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Abstract

We prove that the Cramér transform of the uniform measura convex body irR"” is a
(1 + o(1))n-self-concordant barrier, improving a seminal result obtdeov and Nemirovski.
This gives the first explicit construction of a universalrierfor convex bodies with optimal
self-concordance parameter. The proof is based on basioajgoof log-concave distribu-
tions, and elementary duality in exponential families.

1 Introduction

Let £ C R™ be a convex body, namely a compact convex set with a non-eimiptyor. Our main
result is:

Theorem 1 Let f : R™ — R be defined fof € R” by

£(6) = log ( | et x>>dw) | o)

Then the Fenchel dugl* : int(K) — R, defined forr € int(K) by f*(z) = supyegn (¢, ) — f(6),
is a (1 + ¢, )n-self-concordant barrier oiC, with ¢,, < 100+/log(n)/n, for anyn > 80.

In Section2 we recall the definition of a-self-concordant barrier and its importance in mathe-
matical optimization. We give another point of view ¢t in Section3, where we show that it
corresponds to the negative entropy of a specific elementamanical exponential family fot.

For this reason we refer (' as theentropic barrierfor /C. Finally, we prove Theorerhin Section

4. Technical lemmas on log-concave distributions are gathar Sectiorb, where in particular
we derive the sharp bourtlX® < 2 for a real isotropic log-concave random variafle
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2 Context and related work

For aC3-smooth functiory : R® — R, denote byV?¢|-, -] its Hessian which we understand as a
bilinear form overR™. Likewise, byV3g|-, -, -] we denote its third derivative tensor. We first recall
the definition, introduced ihlesterov and NemirovsflL994, of a self-concordant barrier.

Definition 1 A functiong : int(XC) — R is a barrier for KC if

9(x) =K oo

A (C3-smooth convex function: int(K) — R is self-concordant if for alk € int(K), h € R",
Vig(@)h, b, h] < 2(V2g(x)[h, B])*2. )

Furthermore it isv-self-concordant if in addition for alt € int(K), h € R",

Vy(@)[h] < Vv V2g()[h, h]. 3)

Self-concordant barriers are central objects in the thebinterior Point Methods (IPMs). The
latter class of algorithms has revolutionized mathembtpéimization, starting with<armarkar
[1984. Roughly speaking, an IPM minimizes the linear functiog X — (c, z) (for some given

c € R") by tracing thecentral path(z(t)):c(,+~) Of a self-concordant barrigy for K, where
z(t) € argmin,(c,z) + 1g(x). The key property of-self-concordant barriers is that a step of
Newton’s method on the function — (¢, z) + $g(z) allows to move fromz((1 — 1/4/v)t) to
(approximately):(t), see e.gNestero\[2004 for more details. In other words i@ (,/v) steps of
Newton’s method o one can approximately minimize a linear function/on

From a theoretical point of view, one of the most importastits in the theory of IPM is Nes-
terov and Nemirovski's construction of thuaiversal barrier which is av-self-concordant barrier
that always satisfieg < C'n, for some universal consta6t > 0. Theoreml is the first improve-
ment (for convex bodies) over this seminal result: we shawithfact there always exists a barrier
with self-concordance parameter= (1 + o(1))n. Up to the second-order term, this improved
self-concordance parameter is also optimal, as one must:hav n for some convex sets (such
as a simplex or a hypercube, see [Proposition 2.8l&sterov and NemirovsiiL994]]). In fact,
as we explain next, we can prove that there always existsreebaith self-concordance param-
eterv = n + 1 (@andv = n for convex coney. This result was also independently obtained in
Hildebrand[2014], Fox [201 with a different construction refered to as tbanonical barrier
Thanks to its probabilistic interpretation the entropicrke is much easier to analyze than the
canonical barrier, and it can also be applied to problemsevtiee canonical barrier or the uni-
versal barrier would give suboptimal results (an exampggven in Sectior8.1). We discuss the
connections between these three barriers in more det&aflsation2.1.

From a convex geometry point of view the entropic barrier isatural object. Indeed, as
demonstrated in several recent works, the log-Laplacesfioam is a useful tool in proving in-
equalities related to high dimensional convex bodies. Aarautant-generating function associ-
ated with a given convex body, it provides an analytical yieut which is a central theme in

IDaniel Fox pointed out to us that this bound had been conjedtoy Osman Giller since the mid-Nineties.



proving bounds related to its distribution of mass (see &lgurtag [2004, Klartag and Milman
[2017, Eldan and Klartad2011]). These bounds often boil down to proving relations saisfi
by its derivatives, which are often of the same spirit3s [t seems conceivable that a better un-
derstanding of the entropic barrier may also be useful fovipg such inequalities. Curiously, a
function closely related to the canonical barrier was atsplicitly used inKlartag[2014 to prove
inequalities of the same spirit.

It is interesting to observe that the self-concordancegntgii.e., )) is dimension-free, while
on the other hand the dimension plays a key role in inequéity For the entropic barrier the
latter inequality is in a sense more delicate in that it estgdhe fact that the marginal of an
dimensional convex body has a strictly better behavior thane log-concavity. It is somewhat
mysterious that the effect of the dimension on the compfexitinterior Point Methods can be
derived as a consequence of such a delicate local behavior.

2.1 Universal, canonical, and entropic barriers for convexones

For a convex sekt’, we denote by° = {y € R" : sup,(y,z) < 1} the polar ofKC, and by
K* ={y € R" : inf,ec(y,z) < 0} the dual cone ofC (note the sign difference with respect to
the standard definition of a dual cone). Nesterov and Nerski®s/universal barrier is defined as
follows, for anyx € IC,

u(z) = logvol (K —x)°).

An important point in the theory of Interior Point Methodgh® so-callecnalytical centeiof /C,
defined as the minimizer of a self-concordant barrier. Asla sbte we observe that the analytical
center for the universal barrier corresponds to the wetiwkm Santal6 point in convex geometry.
For the rest of this sectiof denotes a proper convex cone. A functipnk — R that satisfies
g(tx) = g(x) —vlogtforanyx € KC,t > 0 is said to bes-logarithmically homogeneous. Itis well
known that aC?-smoothv-logarithmically homogeneous function satisfi€y, @nd furthermore
if g is v-self-concordant oifC then its Fenchel duaj* is v-self-concordant on the dual coA&
(seeNesterov and NemirovsfL994). We also recall that the characteristic functipp of K is
defined by, for any: € IC,

o (r) = /*exp(<9,x>)d9.

In Guler[1999 itis shown thatu(z) = logn! 4 log ¢(x). Thus it is immediate that the universal
barrier isn-logarithmically homogeneous, and using the argument weldp at the beginning of
Section4 (i.e., the connection with moments of a log-concave distiidn together with Lemma
2) one can show that the universal barrier also satistedrf other words we obtain the following
new result: the universal barrierisself-concordant on convex cones. This also implies that fo
any convex body there exist§a+ 1)-self-concordant barrier, simply by considering the urge¢
barrier on the conic hull of the convex body. Note that thitelaconstruction is different from
considering the universal barrier of the convex body itgeHich is C'n-self-concordant, for some
numerical constan®’, as proven by Nesterov and Nemirovski).

The definition of the entropic barrier given in Theordndoes not directly apply to convex
cones, in the sense that the Laplace transfgriis only defined ford € K* (instead off <
R™). Thus we naturally define the entropic barrégeon a convex cone as the Fenchel dual of the
logarithm of the characteristic function on the dual cohat tse(z) = (log @i+ )* (). In particular
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the entropic barrier on a cone is the Fenchel dual of the usav®arrier on the dual cone, and thus
it is also an-self-concordant barrier.

The third barrier for convex cones with optimal self-cordamce parameter is the canonical
barrierc, introduced inHildebrand[2014, Fox[2019. It is defined as the unique convex solution
to the Monge-Ampeére equati@y = log detV? f with the boundary conditiorfi|sx = +oo. This
equation is known to exhibit a unique solution on convex soibeit is generally not solvable on
(compact) convex bodies. The Riemannian metric inducedi&yganonical barrier is also known
as the Kahler-Einstein metric. To gain some intuition ie thefining equation of the canonical
barrier, observe that 1detV? f(z) is the log-volume of th®ikin ellipsoid £, () of f atz (recalll
that&s(z) == {y € R" : V2f(2)ly — 2,y — x| < 1} and that forf self-concordant one has
Vz € int(K), E¢(x) C K). In other words: is the unique function whose value at point is given by
the logarithm of the inverse volume of the Dikin ellipsoidiais point.

Perhaps surprisingly;uler[199€ showed that in the case of homogeneous convex cones the
three above barriers coincide (up to a constant). This adiomeis nontrivial, and somewhat mys-
terious to us. More generally the relations between theansal, canonical and entropic barriers
remain quite elusive. For example, another interpretatiothe canonical barrier is thatx) is
equal to the differential entropy of a centered Gaussiah wotariance given b¥?c(z), while as
we shall see in Sectiahione has that(z) is equal to the differential entropy of a natural log-affine
distribution (supported oi) whose covariance matrix is given B¥?e(z).

We conclude this discussion with a comment on the importahcenes. It is well-known that
for convex optimization one can assume without loss of giitgthat/C is a convex cone, which is
why several authors focused on this case. However theralegeapplications of the theory of self-
concordant barriers where it is important to have a (trdejdiarrier for convex bodies too, such as
in the sampling probleriiannan and Narayang2017. In Section3.1we briefly describe another
such application to an online learning problem, where intamttthe probabilistic interpretation of
the entropic barrier is essential (the described resuhaiane obtained with the universal barrier
or the canonical barrier).

2.2 Computational aspects

It is important to note that the universal, canonical, anttagric barriers are not (immediately
at least) relevant in practice. Indeed, the computatiofiaite¢o implement an IPM depends on
the complexity of calculating gradients and Hessians fer lthrrier. The key to the practical
success of IPM is that for important classes of convex setg tbxist self-concordant barriers with
efficiently computable gradients and Hessians. While thisertainly not immediately the case
for the entropic barrier, there is some hope: for instartseinverse Hessian corresponds to the
covariance matrix of a simply described log-concave distion (a similar statement is true for
the universal barrier, but the distribution is more comgiiel to describe). Furthermore, it can be
seen that given a membership oracl&tdhere exists a randomized algorithm which approximates
the value of this barrier at a given point in polynomial tinTéhis can be done by sampling from
the distributiorp, (defined below) via standard techniques (see eay.asz and Vempal2007).

Finally we note that even in the simplest situation whirés a polytope, it remained open
until very recently (ee and Sidford2014) to find an efficiently computable barrier with self-
concordance parameter nearly matching the one of the waivibarrier. We hope that our new
barrier will help making progress in finding efficient andioml barriers.
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3 A canonical exponential family

In this section we introduce and briefly study the canoniegloaential family{p,,0 € R™}
associated witlC. Ford € R”, letp,y be the probability measure @i whose density with respect
to the Lebesgue measureat R" is

exp((0, x) — f(0))1{z € £},

wheref is as in (). In other wordsf is the log-partition function for this exponential famii/e
denotexr(d) := Ex.,, X. Itis well-known (see e.g., [Section BJartag[2004]) that§ — z(0) is

a bijection betweef®R" andint(K) (we denoter € int(K) — 6#(x) for the inverse mapping, which
is ontoR™), and thatf is strictly convex(C'>-smooth, andV f(0) = x(#). With these observations
it is an elementary calculation to recover a basic dualisultefor exponential families (see e.g.
[Theorem 3.4.\Wainwright and Jorda[2004]), namely thatf*(z) = —H (py()), WhereH (p) is
the differential entropy op, defined by

H(p) = — /np(x) log p(z)dz.

Hence the namentropic barrierfor f*. Recall also thaV f*(z) = 6(z).

We will also need higher moments ¢fand f*. Let (6) := Ex.,, (X — x(0))(X — z(0)) T,
andT'(0) := Ex.,, (X —z(0)) ® (X —z(0)) ® (X — x(#)). Itis again an easy exercise (partly
done inKlartag[2004) to show thatV? f(0) = (0), V3 f(0) = T'(0) andV? f*(z) = 2(0(x)) "
(see for example [(2.15)Jemirovski[2004] for the latter equality).

We summarize the above in a lemma.
Lemma 1 The functionsf, f* satisfy the following.

(i) The functionf is strictly convex ofR™ and the functiory™ is strictly convex in the interior of
K.

(i) The functiond(-) = V f*(-) is a bijection between the interior & andR".
(iif) One has for all§ € R™,
V2£(0) = Exnp, (X — 2(0)(X — 2(6))" = 2(0). (4)

and
V2F(0) = Exep, (X — 2(0)) © (X — () © (X — () = T(6). (5)

(iv) One has for allr € int(K),

-1

V(@) = (PH0) " = (Br, (X —0)(X = 0)T) " =20@)" ©)

Next we describe an application where the connection betwlee entropic barrier and the
canonical exponential famil{p, } is crucial.



3.1 An application to the linear bandit problem

We consider a sequential extension of linear optimizakowwn asonline linear optimizationlt
can be described as the following sequential game: at emehstiep = 1, ..., 7', a player selects
an actionz; € K, and simultaneously an adversary selects a cost vectaer K° (whereK° is
the polar ofKC). Both the action and the cost are selected as a functioredfitory(x;, cs)s<,
and possibly external randomness (independent for theepkayd the adversary). The player's
perfomance at the end of the game is measured througbdhet

T T

RT = Z<Ct7$t> — I;I:Ilelllél ;(Ct,JZ‘),

t=1

which compares her cumulative cost to the best cumulatigestte could have obtained in hind-
sight with a fixed action, if she had known the sequence ofscplstyed by the adversary. This
problem has a long history, and a wealth of applications,&sgeCesa-Bianchi and Lugof2004.

A far more challenging scenario is when the player only rexen limited feedback on the cost
function. Of particular interest is tHeandit feedbackwhere the player only observes her incurred
cost(c;, ;) € R, rather than the full cost vecter € R™. SeeBubeck and Cesa-Bianc[i017 for

a recent survey on bandit problems. In the following we show frheoreml gives a new point
of view on some known results for online linear optimizatwith bandit feedback.

Since the seminal work gfbernethy et al[2009 it is known that self-concordant barriers play
an important role in the design of good player’s stratedwsre precisely the latter paper proposed
to run Mirror Descent(which was originally introduced inlemirovski and Yudif{1983) with a
self-concordant barrier as the mirror map. In addition ® ¢hoice of a barrier, one also needs
to choose a sampling scheme, that is a mapping from actiodgstiobutions over actions. A
key insight of Abernethy et al[2004 is that the barrier and the sampling scheme should “match”
each other, in the sense that the Hessian of the barrier glheuapproximately proportional to
the inverse covariance of the sampling schemeilinrnethy et al[2004 this is achieved with a
sampling scheme supported on the Dikin ellipsoid, and thieyethat with the universal barrier
this yieldsER; = O(n*?\/TlogT). By using the entropic barrier together with the sampling
schemer — py(,), it is easy to see that one can improve the bouridlte = O(n\/T'logT'), thus
matching the state of the art bound@®fibeck et al[2017 (which, up to the logarithmic factor,
is the best possible universal bound). The improvement @liernethy et al[2004 is due to the
fact that the sampling schemg,, makes a much better use of the available “space” aratthedn
the Dikin’s ellipsoid sampling. We also note thatbeck et al[2017 obtained their bound via
exponential weights on a discretization/6f while it is easy to see that Mirror Descent with the
entropic barrier and its associated sampling scheme g@mwtlesponds to continuous exponential
weights, a strategy introduced @rover[1997] for the full information case. In both cases one has
to use the John exploration described®imeck et al[2017 to obtain the bound mentioned above,
though one can envisage more efficient alternatives sudioas tlescribed inazan et al[2014].

4 Proof of Theoreml

SinceVf(R™) = int(K), a basic property of the Fenchel transform is tliatis a barrier for
K. Next we show thaff* is self-concordant oilC by proving thatf is self-concordant otfR™
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(the implication then follows from [Section 2.2\emirovski[2004]). By definition, and using
equation §) and 6), f is self-concordant if for ang, h € R",

Exepy (X — 2(6), h)* < 2 (Exap, (X — 2(6), 1)?)"7

Noting thatp, is a log-concave measure one immediately obtains the alopagien with a worse
numerical constant from [(2.21),edoux[2007]]. The numerical constart can be obtained via
the following lemma, whose proof can be found in Secton

Lemma 2 Let X be a real log-concave and centered random variable. Then
EX? <2 (EX?)"?.

We now move to the main part of the proof, which is to bound #iE®ncordance parameter
v of f* by (1 + ,)n. By settingh = (V2 f*(x))~/?w, equation 8) becomes

(V2 f*(2) "2V £ (), w) < /v(w,w).

and therefore,3) is equivalent to

(V21 (@) V@), V() < v
Thus, according to equatio)( we have to show that for arfye R”,
(X(0)0,6) < (1+¢ey,)n.

In other words, considering the random variable= <ﬁ,X>, with X ~ py, the proof will be

concluded by showing that
n

161>
We denote by the density ofY’, which is proportional to

Var(Y) < (1+en). @)

Vol,—y (K N {y0/110]] + 6™ }) exp(yl10])- (8)

At this point we observe that, without loss of generality, @& assume thatis a C'*°-smooth
function in the interior of its support. Indeed, consideeguence; C K, C ... of convex bodies
with a C'*°-smooth boundary which satisfy, K, = K, and Ietpff) be the canonical exponential
family associated witliC,.. Then for allf we have thapf,k) converges weakly tpy, which implies
that the covariance matrix @ﬁk) converges (in operator norm) ¥{#) ask — oo. Therefore, it is
enough to verify equatiorvj for p((,k). By the smoothness and compactnesk pfthe marginap
will be a smooth function on its support.

The most technical step of the proof is the following lemmahick relies on the log-concavity
properties of thé-dimensional marginals of the uniform measurekgrand which states that is
"locally” sub-Gaussian. We give a proof of this lemma at thd ef this section.



4/ Tnlog(n) _n 1 .
Lemma 3 Let Yo c al"gmaxyeR p(y), M = W’ and 02 = WW There exists
¢:[-M,M] — [0,1], increasing or— 1/, 0], decreasing o0, M|, and with¢(0) = 1, such that

foranyy € [-M, M|,

oy +10) = P(u)C(y) exp (—%) |

The above lemma implies that, conditionally [dh— y,| < M, the random variablg” — y,| is
stochastically dominated By (0, o2)|. Indeed, the density dt'|, conditioned onY — yo| < M,
with respect to the law df\V (0, o) | is equal tag(y) := Z({(y) +¢(—y))1,<n for a normalization
constantZ. Since({(y) + ((—y)) is non-increasing, we learn that there exists 0 such that
q(y) > 1fory € [0,t] andq(y) < 1 for y > t which confirms the assertion.

This implies in particular

E(|Y —yol? | |Y — 5ol < M) < 0. 9

It remains to show that the above conditional variance boonudies (7). For this we use another
technical result, whose proof can be found in Section

Lemma4 Lete > 0, and X a real log-concave random variable with density Letz; <
xo < z2 be three points satisfying(x;) < eA(zg) and A(z2) < eA(xy). Then, withe(e) =

3
2 2 2
(1 + log(1/€)> <1 + log(1/¢) + log2(1/€))' one has

(1 —2c(e)elog?(1/e)) Var(X) < /1‘2 (z — x0)*Mx)dz

1

< E(|X — l'0|2 | X € [1'1,1'2]).

Thanks to Lemma&, we know that

max(p(yo — M), p(yo + M)) < (l) ( )

0 P(Yo),

7 7log(n)
(12

and thus Lemmd together with §) imply that, withe = (2) :

(L-@)vmoqga%

n

which proves 7).
We now conclude the proof of Theorehwith the proof of Lemma3.
Proof Let A be thel-dimension marginal of the uniform measure/oin the directiorf/||6||, that
isfory € R,
Ay) = Vol,,—1 (K N {y6/]|0] + 6*})
Vol(K) '

We already observed i8) that

Aly) exp(y|l6]])
A(s) exp(s||6]])ds

p(y) = T

R
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It will be useful to consider the functiongy) = log A(y) and

v(y) =log p(y) = u(y) + yl|0]| — log (/R A(s) exp(SIIQII)dS) :

Since we assumed théat is a C*°-smooth domain, it is clear that and p are alsoC> on the
interior of their supporia, b], where

a=inf{s € R: A(s) >0}, b=sup{s € R: A(s) > 0}.

The key observation is that, thanks to the Brunn-Minkowslaquality, A is n-concave on its
suppport (see, e.ggorell [1979), or in other words\'/" is a concave function on the interval
(a,b). We now obtain a simple differential inequality by using fbowing lemma, whose proof
can be found in Sectios

Lemma5 Lety € C2%((a,b)), and((x) = log ¢(z). Then
¢ isn-concave in(a,b) < ¢" < —1(¢")*in (a,b).
The result of the lemma directly yields

V() = () < — () = (/) — 0]

It is useful to rewrite the above inequality in termswofy) := v'(y + vo) + n'_ﬂ'f;ﬁ’y, y € (a',b),

with @’ = a — yo, b = min(b — yo,n/[|0||), in which case one easily obtains

—w(y) >+ <w(y)2 - 2w(y)w) :

n n—6lly

Observe thaty(0) = 0, asy, is a local maximum of the smooth functien A simple application
of Gronwall’s inequality teaches us thatis non-positive in the interval, ') and non-negative in
the interval(a’, 0]. We conclude that, foy € (', ),

oy + 10) — v(yo) = /O " (s + yo)ds

V) [
— —ds + w(s)ds
/on—ueus L )

Y
— [16lly + nlog(1 — [|0]ly/n) + / wis)ds
0

_ 7log(n) y? 10ly | 7log(n) v
- —<1— . )zn/r\er\”"h( el >+/0w<5>d8’

whereh(z,e) = = + (1 — e)x—; + log(1 — z). For anye € (0,1), z — h(z,¢) is increasing on
[—e/(1 — ¢),0] and decreasing off), 1). In particular, denoting” = min(a’, /7nlog(n)/||6])
anda? as in the statement of the lemma, we showed that there exfistetion¢ : (a”,b') — R_,
increasing or{a”, 0), decreasing of), t'), with £(0) = 0, and such that

2

o(y + 90) = (o) = 55 +€().

This easily concludes the proof. [ |




5 Technical lemmas

In this section we prove Lemnig 4, 5 that were used in the preceding section to prove Theorem
1. In each case we first restate the lemma before going intortied.p

Lemma 2 Let X be a real log-concave and centered random variable. Then

EX? <2 (EX?)"?.
Proof We may assume that is supported in a compact intervat M, M]. Indeed, if that is not
the case, we can defing, to have the law ofX conditioned on the interval-k, k]; if the result
for the lemma holds for ever¥,, we may take limits and deduce its correctnessXor
Defineg(z) = 1 — z2. Denote byP, the family of log-concave probability measuresn R,
supported ori— M, M| which satisfy [ gdp > 0. Let U : P, — R be a convex functional. Ac-
cording to [Fradelizi and Guedqr2004 Theorem 1, Theorem 2], which characterizes the extremal
points of the sef’;, the supremursup,, p, U () is attained either on a Dirac measugeor some
x € R or on a measurg, which satisfies the following:
(i) The density ofu is log-affine on its support, hence there exisi € [—M, M],a < bandc € R
such that

dp 4
= 771, 5, 10
dx la,0]€ (10)

whereZ is chosen such thatis a probability measure.
(i) One has/ gdu = 0.
(iii) There is¢ € {—1,1} such that for all: € [a, b] one hag ff gdp > 0.

Consider the linear functiondl(1:) = [(2*—3x)du. Itis clear that the statement of the lemma
will follow if we establish that
sup W(p) < 2. (11)
pePy
(note that for centered measuyest (1) is exactly [ z3du(z)). Now, itis clear that ifu is a Dirac
measure satisfying gdu. > 0, we have that

U(p) < sup (z° —3z) =2.
z€[—1,1]

Therefore, according to the above, it is enough to verify tha bound of equatioriL(l) holds for
measures of the formL(), which satisfy the constraint

/xzdu(x) =1, (12)

and such that either1 < a < 1or—1 < b <1 (this is a direct consequence of (iii) above).
In other words, the lemma will be established if we show that

b
H(a,b,c):= Z(a,b, c)_l/ (2% — 3x)e“dr < 2 (13)

a
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for all a, b, ¢ such that eithefa| < 1 or |b| < 1 and such that
b
G(a,b,c) :== Z(a,b, c)_1/ (2% — 1)e“dx = 0. (14)
We will continue the proof under the assumption that< 1. The proof under the assumption

|b| < 1is similar.
A calculation gives

b cb _ _ca
Z(a,b,c) = / ety = (15)
a C
and by integrating by parts, we have that
H(a,b,c) = ———— (2 — 3z)e“ |’ — é/?)(f — 1)e“dx (16)
Y cZ(a,b,c) “ cZ(a,b,c)
15,14 (b* — 3b)e® — (a® — 3a)e

ecb — eca

It will be useful to set = e“(*~%) and, respectively, definda, b, r) = log(r)/(b — a).

Next, note that for any € [—1, 1] and anyr > 0, one has7(a, 1, ¢(a,1,7)) < 0. Moreover,
observe that:(a, b, ¢(a, b, 7)) is continuously increasing with respectitovhenb > 1. Thus, by
the intermediate value theorem, there exists a unique paint such thaiz(a, b, ¢(a, b, r)) = 0.
Let us try to obtain a formula for this point. A straightfomslecalculation yields

be(be —2) +2 — ?)eb — (ac(ac — 2) + 2 — ?)e™
c2 (ebc _ eac)

G(a,b,c) = (
which means that the constraifita, b, ¢) = 0 is equivalent to

2
log(r) log(r) log(r)
ac(ac—2)+2—c2_abg—a <abg—a _2)+2_<bg—a>
be(be — 2 +2—C2— log(r) log(r) log(r) 2
(be —2) s (plot) — 9) 4+ 9 — (o))

—a b—a
Or in other words

r (blog(r) (blog(r) — 2(b — a)) + 2(b — a)* — log*(r))
= alog(r) (alog(r) — 2(b —a)) + 2(b — a)* — log?(r).
At this point, we see thdi can be expressed as a function(efr) as a root of a quadratic

equation. Out of the two possible roots of this equations iasily checked that exactly one is
greater tham. We get the explicit formula

_ log(r) (sgn(r — 1)g(a,r) —a(r + 1)) + 2a(r — 1)

b="b(a,r): ()

)

where

gla,r) = \/— (a2 —2)(r —1)2 +r (a2 47 —1)log?(r) — 2r(r — 1) log(r),
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and
q(a,r) = (2r +rlog*(r) — 2rlog(r) — 2).

Using this formula, proving equatiod§) under the constrainfL)) amounts to showing that
H(a,b(a,r),c(a,bla,r),r)) <2, Y(a,r) e [—1,1] x (0,00). (17)
Plugging the definition of(a, r) andc(a, r) into (16) gives
r(b(a,r)® — 3b(a,r)) — (a® — 3a)

r—1

H(a,r):= H(a,b(a,r),c(a,bla,r),r)) =

It turns out thatH (a, ) is monotone decreasing in bathandr in the domain[—1, 1] x (0, c0)
(up to a removable discontinuity dr-1, 1] x {1}). Moreover, it is straightforward to check that
lim, ,o+ H(—1,r) = 2. These two facts complete the proof of inequality)( We omit further
details of this proof. [ |

Lemma4 Lets > 0, and X a real log-concave random variable with density Letz; <
o < zo be three points satisfying(z,) < eA(xo) and A(z3) < eA(x). Then, withe(e) =

3
2 2 2
<1 + log(l/a)) (1 + log(1/e) + log2(1/€))' one has

(1 —2c(e)elog?(1/e)) Var(X) < /1‘2 (z — 20)*N(x)dw

x1

< E(|X — l’0|2 | X e [.Tl,l’g]).

Proof We only have to prove the first inequality, as the second oobususly true. By rescaling
and translating, we can assume without loss of generabtyrth= 0 andE(X?) = 1. Under these
conditions we will prove the slightly stronger following tmad:

2 2\’ 2 2 )

We prove that in fact

+00 , 2 3 2 2 2
L x)\(x)dxg(1+m> (1+log(1 St /E))slog (/). (19)

and an identical computation yields the same upper bourttiédntegral or{—oc, 4], which then
concludes the proof oflg).
First note that, by log-concavity of, one has for any: > x,,

z9

;(fz)) . (i%) e

Using [Lemma 5.5 (a),ovasz and Vempalf2007] one has\(0) < 1, and thus\(z2) < ¢, which
together with the above display yields

r — T2

AMa) < eexp (— log(1 /g)) .

T2

12



This directly implies that

[ e (W) (1 s * i) s

Finally, using [Lemma 5.7, 0vasz and Vempalf2007] it is easy to see that without loss of gen-
erality one can assume that < log(1/¢) + 2, and thus the above display directly yieldS). H

Lemma5 Lety € C?((a,b)), and((x) = log ¢(z). Then
¢ is n-concave in(a, b) < ¢ < —1(¢")*in (a,b).
Proof Denotey(z) = p'/"(x) andé(x) = log i (x) = L¢(z). Then

T n

_Y@) _ Y(@)? (@ (@)
(x)  Y(e)? ()

Soy'/™ is concave if and only if” < —(¢")? which proves the fact. |

" () — ¢ (x)>.
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