivinen and Warmuth, 1997). We
remark that essentially the same technique can be used to retrieve known dimension-free
regret bounds in the Euclidean setting, e.g., when K is an Euclidean ball and the losses are
Lipschitz with respect to the L2 norm; in this case, the L2 total variation of the martingale
X1:T can be shown to be bounded by O(

√
T ) with no dependence on n.2

2.2 Regret Analysis of Bayesian Bandits

The analysis in this section builds on the technique introduced by Russo and van Roy (2014).
While their analysis is stated for prior distributions that are i.i.d. (namely, F is a product
distribution), we show that it extends to arbitrary prior distributions with essentially no
modifications.

We begin by restricting our attention to finite decision sets K, and denote K = |K|.
(When we get to the analysis of Bayesian bandit convex optimization, K will be an appro-
priately chosen grid of points in [0, 1].) In the bandit case, the history Ht is the sigma-field
generated by the random variables X1:t and F1(X1), . . . , Ft(Xt). Following Russo and van
Roy (2014), we consider the following quantities related to the filtration H1:T :

∀ x ∈ K ,
rt(x) = Et

[
Ft(x)− Ft(X?)

]
,

vt(x) = Vart
(
Et[Ft(x) | X?]

)
.

(3)

The random quantity rt(x) is the expected regret incurred by playing the point x on round t,
conditioned on the history. Hence, the cumulative expected regret of the player equals
E[
∑T

t=1 rt(Xt)]. The random variable vt(x) is a proxy for the information revealed about X?

by choosing the point x on round t. Intuitively, if the value of Ft(x) varies significantly as
a function of the random variable X?, then observing the value of Ft(x) should reveal much

2This follows from the fact that a martingale in Rn can always be projected to a martingale in R2 with
the same magnitude of increments; namely, given a martingale Z1, Z2, . . . in Rn one can show that there
exists a martingale sequence Z̃1, Z̃2, . . . in R2 such that ‖Zt − Zt+1‖2 = ‖Z̃t − Z̃t+1‖2 for all t.
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x? x

f(x)

f?

g(x) ≤ f?

Figure 1: An illustration of the local-to-global lemma. The L2 distance between the
reference convex function f to a convex function g in the interval [x?, x], where x? is the
minimizer of f and x is a point such that g(x) ≤ f(x?), can be lower bounded in terms of
the shaded area that depicts the energy of the function f in the same interval.

information on the identity of X?. (More precisely, vt(x) is the amount of variance in Ft(x)
explained by the random variable X?.)

The following lemma can be viewed as an analogue of Lemma 4 in the bandit setting.

Lemma 5. For any player strategy and any prior distribution F , it holds that

E

[
T∑
t=1

√
Et[vt(Xt)]

]
≤
√

1
2
T logK .

The proof uses tools from information theory to relate the quantity vt(Xt) to the decrease
in entropy of the random variable X? due to the observation on round t; the total decrease
in entropy is necessarily bounded, which gives the bound in the lemma. For completeness,
we give a proof in Appendix B.

Lemma 5 suggests a generic way of obtaining regret bounds for Bayesian algorithms: first
bound the instantaneous regret Et[rt(Xt)] of the algorithm in terms of

√
Et[vt(Xt)] for all

t, then sum the bounds and apply Lemma 5. Russo and van Roy (2014) refer to the ratio
Et[rt(Xt)]

/√
Et[vt(Xt)] as the information ratio, and show that for Thompson Sampling over

a set of K points (under an i.i.d. prior F) this ratio is always bounded by
√
K, with no

assumptions on the structure of the functions F1:T . In the sequel, we show that this
√
K

factor can be improved to a polylogarithmic term in K (albeit using a different algorithm)
when F1:T are univariate convex functions.

3 Leveraging Convexity: The Local-to-Global Lemma

To obtain the desired regret bound, our analysis must somehow take advantage of some
special property of convex functions. In this section, we specify which property of convex
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functions is leveraged in our proof.
To gain some intuition, consider the following prior distribution, which is not restricted

to convex functions: draw a point X? uniformly in [0, 1] and sets all of the loss functions to
be the same function, Ft(x) = 11x 6=X? (the indicator of x 6= X?). Regardless of the player’s
policy, she will almost surely miss the point X?, observe the loss sequence 1, . . . , 1, and
incur a regret of T . The reason for this high regret is that the prior was able to hide the
good point X? in each of the loss functions without modifying them globally. However, if
the loss functions are required to be convex, it is impossible to design a similar example.
Specifically, any local modification to a convex function necessarily changes the function
globally (namely, at many different points). This intuitive argument is formalized in the
following lemma; here we denote by ‖g‖2

ν =
∫
g2dν the L2-norm of a function g : [0, 1] 7→ R

with respect to a probability measure ν.

Lemma 6 (Local-to-global lemma). Let f, g : [0, 1] 7→ R be convex functions. Denote
x? = arg minx∈[0,1] f(x) and f ? = f(x?), and let x ∈ [0, 1] such that g(x) ≤ f ? < f(x). Then
for any probability measure ν supported on [x?, x], we have

‖f − g‖2
ν

(f(x)− g(x))2
≥ ν(x?) · ‖f − f

?‖2
ν

(f(x)− f ?)2
.

To understand the statement of the lemma, it is convenient to think of f as a reference
convex function, to which we compare another convex function g; see Fig. 1. If g substantially
differs from f at one point x (in the sense that g(x) ≤ f ?), then the lemma asserts that g
must also differ from f globally (in the sense that ‖f − g‖2

ν is large).

Proof. Let X be a random variable distributed according to ν. To prove the lemma, we
must show that

E(f(X)− g(X))2

(f(x)− g(x))2
≥ P(X = x?) · E(f(X)− f ?)2

(f(x)− f ?)2
.

Without loss of generality we can assume that x > x?. Let x0 be the unique point such that
f(x0) = g(x0), and if such a point does not exist let x0 = x?. Note that x0 < x, and observe
that g is below (resp. above) f on [x0, x] (resp. [x?, x0]).

Step 1: We first prove that, without loss of generality, one can assume that g is linear.
Indeed consider g̃ to be the linear extension of the chord of g between x and x0. Then we
claim that:

E(f(X)− g(X))2

(f(x)− g(x))2
≥ E(f(X)− g̃(X))2

(f(x)− g̃(x))2
. (4)

Indeed the denominator is the same on both side of the inequality, and clearly by convexity
g̃ is always closer to f than g. Thus in the following we assume that g is linear.
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Step 2: We show now that one can assume g(x) = f ?. Let g̃ be the linear function such
that g̃(x) = f ? and g̃(x0) = f(x0). Similarly to the previous step, we have to show that
Eq. (4) holds true. We will show that h(y) =

(
f(y)−g(y)

)
/
(
f(y)− g̃(y)

)
is non-increasing on

[x?, x], which clearly implies Eq. (4). A simple approximation argument shows that without
of generality one can assume that f is differentiable, in which case h is also differentiable.
Observe that h′(y) has the same sign as u(y) = f ′(y)(g(y) − g̃(y)) − g′(y)(f(y) − g̃(y)) +
g̃′(y)(f(y) − g(y)) . Moreover, u′(y) = f ′′(y)(g(y) − g̃(y)) since g′′ = g̃′′ = 0, and thus u is
decreasing on [x0, x] and increasing on [x?, x0] (recall that by convexity f ′′(y) ≥ 0). Since
u(x0) ≤ 0 (in fact u(x0) = 0 in the case x0 6= x?), this implies that u is nonpositive, and
thus h is non-increasing, which concludes this step.

Step 3: It remains to show that when g is linear with g(x) = f ?, then

E(f(X)− g(X))2 ≥ P(X = x?) · E(f(X)− f ?)2 . (5)

For notational convenience we assume f ? = 0. By monotonicity of f and g on [x?, x], one
has ∀y ∈ [x?, x], |f(y)− g(y)| ≥ |f(y)− f(x0)|. Therefore, it holds that

E(f(X)− g(X))2 ≥ E(f(X)− f(x0))2 ≥ Var(f(X)) = Ef 2(X)− (Ef(X))2. (6)

Now using Cauchy-Schwarz one has Ef(X) = Ef(X)1{X 6= x?} ≤
√
P(X 6= x?) · Ef 2(X),

which together with Eq. (6) yields Eq. (5).

4 Algorithm for Bayesian Convex Bandits

In this section we present and analyze our algorithm for one-dimensional bandit convex
optimization in the Bayesian setting, over K = [0, 1]. Recall that in Bayesian setting, there
is a prior distribution F over a sequence F1:T of loss functions over K, such that each function
Ft is convex (but not necessarily Lipschitz) and take values in [0, 1] with probability one.

Before presenting the algorithm, we make the following simplification: given ε > 0, we
discretize the interval [0, 1] to a grid Xε = {x1, . . . , xK} of K = 1/ε2 equally-spaced points
and treat Xε as the de facto decision set, restricting all computations as well as the player’s
decisions to this finite set. We may do so without loss of generality: it can be shown (see
Appendix C) that for any sequence of convex loss functions F1, . . . , FT : K 7→ [0, 1], the T -
round regret (of any algorithm) with respect to Xε is at most 2εT larger than its regret with
respect to K, and we will choose ε to be small enough so that this difference is negligible.

After fixing a grid Xε, we introduce the following definitions. We define the random
variable X? = arg minx∈Xε

∑T
t=1 Ft(x), and for all t and i, j ∈ [K] let

αi,t = Pt(X? = xi) ,

ft(xi) = Et[Ft(xi)] ,
fj,t(xi) = Et[Ft(xi) | X? = xj] .

(7)
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Inputs: prior distribution F , tolerance parameter ε > 0

Let K = 1/ε2 and Xε = {x1, . . . , xK} with xi = i/K for all i ∈ [K] ;
For round t = 1 to T :

For all i ∈ [K], compute αi,t, ft(xi) and fi,t(xi) defined in Eq. (7) ;
Find i?t = arg mini ft(xi) and let x?t = xi?t ;
Define the set

St =
{
i ∈ [K] : fi,t(xi) ≤ ft(x

?
t ) and αi,t ≥ ε

K

}
; (8)

Sample Xt from the distribution πt = (π1,t, . . . , πK,t) over Xε, given by

∀ i ∈ [K] , πi,t = 1
2
αi,t · 1{i ∈ St}+ (1− 1

2
αt(St)) · 1{i = i?t} , (9)

where we denote αt(S) =
∑

i∈S αi,t ;
Play Xt and observe feedback Ft(Xt) ;

Figure 2: A modified Thompson Sampling strategy that guarantees Õ(
√
T ) expected

Bayesian regret for any prior distribution F over convex functions F1, . . . , FT : [0, 1] 7→ [0, 1].

In words, X? is the optimal action in hindsight, and αt = (α1,t, . . . , αK,t) is the posterior
distribution of X? on round t. The function ft : Xε 7→ [0, 1] is the expected loss function on
round t given the feedbacks observed in previous rounds, and for each j ∈ [K], the function
fj,t : Xε 7→ [0, 1] is the expected loss function on round t conditioned on X? = xj and on the
history.

Using the above definitions, we can present our algorithm, shown in Fig. 2. On each round
t the algorithm computes, using the knowledge of the prior F and the feedback observed in
previous rounds, the posterior αt and the values ft(xi) and fi,t(xi) for all i ∈ [K]. Also, it
computes the minimizer x?t of the expected loss ft over the set Xε, which is the point that has
the smallest expected loss on the current round. Instead of directly sampling the decision
from the posterior αt (as Thompson Sampling would do), we make the following two simple
modifications. First, we add a forced exploitation on the optimizer x?t of the expected loss to
ensure that the player chooses this point with probability at least 1

2
. Second, we transfer the

probability mass assigned by the posterior to points not represented in the set St, towards
x?t . The idea is that playing a point xi with i /∈ St is useless for the player, either because it
has a very low probability mass, or because playing xi would not be (much) more profitable
to the player than simply playing x?t on round t, even if she is told that xi is the optimal
point at the end of the game.

The main result of this section is the following regret bound attained by our algorithm.

Theorem 7. Let F1, . . . , FT : [0, 1] 7→ [0, 1] be a sequence of convex loss functions drawn
from an arbitrary prior distribution F . For any ε > 0, the Bayesian regret of the algorithm
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described in Fig. 2 over Xε is upper-bounded by

10
√
T log

2K

ε
+ 10εT

√
log

2K

ε
.

In particular, for ε = 1/
√
T we obtain an upper bound of O(

√
T log T ) over the regret.

Proof. We bound the Bayesian regret of the algorithm (with respect to Xε) on a per-round
basis, via the technique described in Section 2.2. Namely, we fix a round t and bound
Et[rt(Xt)] in terms of Et[vt(Xt)] (see Eq. (3)). Since the round is fixed throughout, we omit
the round subscripts from our notation, and it is understood that all variables are fixed to
their state on round t.

First, we bound the expected regret incurred by the algorithm on round t in terms of the
posterior α and the expected loss functions f, f1, . . . , fK .

Lemma 8. With probability one, it holds that

Et[rt(Xt)] ≤
∑
i∈S

αi(f(xi)− fi(xi)) + ε . (10)

The proofs of all of our intermediate lemmas are deferred to the end of the section. Next,
we turn to lower bound the information gain of the algorithm (as defined in Eq. (3)). Recall
our notation ‖g‖2

ν that stands for the L2-norm of a function g : K 7→ R with respect to a
probability measure ν over K; specifically, for a measure ν supported on the finite set Xε we
have ‖g‖2

ν =
∑K

i=1 νig
2(xi).

Lemma 9. With probability one, we have

Et[vt(Xt)] ≥
∑
i∈S

αi‖f − fi‖2
π . (11)

We now set to relate between the right-hand sides of Eqs. (10) and (11), in a way that
would allow us to use Lemma 5 to bound the expected cumulative regret of the algorithm. In
order to accomplish that, we first relate each regret term f(xi)− fi(xi) to the corresponding
information term ‖f − fi‖2

π. Since f and the fi’s are all convex functions, this is given by
the local-to-global lemma (Lemma 6) which lower-bounds the global quantity ‖f − fi‖2

π in
terms of the local quantity f(xi)− fi(xi).

To apply the lemma, we establish some necessary definitions. For all i ∈ S, define εi =
ε |xi− x?|, and let Si = S ∩ [xi, x

?] be the neighborhood of xi that consists of all points in S
lying between (and including) xi and the optimizer x? of f . Now, define weights wi for all
i ∈ S as follows:

∀ i? 6= i ∈ S , wi =
∑
j∈Si

πj

(
f(xj)− f(x?) + εj
f(xi)− f(x?) + εi

)
2 , and wi? = πi? . (12)

With these definitions, Lemma 6 can be used to prove the following.

11



Lemma 10. For all i ∈ S it holds that ‖f − fi‖2
π ≥ 1

4
wi(f(xi)− fi(xi))2 − ε2.

Now, averaging the inequality of the lemma with respect to α over all i ∈ S and using
the fact that

√
a+ b ≤ √a+

√
b for any a, b ≥ 0, we obtain√∑

i∈S

αiwi(f(xi)− fi(xi))2 ≤ 2

√∑
i∈S

αi‖f − fi‖2
π + 2ε .

On the other hand, the Cauchy-Schwarz inequality gives

∑
i∈S

αi(f(xi)− fi(xi)) ≤
√∑

i∈S

αi
wi
·
√∑

i∈S

αiwi(f(xi)− fi(xi))2 .

Combining the two inequalities and recalling Lemmas 8 and 9, we get

Et[rt(Xt)] ≤ 2

√∑
i∈S

αi
wi
·
(√

Et[vt(Xt)] + ε
)

+ ε . (13)

It remains to upper bound the sum
∑

i∈S
αi
wi

. This is accomplished in the following lemma.

Lemma 11. We have ∑
i∈S

αi
wi
≤ 20 log

2K

ε
.

Finally, plugging the bound of the lemma into Eq. (13) and using Lemma 5, yields the
stated regret bound.

4.1 Remaining Proofs

We first give the proof of Lemma 8. Recall that for readability, we omit the subscripts
specifying the round number t from our notation.

Proof. The expected instantaneous regret can be written in terms of the distributions π and
α, and the functions f1, . . . , fK and f as follows:

Et[rt(Xt)] =
K∑
i=1

πi rt(xi)

=
K∑
i=1

πi Et[Ft(xi)]−
K∑
i=1

αi Et[Ft(xi) | X? = xi]

=
K∑
i=1

πif(xi)−
K∑
i=1

αifi(xi) .

Next, we consider the first sum in the right-hand size of the above, that corresponds to
the expected loss incurred by the algorithm. Since π is obtained from α by transferring

12



probability mass towards x? (whose loss is the smallest), the expected loss of the algorithm
has

K∑
i=1

πif(xi) = 1
2

∑
i∈S

αif(xi) + (1− 1
2
q(S))f(x?)

≤
∑
i∈S

αif(xi) + (1− q(S))f(x?)

=
∑
i∈S

αif(xi) +
∑
i/∈S

αif(x?) .

Also, since for each i /∈ S we either have αi <
ε
K

or f(x?)− fi(xi) < 0 (while both quantities
are trivially bounded by 1), ∑

i/∈S

αi(f(x?)− fi(xi)) ≤ ε .

Hence, for the regret we have

Et[rt(Xt)] =
K∑
i=1

πif(xi)−
K∑
i=1

αifi(xi)

≤
∑
i∈S

αi(f(xi)− fi(xi)) +
∑
i/∈S

αi(f(x?)− fi(xi))

≤
∑
i∈S

αi(f(xi)− fi(xi)) + ε .

Next, we prove Lemma 9.

Proof. The expected instantaneous information gain can be written as

Et[vt(Xt)] =
K∑
i=j

πj Vart
(
Et[Ft(xj) | X?]

)
=

K∑
i=1

K∑
j=1

αiπj
(
Et[Ft(xj) | X? = xi]− Et[Ft(xj)]

)2

=
K∑
i=1

K∑
j=1

αiπj(fi(xj)− f(xj))
2 .

The lemma then follows from

K∑
i=1

K∑
j=1

αiπj(f(xj)− fi(xj))2 ≥
∑
i∈S

αi

K∑
j=1

πj(f(xj)− fi(xj))2 =
∑
i∈S

αi‖f − fi‖2
π .

13



We now turn to prove Lemma 10. The proof uses the local-to-global lemma (Lemma 6)
discussed earlier in Section 3.

Proof. The lemma holds trivially for i = i?, as we defined wi? = πi? , whence

‖f − fi?‖2
π ≥ πi?(f(x?)− fi?(x?))2 ≥ 1

4
wi?(f(x?)− fi?(x?))2 − ε2 .

Therefore, in what follows we assume that i ∈ S and i 6= i?.
Consider a regularized version of the function f , given by fε(x) = f(x) + ε|x − x?|.

Notice that fε is convex, and has a unique minimum at x? with fε(x
?) = f(x?). Since

πi? ≥ 1
2

by construction (the algorithm exploits with probability 1
2
), and for all i ∈ S we

have fi(xi) ≤ fε(x
?) < fε(xi), we can apply Lemma 6 to the functions fε and fi and obtain∑
j∈Si πj(fε(xj)− fi(xj))2

(fε(xi)− fi(xi))2
≥ 1

2
·
∑

j∈Si πj(fε(xj)− fε(x?))2

(fε(xi)− fε(x?))2
.

Now, notice that fε(xj)−fε(x?) = f(xj)−f(x?)+ε |xj−x?| for all j; hence, recalling Eq. (12),
the right-hand side above equals 1

2
wi. Rearranging and using ‖fε− fi‖2

π ≥
∑

j∈Si πj(fε(xj)−
fi(xj))

2 gives

‖fε − fi‖2
π ≥ 1

2
wi(fε(xi)− fi(xi))2 . (14)

To obtain the lemma from Eq. (14), observe that by the triangle inequality,

‖f − fi‖π ≥ ‖fε − fi‖π − ‖fε − f‖π ≥ ‖fε − fi‖π − ε ,

so using (a+b)2 ≤ 2(a2+b2) we can upper bound the left-hand side of Eq. (14) as ‖fε−fi‖2
π ≤

2‖f − fi‖2
π + 2ε2. On the right hand-side of the same inequality, we can use the lower bound

(fε(xi) − fi(xi))2 ≥ (f(xi) − fi(xi))2 that follows from fε(xi) − fi(xi) ≥ f(xi) − fi(xi) ≥ 0.
Combining these observations with Eq. (14), we have ‖f − fi‖2

π ≥ 1
4
wi(f(xi)− fi(xi))2 − ε2,

which concludes the proof.

Finally, we prove Lemma 11.

Proof. Since αi ≤ 2πi for all i ∈ S, it is enough to bound the sum
∑

i∈S
πi
wi

. We decompose
this sum into three disjoint parts: the term corresponding to i = i? (in case i? ∈ S) that
equals 1 as wi? = πi? by definition, a sum over the indices i ∈ S such that xi < x?, and a sum
over those such that xi > x?. The proof is identical for both the latter sums, thus we focus on
the set S ′ of indices such that xi > x?. Up to reindexing, we can assume that S ′ = {1, . . . , K ′}
for some K ′ ≤ K, and the corresponding points are such that x? < x1 < . . . < xK′ . By our
definition of wi (see Eq. (12)), we have

∀ i ∈ S ′ , πi
wi

=
πi(f(xi)− f(x?) + εi)

2∑i
j=1 πj(f(xj)− f(x?) + εj)2

.
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Observe that for all i ∈ S ′ it holds that εi = ε |xi − x?| ≥ ε
K

, as the points x1, . . . , xK lie
on an equally-spaced grid of the interval (and xi 6= x? since i? /∈ S ′). Recall also that by
construction πi ≥ 1

2
αi ≥ ε

2K
for all i ∈ S. Hence, we have

∀ i ∈ S ′ , 1
2
( ε
K

)3 ≤ πi(f(xi)− f(x?) + εi)
2 ≤ 4πi .

Now, denote βi =
∑i

j=1 πj(f(xj) − f(x?) + εj)
2, for which 1

2
( ε
K

)3 ≤ β1 ≤ . . . ≤ βK′ ≤ 4.
Thus, we have

K′∑
i=1

πi
wi

= 1 +
K′∑
i=2

βi − βi−1

βi
= 1 +

K′∑
i=2

(
1− βi−1

βi

)
≤ 1 +

K′∑
i=2

log
βi
βi−1

= 1 + log
βK′

β1

,

where the inequality follows from the fact that log z ≤ z − 1 for 0 < z ≤ 1. Since βK′/β1 ≤
(2K
ε

)3, we can bound the right-hand side by 1 + 3 log 2K
ε

. The lemma now follows from
applying the same bound to the other part of the total sum (over the indices i such that
xi < x?) and recalling the possible term corresponding to i = i?.

5 Discussion and Open Problems

We proved that the minimax regret of adversarial one-dimensional bandit convex optimiza-
tion is Õ(

√
T ) by designing an algorithm for the analogous Bayesian setting and then using

minimax duality to upper-bound the regret in the adversarial setting. Our work raises in-
teresting open problems. The main open problem is whether one can generalize our analysis
from the one-dimensional case to higher dimensions (say, even n = 2). While much of
our analysis generalizes to higher dimensions, the key ingredient of our proof, namely the
local-to-global lemma (Lemma 6) is inherently one-dimensional. We hope that the compo-
nents of our analysis, and especially the local-to-global lemma, will inspire the design of
efficient algorithms for adversarial bandit convex optimization, even though our end result
is a non-constructive bound.

The Bayesian algorithm used in our analysis is a modified version of the classic Thompson
Sampling strategy. A second open question is whether or not the same regret guarantee can
be obtained by vanilla Thompson Sampling, without any modification. However, if it turns
out that unmodified Thompson Sampling is sufficient, the proof is likely to be more complex:
our analysis is greatly simplified by the observation that the instantaneous regret of our
algorithm is controlled by its instantaneous information gain on each and every round—a
claim that does not hold for Thompson Sampling.

Finally, we note that our reasoning together with Proposition 5 of Russo and van Roy
(2014) allows to recover effortlessly Theorem 4 of Bubeck et al. (2012), which gives the
worst-case minimax regret for online linear optimization with bandit feedback on a discrete
set in Rn. It would be interesting to see if this proof strategy also allows to exploit geo-
metric structure of the point set. For instance, could the techniques described here give an
alternative proof of Theorem 6 of Bubeck et al. (2012)?
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A Proof of Theorem 2

The proof relies on Sion’s generalization of von Neumann’s minimax theorem, which we state
here for completeness (see Corollary 3.3 of Sion, 1958, or Komiya, 1988).

Theorem 12. Let X and Y be convex sets in two linear topological spaces, and suppose that
X is compact. Let f be a real-valued function on X × Y such that

(i) f(x, ·) is upper semicontinuous and concave on Y for each x ∈ X;
(ii) f(·, y) is lower semicontinuous and convex on X for each y ∈ Y .

Then,
min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y) .

Proof of Theorem 2. For a metric space A we denote by ∆(A) the set of Borel probability
measures on A. Let C be the space of convex functions from the compact K to [0, 1]. A
deterministic player’s strategy is specified by a sequence of operators a1, . . . , aT , where in
the full information case as : Cs−1 → K, and in the bandit case as : [0, 1]s−1 → K. We denote
by A the set of such sequences of operators, which is compact in the product topology. The
minimax regret can be written as:

min
u∈∆(A)

sup
f1:T∈CT

E[RT ] , (15)

17



where RT denotes the induced T -round regret, and the expectation is with respect to the
random draw of a player’s strategy from u. Using Sion’s minimax theorem, we deduce
Eq. (15) is equal to

sup
F∈∆(CT )

min
u∈∆(A)

E[RT ] , (16)

where the expectation is with respect to both the random draw of a player’s strategy from
u, and the random draw of the sequence of losses from F . Finally, to convert the statement
above to the statement of Theorem 2, we invoke Kuhn’s theorem on the payoff equivalence
of behavioral strategies to general randomized strategies. More precisely, we apply the
continuum version of this theorem, established by Aumann (1964).

B Information Theoretic Analysis of Bayesian Algo-

rithms

In this section we prove Lemma 5, restated here.

Lemma 5 (Russo and van Roy, 2014). For any player strategy and any prior distribution F ,
it holds that

E

[
T∑
t=1

√
Et[vt(Xt)]

]
≤
√

1
2
T logK .

The proof follows the analysis of Russo and van Roy (2014). For the proof, we require
the following definition. Let

∀ x ∈ K , It(x) = It(Ft(x);X?)

be the mutual information between X? and the player’s loss on round t upon choosing the
action x ∈ K, conditioned on the history Ht−1 (thus, It(x) is a random variable, measurable
with respect toHt−1). Intuitively, It(x) is the expected amount of information on X? revealed
by playing x on round t of the game and observing the feedback Ft(x).

Before proving Lemma 5, we first show an analogous claim for the information terms
It(Xt).

Lemma 13. We have

E

[
T∑
t=1

√
Et[It(Xt)]

]
≤
√
T logK .

Proof. Let us examine how the entropy of the random variable X? evolves during the game
as the player gathers the observations F1(X1), . . . , FT (XT ). Denoting by Ht(·) the entropy
conditional on Ht−1, we have by standard information theoretic relations,

It(x) = It(Ft(x);X?) = Et[Ht(X?)− Ht+1(X?) | Xt = x]
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for all points x ∈ K. Thus,

Et[It(Xt)] = Et[Ht(X?)− Ht+1(X?)] .

Summing over t and taking expectations, we obtain

E

[
T∑
t=1

Et[It(Xt)]

]
=

T∑
t=1

E[Ht(X
?)− Ht+1(X?)] ≤ E[H1(X?)] = H(X?) .

Using Cauchy-Schwarz and the concavity of the square root yields

E

[
T∑
t=1

√
Et[It(Xt)]

]
≤
√
T ·

√√√√E

[
T∑
t=1

Et[It(Xt)]

]
≤
√
H(X?)T .

Recalling that the entropy of any random variable supported on K atoms is upper bounded
by logK, the lemma follows.

We can now prove Lemma 5.

Proof of Lemma 5. Let αt ∈ ∆(K) be the posterior distribution of X? given Ht−1, with
αt,x = Pt(X? = x) for all x ∈ K. By the definition of mutual information, for all x ∈ K,

It(x) = It(Ft(x);X?) =
∑
y∈K

αt,y DKL(Qx,Qx|y) ,

where Qx is the distribution of Ft(x) conditioned on Ht−1, and Qx|y is the distribution of
Ft(x) conditioned on Ht−1 and the event X? = y. Applying Pinsker’s inequality on each
term on the right-hand side of the above, we obtain

1
2
It(x) ≥

∑
y∈K

αt,y
(
EQx|y [Ft(x)]− EQx [Ft(x)]

)2

=
∑
y∈K

αt,y
(
Et[Ft(x) | X? = y]− Et[Ft(x)]

)2

= Vart
(
Et[Ft(x) | X?]

)
= vt(x) .

Hence, vt(x) ≤ 1
2
It(x) for all x ∈ K, which implies that Et[vt(Xt)] ≤ 1

2
Et[It(Xt)] with

probability one. Combining this with Lemma 13, the result follows.

C Effective Lipschitz Property of Convex Functions

In this section we show that any convex function is essentially Lipschitz, and justify our
simplifying discretization made in Section 4. The required property is summarized in the
following lemma.
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Lemma 14. Let K ⊆ Rn be a convex set that contains a ball of radius r, and let f be a
convex function over K that takes values in [0, 1]. Then for a δ-net X of K with δ ≤ 1

4
rε2,

it holds that minx∈X f(x) ≤ minx∈K f(x) + ε.

In particular, for the unit interval [0, 1] it is enough to take a grid with K = 4
ε2

equally-
spaced points, to have an ε-approximation to the optimum of any convex function over [0, 1]
taking values in [0, 1]. In fact, to obtain the same ε-approximation property it is enough
to use a more compact grid of size O(1

ε
log 1

ε
), whose points are not equally spaced; see

Appendix D below for more details.
Lemma 14 is a consequence of the following simple property of convex functions, observed

by Flaxman et al. (2005).

Lemma 15. Let K ⊆ Rn be a convex set that contains a ball of radius r centered at the
origin, and denote Kε = (1−ε)K. Let f be a convex function over K such that 0 ≤ f(x) ≤ C
for all x ∈ K. Then

(i) for any x ∈ Kε and y ∈ K it holds that |f(x)− f(y)| ≤ C
rε
‖x− y‖;

(ii) minx∈Kε f(x) ≤ minx∈K f(x) + Cε.

Proof of Lemma 14. Via a simple shift of the space, we can assume without loss of generality
that K contains a ball of radius r centered at the origin. Let z = arg minx∈K f(x) and
y = arg minx∈K′ , where K′ = (1 − ε

2
)K. By the definition of the δ-net X , there exists a

point x ∈ X for which ‖x − y‖ ≤ δ. Since y ∈ K′ and x ∈ K, part (i) of Lemma 15 shows
that f(x) − f(y) ≤ 2

rε
δ ≤ ε

2
. On the other hand, part (ii) of the same lemma says that

f(y)− f(z) ≤ ε
2
. Combining the inequalities we now get f(x) ≤ f(z) + ε = minx∈K f(x) + ε,

which gives the lemma.

D Constructive Upper Bound in One Dimension

Here we describe an explicit and efficient one-dimensional algorithm for bandit convex opti-
mization with general (possibly non-Lipschitz) convex loss functions over K = [0, 1], whose
regret performance is better than the general Õ(T 5/6) bound of Flaxman et al. (2005) that
applies in an arbitrary dimension. The algorithm is based on the Exp3 strategy for online
learning with bandit feedback over a finite set of K points (i.e., arms), whose expected regret
is bounded by Õ(

√
TK); see Auer et al. (2002) for further details on the algorithm and its

analysis.
In order to use Exp3 in our continuous setting, where the decision set is [0, 1], we form an

appropriate discretization of the interval. It turns out that using a uniform, equally-spaced
grid is suboptimal and can only give an algorithm whose expected regret is of order Õ(T 3/4).
Nevertheless, by using a specially-tailored grid of the interval we can obtain an improved
Õ(T 2/3) bound; this customized grid is specified in the following lemma.

Lemma 16. For 0 < ε ≤ 1, define xk = ε(1 + ε)k for all k ≥ 0. Then the set Xε =
{xk, 1− xk}∞k=0 ∩ [0, 1] satisfies:

(i) |Xε| ≤ 4
ε

log 1
ε
;
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(ii) for any convex function f : [0, 1] 7→ [0, 1], we have minx∈X f(x) ≤ minx∈[0,1] f(x) + 2ε.

Proof. To see the first claim, note that for k > 2
ε

log 1
ε

we have xk = ε(1+ε)k ≥ ε exp(1
2
kε) > 1,

where we have used the fact that ex ≤ 1 + 2x for 0 ≤ x ≤ 1.
Next, we prove that for any y ∈ [ε, 1− ε], there exists x ∈ Xε such that |f(y)− f(x)| ≤ ε;

this would imply our second claim, as by Lemma 15 the minimizer of f over [ε, 1−ε] can only
be ε larger than its minimizer over the entire [0, 1] interval. We focus on the case y ∈ (0, 1

2
];

the case y ∈ [1
2
, 1) is treated similarly. Then, we have y ∈ [y, 1− y] so Lemma 15 shows that

for any x ∈ [0, 1] we have

|f(x)− f(y)| ≤ 1
y
|x− y| = |x

y
− 1| . (17)

Now, let k be the unique natural number such that xk ≤ y ≤ xk+1. Notice that 1 ≤ xk+1/y ≤
1 + ε, since xk+1/xk = 1 + ε. Hence, setting x = xk+1 in Eq. (17) yields |f(x) − f(y)| ≤
|x
y
− 1| ≤ ε, as required.

In view of the lemma, the algorithm we propose is straightforward: given a parameter
ε > 0, form a grid Xε of the interval [0, 1] as described in the lemma, and execute the Exp3
algorithm over the finite set Xε.

Theorem 17. The algorithm described above with ε = T−1/3 guarantees Õ(T 2/3) regret
against any sequence f1:T of convex (not necessarily Lipschitz) functions over K = [0, 1]
taking values in [0, 1].

Proof. Let x1:T be the sequence of points from Xε chosen by Exp3. By the regret guarantee
of Exp3, we have

E

[
T∑
t=1

ft(xt) − min
x∈Xε

T∑
t=1

ft(x)

]
= Õ(

√
TK) = Õ

(√
1
ε
T
)
,

where K = |Xε|, that according to Lemma 16 has K ≤ 4
ε

log 1
ε
. On the other hand, Lemma 16

also ensures that

min
x∈Xε

1

T

T∑
t=1

ft(x) ≤ min
x∈K

1

T

T∑
t=1

ft(x) + 2ε .

Combining the inequalities we get the following regret bound with respect to the entire K:

E

[
T∑
t=1

ft(xt) − min
x∈K

T∑
t=1

ft(x)

]
= Õ

(√
1
ε
T + εT

)
.

Finally, choosing ε = T−1/3 gives the theorem.
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