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Abstract
We study the classical problem of prediction with expert
advice in the adversarial setting with a geometric stopping
time. In 1965, Cover gave the optimal algorithm for
the case of 2 experts. In this paper, we design the
optimal algorithm, adversary and regret for the case of
3 experts. Further, we show that the optimal algorithm
for 2 and 3 experts is a probability matching algorithm
(analogous to Thompson sampling) against a particular
randomized adversary. Remarkably, our proof shows that
the probability matching algorithm is not only optimal
against this particular randomized adversary, but also
minimax optimal.

Our analysis develops upper and lower bounds si-
multaneously, analogous to the primal-dual method. Our
analysis of the optimal adversary goes through delicate
asymptotics of the random walk of a particle between
multiple walls. We use the connection we develop to ran-
dom walks to derive an improved algorithm and regret
bound for the case of 4 experts, and, provide a general
framework for designing the optimal algorithm and ad-
versary for an arbitrary number of experts.

1 Introduction
Predicting future events based on past observations, a.k.a.
prediction with expert advice, is a classic problem in
learning. The experts framework was the first framework
proposed for online learning and encompasses several
applications as special cases. The underlying problem is
an online optimization problem: a player has to make a
decision at each time step, namely, decide which of the k
experts’ advice to follow. At every time t, an adversary
sets gains for each expert: a gain of git for expert i at
time t. Simultaneously, the player, seeing the gains from
all previous steps except t, has to choose an action, i.e.,
decide on which expert to follow. If the player follows
expert j(t) at time t, he gains gj(t),t. At the end of each
step t, the gains associated with all experts are revealed
to the player, and the player’s choice is revealed to the

∗Microsoft Research. One Memorial Drive, Cambridge, MA 02142.
ngravin@gmail.com.
†Microsoft Research. One Microsoft Way, Redmond, WA 98052.

peres@microsoft.com, balu2901@gmail.com.

adversary. In the finite horizon model, this process is
repeated for T steps, and the player’s goal is to perform
(achieve a cumulative gain) as close as possible to the best
single action (best expert) in hindsight, i.e., to minimize
his regret R

T
:

R
T

= max
1≤i≤k

T∑
t=1

git −
T∑
t=1

gj(t),t.

Apart from assuming that the git’s are bounded in [0, 1],
we don’t assume anything else about the gains. Just
as natural as the finite horizon model is the model with
a geometric horizon: the stopping time is a geometric
random variable with expectation 1

δ . In other words,
the process ends at any given step with probability δ,
independently of the past. In this paper, we study both the
finite horizon model and the geometric horizon model.

Questions and motivation. Given the breadth of
applications and the significance of the experts problem
in online learning, in this work we seek to understand and
crisply characterize the structure of the optimal algorithm
and the structure of the worst case input sequences. We
ask:

1. What is the precisely optimal algorithm and regret
values?

2. Does the optimal algorithm have a succinct and
intuitive description (even for 2 experts)?

3. What are the hardest (adversarial) sequences of ex-
perts’ gains and do they follow a succinct pattern?

Our motivation in exploring these questions include
the following.

1. Half a century after Cover [9] described the optimal
adversary for the case of 2 experts, we still do not
have general insights about the structure of the opti-
mal algorithm or the optimal adversarial sequences.

2. Several applications of the experts paradigm involve
dealing with a small constant number of experts.
What amount of gain can the optimal algorithm
get over the multiplicative weights algorithm for a
constant number of experts?

ar
X

iv
:1

40
9.

30
40

v5
  [

cs
.L

G
] 

 1
1 

Ju
l 2

01
6



3. The problem is theoretically clean and challenging:
a priori it is not even clear if the algorithm and
adversary are succinctly describable. It could well
be that the optimal algorithm’s actions depend on
various aspects of history in a manner that cannot be
succinctly described.

Notation: We fix some notation before proceeding.
We denote by Git the cumulative gain of expert i after
t steps. Namely, Git =

∑t
s=1 gis. We show that in the

worst-case instance there is no benefit in using gains other
than 0 and 1, so we restrict to git ∈ {0, 1}. The notion of
optimality used for the experts framework is the minimax
regret obtained against all possible adversarial sequences
of experts’ predictions, the adversary for short. We
study the optimal adversary that inflicts maximal regret
(maxmin) against all possible algorithms.

Our contributions Balanced adversary: Our first gen-
eral insight about the structure of the optimal adversary
is that it is balanced across all experts at every time
step, i.e., irrespective of the experts’ past gains, the
adversary sets equal expected gain for each expert in
this step. This insight is pervasive in this paper and
greatly simplifies the problem in that it lets us describe
the optimal (minimax/maxmin) regret without making
any reference to the optimal algorithm. Indeed, every
algorithm performs equally well against the maximin
optimal adversary that equalizes the expected gains of
all experts1, and gets a gain of the average over all
the k experts of the cumulative gain, namely, 1

k |G|1.
Given this, the adversary’s problem of maximizing regret
can be reduced to maximizing the difference between
maximum and average of the cumulative gains vector,
i.e., |G|∞ − 1

k |G|1.

Maximizing the number of collisions between the
leading and second best expert: Our second insight about
the adversary’s structure is that its objective, namely,
|G|∞− 1

k |G|1 never changes in expectation, except when
there is no unique expert with the largest cumulative
gains. This is because, the maximim optimal adversary
being balanced implies that all experts’ cumulative gains
increase equally in expectation, including the cumulative
gain of the expert who is currently leading. Thus the
two quantities |G|∞ and 1

k |G|1 increase equally in

1We clarify that this doesn’t mean all algorithms get the same
minimax regret. It is only the maximin optimal adversary that is
balanced and not every adversary. In other words, if the adversary
is maximin optimal, all algorithms are equal. But if the algorithm is
not minimax optimal, the optimal adversary for that algorithm is not
maximin optimal and hence not necessarily balanced, and will inflict a
larger regret on the said algorithm than a balanced adversary does.

expectation implying that a balanced adversary will
find no way to increase its objective in expectation.
The only time when this breaks is when the leading
expert is not unique: this is because in this situation,
the probability that the maximum cumulative gain
increases is the probability of the cumulative gain of
any one of the leading experts getting increased. Given
this, the adversary’s problem essentially boils down
to the crisp and challenging probability question of
constructing gain sequences that maximizes the number
of collisions between the leading and the second leading
expert. Namely, construct a balanced random walk in
Zk with the objective of maximizing the number of col-
lisions between the largest and second largest coordinates.

Designing the random walk that maximizes the number
of collisions: We use this insight about the adversary’s
problem being a controlled random walk to construct
such walks and hence succinct adversaries for the case of
k = 2 and 3 experts (this also gives a simple alternative
proof for Cover’s optimal adversary). While the case of
k = 2 is special, the progress for k = 3 crucially relies
on the above mentioned insights. While constructing
the optimal such random walk for general k is still
complicated, we believe that this reduction is powerful
and gives a useful starting point for thinking about
possible candidates that come close. For instance, the
“comb adversary” described later in the introduction, has
a simple but non-trivial structure that was inspired from
the number-of-collisions characterization.

Probability matching algorithm: We establish a strong
connection between the structure of the optimal algorithm
and the optimal adversary. Namely, the optimal algorithm
is a probability matching algorithm (analogous to the
popular Thompson sampling procedure) that follows each
expert with the probability that this expert finishes as the
leader, when the sequence of gains is set by the optimal
adversary .
We describe our results in detail below.

1. Two experts. The optimal adversary, designed
by Cover, chooses one expert uniformly at random, sets
a gain of 1 for that expert, and a gain of 0 for the other.
We give a very simple characterization of the unique op-
timal algorithm in both the finite horizon and the geo-
metric horizon models, namely, follow each expert with
the probability that he finishes as the leading expert2 (the
one with maximum cumulative gains), when gains are set

2If there is a tie in the finite horizon model, we consider the leader to
be the unique expert who did not have any expert ahead of him in the last
two steps. In the geometric horizon model ties are just broken uniformly
at random.



by Cover’s optimal adversary. Further, this probability
of finishing as a leading expert has a simple analytical
expression in the geometric horizon model, given in Al-
gorithm 1 (see Theorem 4.1). The finite horizon has a
simple expression too (see Theorem 3.1). The optimal

algorithm achieves a regret of
√

T
2π in the finite horizon

model, and 1
2

1√
2δ

in the geometric horizon model, respec-
tively as T → ∞ and δ → 0 (see Theorem 4.1 for the
precisely optimal regret for every δ).

Algorithm 1 : Optimal Algorithm for Geometric Horizon
Model with Two Experts

1: Initialize ξ =
1−
√

1−(1−δ)2
1−δ ∼ 1−

√
2δ as δ → 0

2: Convention: Leading expert (larger cumulative gains)
is numbered 1, and lagging expert is numbered 2

3: for Each time step t till the game stops do
4: Compute cumulative gains for both experts: G1t =∑t

s=1 g1s, and G2t =
∑t
s=1 g2s

5: Let d = G1t −G2t. Note that by definition d ≥ 0
6: Follow the leading expert with probability he will

finish as leader, namely, p1(d) = 1− 1
2ξ
d

7: Follow the lagging expert with probability he will
finish as leader, namely, p2(d) = 1

2ξ
d

8: end for

2. Three experts. We derive the precisely optimal
algorithm, adversary and regret values for three experts
in the geometric horizon model (see Theorem 4.2). The
optimal regret as δ → 0 is asymptotic to 2

3
1√
2δ

. The
optimal adversary (as δ → 0)3 is as follows: it pairs up
the middle and the lagging experts, and together this pair
always disagrees with the leading expert. That is, the git’s
are of the form (0, 1, 1) or (1, 0, 0) where the ordering
in the tuple captures the leading, middle and lagging
experts (and do not refer to the identities of experts). The
optimal algorithm is again a simple probability matching
algorithm to the optimal adversary, that follows each
expert with the probability that this expert finishes in the
lead.

The case of 3 experts is significantly more compli-
cated than 2 experts. In particular, while the optimal ad-
versary for 2 experts was discovered back in 1965 ([9]),
the optimal adversary for 3 experts was not known so far.
The relative coordinate system we introduce, that num-
bers experts according to their cumulative gains, provides
a convenient way to describe the optimal adversary.

3. Arbitrary number of experts. All our basic re-
sults continue to hold in both geometric and finite hori-

3The optimal adversary for all values of δ (asymptotic or not) is
almost identical to this. We describe this in Section 4.

zon models. I.e., the optimal adversary (i) plays only
git ∈ {0, 1} (and not in [0, 1]), (ii) is balanced, (iii) at
every step plays only one of the finitely many vertices
of the convex polytope of balanced distributions. Prior
to this work, given T and k, an algorithm for computing
the precisely optimal adversary was not known. Result
(iii) reduces the search space of the optimal adversary to
finitely many balanced distributions, and thereby enables
us to write a mundane dynamic program of size O(T k).
Note that even after realizing that git ∈ {0, 1} without
loss of generality, the adversary has infinitely many bal-
anced probability distributions available to choose from in
every step, and thus, a priori it is not clear how to write a
meaningful dynamic program.

Through this dynamic program, we found that the op-
timal adversary for k ≥ 4 does not always have a simple
description like for k = 2, 3. Further, we observe that
unlike k = 2, 3, for 4 experts, the optimal adversary is al-
ready δ-dependent, and its actions at a given configuration
of cumulative gains depend on the exact values of cumu-
lative gains and not just their order. Nevertheless, inspired
by results from this dynamic program, we conjecture that
there is a simple adversary (“comb adversary”) which is
asymptotically (in δ or T ) optimal: split experts into two
teams {1, 3, 5, . . . } and {2, 4, 6, . . . } and increment the
gains of all experts in exactly one of these teams chosen
uniformly at random. We analyze the comb adversary for
k = 4 and show that as δ → 0, it inflicts a regret of
π
4

1√
2δ

(see Theorem 5.2). We observed that for reason-
ably small values of δ, the optimal regret converges to our
lower bound of π

4
1√
2δ

indicating that the comb adversary
is indeed asymptotically optimal for k = 4.

Remarks

1. In this work, we develop the optimal algorithm and ad-
versary simultaneously, thereby, completely bridging
the gap between upper and lower bounds for a small
number of experts (our analysis obtains the optimal re-
gret for k = 2, 3 experts for every value of δ, and not
just asymptotically as δ → 0).

2. Although the optimal algorithm for k = 2, 3 experts
does a probability matching with respect to a particu-
lar adversary it turns out that this algorithm is not only
optimal against this adversary, but also minimax op-
timal against all possible adversaries. Our algorithms
for k = 2, 3 experts (also our conjectured optimal al-
gorithm for k experts) are simple and practical. One
can implement our algorithms as follows: from any
configuration of cumulative gains simulate the “comb
adversary” till the end of the process and follow the
expert who finishes in the lead. Simulating the comb
adversary simply entails flipping a coin in every step



and incrementing by 1 the gains of the respective (odd
or even numbered) team of experts.

3. The comb adversary that we introduce and analyze
presents a simple to describe random process. But even
for k = 3, 4 analyzing this process requires an under-
standing of non-trivial aspects of simple random walk
(see Theorems 5.1 and 5.2). Developing a method to
analyze this process for general k is a clean and chal-
lenging question on random walks.

Comparison with Multiplicative Weights Algo-
rithm. It is known that for general bounded gains the
widely used multiplicative weights algorithm (MWA), ob-

tains a
√

T ln k
2 regret and this regret is asymptotically

optimal as both {T, k} → ∞ (see Cesa-Bianchi et al.
[8] and its generalization by Haussler et al. [14]). How-
ever, asymptotic analysis in k does not shed much light
on the structure of the optimal algorithm and the hardest
sequences of experts’ gains: this is because the quantity√

T ln k
2 is insensitive if we employ 100 times as many ex-

perts and it is not optimal for a small (constant) number of
experts. In this paper, we show that the optimal algorithm
is not in the family of multiplicative weight algorithms.
Namely, we show that the optimal algorithm cannot be
expressed as a MWA or even as a convex combination of
MWAs. We refer the reader to Appendix D for a detailed
discussion and proof.

Related work. In this work, our goal is to iden-
tify the structure of the optimal algorithm and the adver-
sary via a precise and efficient algorithmic description.
There are recent works that characterize the optimal al-
gorithm/adversary and regret as the supremum or infimum
of some stochastic process, rather than give an efficient al-
gorithmic description. There is also a significant body of
recent work that either identify approximately optimal al-
gorithms/adversaries, or, identify special cases where the
optimal adversary can be precisely described. All of these
relaxations allow for solving more general frameworks.
But this body of work doesn’t identify the precisely opti-
mal algorithm/adversary/regret for the classical setting. In
contrast, in our work we show that probability matching
is precisely optimal, and we identify the precisely optimal
adversary for the classical setting. We discuss all these
lines of recent work after discussing some classics in this
area.

As mentioned earlier, for the exact setting we con-
sider in this work, the work of [9] is most closely related
as it gives the optimal adversary and algorithm for the case
of 2 experts.

Classic works: The book by Cesa-Bianchi and Lu-
gosi [7] is an excellent source for both applications and
references. The prediction with experts advice paradigm

was introduced by Littlestone and Warmuth [17] and Vovk
[26]. The famous multiplicative weights update algorithm
was introduced independently by these two works: as the
weighted majority algorithm by Littlestone and Warmuth
and as the aggregating algorithm by Vovk. The pioneer-
ing work of Cesa-Bianchi et al. [8] considered {0, 1} out-
come space for nature and showed that for the absolute
loss function `(x, y) = |x− y| (or g(x, y) = 1− |x− y|),
the asymptotically optimal regret is

√
T ln k

2 . This was
later extended to [0, 1] outcomes for nature by Haussler

et al. [14]. The asymptotic optimality of
√

T ln k
2 for

arbitrary loss (gain) functions follows from the analysis
of Cesa-Bianchi [6]. When it is known beforehand that
the cumulative loss of the optimal expert is going to be
small, the optimal regret can be considerably improved,
and such results were obtained by Littlestone and War-
muth [17] and Freund and Schapire [11]. With certain
assumptions on the loss function, the simplest possible al-
gorithm of following the best expert already guarantees
sub-linear regret Hannan [13]. Even when the loss func-
tions are unbounded, if the loss functions are exponential
concave, sub-linear regret can still be achieved Blum and
Kalai [4].

Recent works: [18] consider a setting where the ad-
versary is restricted to pick gain vectors from the basis
vector space {e1, . . . , ek}. For this set of gain vectors,
the only balanced adversary is to pick a random expert in
every step. Since our analysis shows that the optimal ad-
versary is balanced without loss of generality, it is imme-
diate that a uniformly random adversary is optimal in this
setting. [2] consider a different variant of experts prob-
lem where the game stops when cumulative loss of any
expert exceeds given threshold. Here too there is a clear
candidate for the optimal adversary: the same as in Luo
and Schapire, namely, pick an expert uniformly at ran-
dom at every step. They specify optimal algorithm in
terms of the underlying random walk. The notable dis-
tinction of both [18, 2] from our setting is that their ad-
versary is simple and static, i.e., it does not depend on
the prior history. The random process to be analyzed in
their setting is a standard random walk in Zk, while the
random process in our setting even for k = 3 is non-
trivial. [1] consider general convex games and compute
the minimax regret exactly when the input space is a ball,
and show that the algorithms of [27] and [15] are opti-
mal w.r.t. minimax regret. [3] provide upper and lower
bounds on the regret of an optimal strategy for several
online learning problems without providing algorithms,
by relating the optimal regret to the behavior of a cer-
tain stochastic process. [21] consider a continuous ex-
perts setting where the algorithm knows beforehand the



maximum number of mistakes of the best expert. [22] in-
troduce the notion of sequential Rademacher complexity
and use it to analyze the learnability of several problems
in online learning w.r.t. minimax regret. [23] use the se-
quential Rademacher complexity introduced in [22] to an-
alyze learnability w.r.t. general notions of regret (and not
just minimax regret). Rakhlin et al. [24] use the notion of
conditional sequential Rademacher complexity to find re-
laxations of problems like prediction with static experts
that immediately lead to algorithms and associated regret
guarantees. They show that the random playout strategy
has a sound basis and propose a general method to design
algorithms as a random playout. In our work, we show
that random playout (probability matching) is not just a
good strategy, but it is optimal, for the case of k = 2, 3
experts. Koolen [16] studies the regret w.r.t. every expert,
rather than just the best expert in hindsight and considers
tradeoffs in the pareto-frontier. [19] characterize the min-
imax optimal regret for online linear optimization games
as the supremum over the expected value of a function
of a martingale difference sequence, and similar charac-
terizations for the minimax optimal algorithm and the ad-
versary. [20] study online linear optimization in Hilbert
spaces and characterize minimax optimal algorithms.

2 Preliminaries
Adversary. The adversary at each time t increases

the gain of expert i ∈ {1, 2, . . . , k} by a value git ∈ [0, 1].
Thus adversary decides on {g

i∈[k]t}t=Tt=1 . In particular,
for each time t the adversary decides on the distribution
Dt to draw gt from. In general, the adversary could be
adaptive: i.e., Dt could depend, apart from the history
of gains g[0,t−1] till time t − 1, also on the player’s past
choices. But for the experts problem, it is known (Lemma
4.1 in [5]) that an oblivious adversary, whose distribution
Dt at time t is a function only of g[0,t−1], is equally
powerful4. Thus we focus on oblivious adversaries from
now on. We denote the joint distribution for all t ≤ T as
D. We denote the cumulative gain till time t of expert i
by Git =

∑t
s=1 gis. We denote the vector of cumulative

gains at time t by Gt = (G1t, . . . , Gkt), and denote the
entire history of cumulative gains by G[0,T ].

Player. Before making his decision at time t, the
player observes all prior history, that is g[0,t−1], but
doesn’t observe git. He decides on which expert to follow,

4For the case of adaptive adversary, there is an alternative definition
of regret known as policy regret [10], where this reduction does not
apply. However in our setting, we don’t use policy regret as it is
too powerful and results in a linear regret. Also, for the bandits
setting, where the player gets the feedback only about the gains of his
chosen action (and not of every action) it is unknown whether adaptive
adversaries are any more powerful than oblivious adversaries.

and, if the player follows expert i, he gains git at the
end of step t. Specifically, the player decides on the
distribution At over experts {1, . . . , k}. In general, the
player could be adaptive: i.e., his distribution At could
depend, apart from g[0,t−1], on his own past choices. But
an oblivious player, whose distribution At at time t is
a function only of g[0,t−1], is equally powerful. Thus
we focus on oblivious players from now on. We use
At(g[0,t−1]) to denote the gain of player at time t.

Regret. The stopping time T is known to both the
algorithm and the adversary. If the adversary chooses
g[0,T ] and the player plays A, the regret is given by the
expression:

(2.1)

R
T

(g[0,T ],A) = max
i∈[k]

GiT −
T∑
t=1

E

[
At
(
g[0,t−1]

)]
.

If the adversary uses a distribution D, the regret is given
by R

T
(D,A) = E

g[0,T ]∼D
[R

T
(g[0,T ],A)].

Minimax regret. The worst-case regret a player
playing A could experience is supD RT

(D,A). Hence
a robust guarantee on the player’s regret would be
to optimize over A for worst-case regret, namely,
infA supD RT

(D,A). This is also referred to as the
player’s minimax regret as he tries to minimize his maxi-
mum regret.

Binary adversary. It turns out that an adversary that
sets gains in {0, 1} (that we call as a binary adversary)
is as powerful as an adversary that sets gains in [0, 1]
(much like Theorem 10 in Luo and Schapire [18]).
Formally, let D[0,1] be an arbitrary adversary distribu-
tion with gains in [0, 1] and let D{0,1} be an arbitrary
adversary distribution with gains in {0, 1}. Basi-
cally, we show that infA supD{0,1} RT

(D{0,1},A) =
infA supD[0,1] RT

(D[0,1],A) (see Claim 4 in Ap-
pendix A). From now on, without loss of generality, we
focus only on binary adversaries.

Minimax theorem. Our setting is naturally seen as
a two player zero-sum game between the player and the
adversary. The player and the adversary, though online
in nature, can be described entirely upfront, i.e., by de-
scribing their (randomized) actions for every possible his-
tory. The set of deterministic strategies for the player is a
(huge) finite set, and hence the set of player’s randomized
strategies is a (huge) simplex. Similarly, the set of ad-
versary’s randomized strategies is a (huge) simplex. The
regret function is a bilinear function in the player’s and ad-
versary’s strategies. Thus, the inf and sup can be replaced
by min and max, and the famous minimax theorem due
to von Neumann [25] applies, telling us that the minimax



regret of the game is given by

(2.2) min
A

max
D

[
R
T

(D,A)
]

= max
D

min
A

[
R
T

(D,A)
]
.

We refer to the optimal algorithm that defines the
LHS as the minimax optimal algorithm and similarly, the
optimal adversary that defines the RHS as the minimax
optimal adversary. The minimax optimal algorithm A∗
and the minimax optimal adversary D∗ form a Nash
equilibrium: that is, they are mutual best responses.

Balanced adversary. We show that the minimax
optimal adversary can, without loss of generality, be
“balanced” (see Claim 5 in Appendix A). In other words,
for every time t, irrespective of what the history g[0,t−1]
is, the minimax optimal adversary can pick Dt such that

E
Dt(g[0,t−1])

[git] is the same for each expert i. I.e., the

expected gains of all experts are equal at every step,
irrespective of history.

Dependence on cumulative gains. The minimax
optimal algorithm can also choose the distribution At at
time t, based only on Gt−1 instead of g[0,t−1]. Hence-
forth, we focus on such algorithms and adversaries,
and denote the time t distributions by At(Gt−1) and
Dt(Gt−1) respectively.

CLAIM 1. For any balanced adversary D all algorithms
will result in the same regret for the player. In particu-
lar, focusing on the algorithm that chooses an expert uni-
formly at random at every time t, the regret inflicted by D
is given by

R
T

(D,A) = R
T

(D)

= E
g[0,T ]∼D

max
i∈[k]

GiT −
∑
i∈[k]GiT

k

 .
Given that a minimax optimal adversary D can always
be balanced, the minimax optimal regret is given by
R
T

(D) = E
g[0,T ]∼D

[maxi∈[k]GiT −
∑
i∈[k]GiT

k ].

Geometric horizon. We introduce the (almost iden-
tical) notation that we use for the geometric horizon set-
ting in Section 4.

3 Finite horizon
Two experts: optimal adversary and regret. The

optimal regret in the finite horizon setting for the case of
k = 2 was derived by Cover [9], showing that as T →
∞, the optimal regret approaches

√
T
2π . While Cover

also gave an expression (involving a sum and binomial
coefficients) for the algorithm’s probabilities, getting just
the optimal adversary and the optimal regret value of

√
T
2π is simpler. We begin by rewriting the expression

for the regret from Claim 1 for the case of two experts.

R
T

(D) = E
g[0,T ]∼D

[
max
i=1,2

GiT −
G1T +G2T

2

]

= E
g[0,T ]∼D

[
|G1T −G2T |

2

]

=
1

2
E

g[0,T ]∼D

∣∣∣∣ T∑
t=1

(g1t − g2t)
∣∣∣∣
(3.3)

The adversary’s optimization problem now is to construct
these git’s such that they maximize the RHS of equa-
tion (3.3), subject to being balanced. This problem is
equivalent to the problem of designing a one-dimensional
random walk, that respects the constraint that the proba-
bility of jumping one step left and one step right are the
same, and maximizes the absolute distance from the ori-
gin. This equivalence is obtained by interpreting g1t−g2t
as the random-walk variable (which can take values of
−1, 1 and 0), and the condition of being balanced trans-
lates to the constraint of jumping left and right with equal
probability. We emphasize that the adversary has a con-
trol over this random walk, i.e., he can decide separately
on the probabilities of jumping left or right at every time
step t and every vector of gains Gt with the restriction to
be unbiased towards jumping left or right. Being balanced
means that the only design choice left is the probability of
staying still (not jumping left or right). To maximize the
absolute distance from the origin, the latter probability has
to be zero. Indeed, the adversary may as well postpone all
his “staying still” turns until the deadline T . In such a
case remaining still for the last few steps is not better in
expectation than doing random walk. Thus, the optimal
adversarial strategy in the 2 experts case is: at every step,
choose an expert uniformly at random (with probability
1/2) and set him to 1, and the other expert to 0.

Given the optimal adversarial strategy description
above, the optimal regret in the finite horizon model with
T steps is exactly half the expected distance travelled by

a simple random walk in T steps, which approaches
√

T
2π

as T →∞. Thus, R
T

(D)→
√

T
2π , when T →∞.

Two experts: optimal probability matching algo-
rithm. It turns out that the optimal algorithm is precisely
a probability matching algorithm, i.e, the algorithm picks
each expert with the probability that the respective expert
finishes in the lead (we break possible ties in favor of the
unique expert who does not have any expert ahead of him
in each of the last two steps).

We derive this from an explicit correspondence be-
tween simple random walk and the minimax regret value



of games with any given initial configuration of expert
cumulative gains. The formal argument is given in Ap-
pendix C.2. The probability matching interpretation al-
lows us to give the following simple and explicit descrip-
tion of the optimal algorithm for two experts in the finite
horizon model.

THEOREM 3.1. Let k be the number of remaining time
steps and let X be a random variable with a binomial
distribution Binom(k, 12 ), when k is odd and Binom(k −
1, 12 ), when k is even. The optimal algorithm computes the
difference d(≥ 0) of cumulative gains between the leading
and lagging expert and chooses them with probabilities
p1(d) = P[X−E[X] < d], and p2(d) = P[X−E[X] >
d].

k experts: optimal adversary and regret. The sim-
plification afforded by the 2 experts case doesn’t carry
through for arbitrary k. In Appendix B we have a de-
tailed technical description of the adversary’s problem and
useful observations about them, including the proofs of
claims 2 and 3 below.

CLAIM 2. For each time step t, the set of all possible
distributions Dt(Gt−1) for a balanced adversary forms
a convex polytope in 2k-dimensional space.

CLAIM 3. There is a fixed finite set of distributions (over
2k actions) such that at every time step t and every pre-
vious history, the minimax optimal adversary can always
choose a distribution from this set.

k experts: optimal algorithm. We refer the reader
to appendix B for an expanded version of the discussion
in this subsection. The main algorithmic question in the
finite horizon case is if there is a simple description of
the optimal algorithm. For the case of k = 2 experts, we
show that the answer is yes: the optimal algorithm is a
simple probability matching algorithm. I.e., the optimal
algorithm follows expert i with the probability that, given
the current cumulative gains of both the experts and the
number of remaining steps, expert i will finish as the
leading expert. The derivation of this optimal algorithm
is related to how we derive the optimal algorithm for the
geometric horizon case. So we do this in Appendix C.1
along with the derivation for geometric horizon.

4 Geometric horizon
Minimax theorem for the geometric horizon

model. We use the same notation for the geometric hori-
zon model and the finite horizon model except that we
use Rδ for regret in the geometric model instead of R

T
.

Our setting in the geometric model is again a two player

zero-sum game between the player and the adversary, al-
though the game is not finite now. But a slight gen-
eralization of von Neumann’s minimax theorem guar-
antees that the minimax relation we need is still true.
For any bilinear function f(x, y) defined on X × Y ,
where X and Y are convex and compact sets5, we have
infx∈X supy∈Y f(x, y) = supy∈Y infx∈X f(x, y). In our
case, the space of strategies of the adversary and the al-
gorithm can be easily shown to be convex compact sets.
Thus, we have the expected minimax regret of the game
given by:

(4.4) inf
A

sup
D

[
Rδ(D,A)

]
= sup
D

inf
A

[
Rδ(D,A)

]
.

Preliminary claims on the geometric horizon
model. All the claims for the finite horizon model,
namely, Claims 4, 5, 1, 2 and 3, also carry over to the
geometric horizon model with appropriate modifications.
We state the modified claims as Claim 6 in Appendix C.

We now derive the optimal adversary, regret and
algorithm for the case of 2 experts in appendix C.1. We
state our results here.

THEOREM 4.1. In the geometric horizon model for 2
experts with parameter δ ∈ (0, 1):

1. The optimal adversary, at every time step, advances
the leading expert alone with probability 1

2 and
lagging expert alone with probability 1

2 .

2. The optimal regret is 1−δ
2
√

1−(1−δ)2
→ 1

2
1√
2δ

as δ →
0.

3. The optimal algorithm, at every time step, computes
the difference d(≥ 0) of cumulative gains between
the leading and lagging expert, and chooses them
with probabilities p1(d) = 1 − 1

2ξ
d, and p2(d) =

1
2ξ
d. Here ξ =

1−
√

1−(1−δ)2
1−δ ∼ 1−

√
2δ.

We derive the optimal adversary, regret and algorithm
for the case of 3 experts in appendix C.3. This derivation
is significantly more involved for k = 3 when compared
to k = 2. We state our results here.

THEOREM 4.2. In the geometric horizon model for 3
experts with parameter δ ∈ (0, 1):

5the space of pure strategies for the adversary consists of all infinite
sequences of vector gains {v1, v2, . . . }, where each vt ∈ [0, 1]k . This

space is compact, for example, in a normed space
∥∥∥{vt}∞t=1

∥∥∥
2

=∑
t ‖vt‖

2
2 /t

2. Note that in such a normed space the regret is still
a continuous function of the sequence {vt}∞t=1: this is because the
geometric-infinite horizon results in a discount of (1 − δ)t for round
ts utilities, and this decays much faster than 1/t2.



1. The optimal regret is 2
3

1−δ√
1−(1−δ)2

→ 2
3

1√
2δ

as δ →
0.

2. The optimal algorithm, at every time step, computes
the differences dij between the cumulative gains
of experts (i denotes the expert with ith largest
cumulative gains, and hence dij ≥ 0 for all i <
j). As a function of the dij’s the algorithm follows
the leading expert with probability p1(d) = 1 −
ξd12

2 − ξd13+d23

6 , the second expert with probability

p2(d) = ξd12

2 − ξd13+d23

6 , and the lagging expert

with probability p3(d) = ξd13+d23

3 . Here ξ =
1−
√

1−(1−δ)2
1−δ ∼

√
2δ.

3. The optimal adversary, at every time step, com-
putes the differences dij’s, and follows the follow-
ing strategy as a function of the dij’s. Here strategy
{1}{2}{3} means exclusively advancing expert 1
(leading expert) with probability 1/3, expert 2 (mid-
dle expert) with probability 1

3 and expert 3 (lagging
expert) with probability 1

3 . Strategy {1}{23} means
advancing expert 1 alone with probability 1

2 and ex-
perts 2 and 3 together with probability 1

2 .

0 < d12 < d13 : {1}{23} (any mixture of {1}{23}
with {13}{2} would also work).

0 = d12 < d13 : {1}{23} (any mixture of {1}{23}
with {13}{2} would also work).

0 < d12 = d13 : {1}{23} (any mixture of {1}{23}
with {1}{2}{3} would also work).

0 = d12 = d13 : {1}{2}{3}.

Interpretation as a probability matching algo-
rithm. We show that the optimal algorithms for k = 2, 3
can be interpreted as following each expert with the prob-
ability he finishes as the leader (probability matching)
when following an optimal adversary. We prove this re-
spectively in Appendix C.1 and C.3.

5 Connections to random walk
We already saw for the case of two experts that the
optimal strategy for the adversary has a direct connection
to random walk. In this section we study larger number of
experts, and show that this connection is deep and extends
to nontrivial aspects of random walk. We state our results
here and prove them (Theorems 5.1 and 5.2) in the full
version [12].

Regret Lower Bounds for k = 3, 4 experts. While
we already have shown in Section 4 that the optimal regret
in the case of 3 experts is 2

3
1√
2δ

as δ → 0, the adversary
we used there was not the comb adversary. Here we derive

the same regret through the comb adversary. Next, we
analyze the comb adversary for k = 4 experts and show
that as δ → 0 it inflicts a regret that is asymptotic to
π
4

1√
2δ

.

THEOREM 5.1. The regret inflicted by the adversary that
advances experts 1 and 3 together with probability 1

2 , and,
expert 2 with probability 1

2 , as δ → 0, is 2
3

1√
2δ

.

THEOREM 5.2. The regret inflicted by the adversary that
advances experts 1 and 3 together with probability 1

2 , and,
experts 2 and 4 together with probability 1

2 , as δ → 0, is
π
4

1√
2δ

.

Main idea behind the analysis. We show a bijection
between the random process defined by the comb adver-
sary and the simple random walk of a particle between
two walls. For k = 3, the two walls are “movable”, while
for k = 4, one wall is ‘’fixed” and the other is movable.
I.e., when the particle coincides with the wall and tries to
penetrate it in the next step, a movable wall moves one
step in the direction of particle’s movement while the par-
ticle doesn’t move, but a fixed wall doesn’t move and the
particle bounces one step back. The comb adversary’s re-
gret maps to half of the expected number of visits of the
particle to one of the movable walls for k = 3, and the
fixed wall for k = 4. Computing the expected number of
visits leads to interesting asymptotic analysis.
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A Proofs from Section 2
CLAIM 4. (BINARY ADVERSARY) The minimax regret
defined by the class of binary adversaries is exactly the
same as that defined by general adversaries:

inf
A

sup
D{0,1}

R
T

(D{0,1},A) = inf
A

sup
D[0,1]

R
T

(D[0,1],A).

Proof. Given that the class of general adversaries is
larger than the class of binary adversaries, it imme-
diately follows that infA supD{0,1} RT

(D{0,1},A) ≤
infA supD[0,1] RT

(D[0,1],A). It is therefore enough
to show that infA supD{0,1} RT

(D{0,1},A) ≥
infA supD[0,1] RT

(D[0,1],A). This can be seen as
follows: consider the minimax optimal algorithm A∗ for
the class of binary adversaries. When faced with a [0, 1]
adversary, A∗, in every round, “discretizes” the gains set
by the adversary by independently rounding them to 0 or
1 so that the expectation is equal to the gain git set by the
adversary: i.e., a gain of git is set to 1 with probability git
and 0 with the remaining probability. From the algorithm
A∗’s point of view, whether the adversary originally
used a distribution with gains in [0, 1] that A∗ discretized
to {0, 1}, or the adversary already set gains in {0, 1}
with the same distribution doesn’t make a difference.
Both result in exactly the same expected gains for the
algorithm. However, using the discretized version could
possibly help the adversary. We see this as follows.

For some step t and history g[0,t−1], let the adversary
set expert’s i gain to be git /∈ {0, 1} with non zero prob-
ability. Consider the following step-by-step discretization
by the adversary. It changes random variable git (only

for expert i and time t and history g[0,t−1]) to be {0, 1}
while preserving expectations. While performing this dis-
cretization the adversary does not change the distribution
in future steps, i.e., it chooses future distributions as if the
discretization was not performed. We now show that the
expected gain of the best expert can only increase. For
each fixed value git let us denote by ξ a random variable
that takes value 1 with probability git and 0 with proba-
bility 1− git. Let us fix all choices of the adversary other
than ξ. Then our substitution of constant git by a random
variable ξ can only increase the gain of the best expert
maxi∈[k]GiT . Indeed, this follows from the inequality

max(E [ξ] + c1, c2) ≤ E
[
max(ξ + c1, c2)

]
,

where c1 and c2 are two constants determined by a fixed
set of adversary’s random choices. Hence, our modifica-
tion may only increase the total expected regret, proving
the theorem.

CLAIM 5. (BALANCED ADVERSARY) For each time t
and for every possible history g[0,t−1], the minimax
optimal adversary can pick Dt(g[0,t−1]), such that

E
Dt(g[0,t−1])

[git] is the same for each expert i .

Proof. Given an adversary that is not balanced, we mod-
ify it so that algorithm cannot improve, but the expected
gain of the best expert maxi∈[k]GiT may only increase.
For the minimax optimal adversary D, one best response
algorithm is to choose an expert

i∗ ∈ argmax
i∈[k]

E
Dt(g[0,t−1])

[git] .

The adversary can modify distributionDt(g[0,t−1]) so that
for all experts [k] \ {i∗}

E
Dt(g[0,t−1])

[git] = E
Dt(g[0,t−1])

[gi∗t] ,

by switching some of the gains from 0 to 1 for i ∈ [k] \
{i∗}. While making such transformation the adversary
does not change D in the future time steps after t, i.e.,
the adversary continues as if there was no transformation
at time t. The adversary also reveals to the algorithm the
value of git as it was drawn in the original Dt(g[0,t−1]).

The best response algorithm described above cannot
improve its gain at time t, as the expected gain of the best
expert does not change. We also note that the algorithm
cannot improve in time before t, nor it can improve for the
time steps after t, as the knowledge of the algorithm about
prior history and the adversary distribution do not change
for these times.

On the other hand, the expected gain of the best
expert maxi∈[k]GiT could only improve for every such
modification of Dt(g[0,t−1]).



B Proofs and Results from Section 3
B.1 k experts, finite horizon: optimal adversary and
regret As mentioned before, the simplification afforded
by the 2 experts case doesn’t carry through for arbitrary
k. Here is the design problem faced by the optimal
adversary: for every time step t, given the gains Gt−1 at
time t − 1, the adversary has to compute the distribution
Dt(Gt−1) at time t so as to maximize the expression for
regret given by

R
T

(D) = E
g[0,T ]∼D

max
i∈[k]

GiT −
∑
i∈[k]GiT

k

 .
Note that given any vector of gains Gt−1 after t− 1 time
steps, the adversary’s distribution Dt at time t is over 2k

actions corresponding to “setting gain to 0” or “setting
gain to 1” for each expert with the restriction that the
expected gain of each expert is the same. This design
problem of the adversary can be thought of as the design
of a controlled random walk on Zk so that the advance in
each dimension in expectation is the same at every step,
with the objective of maximizing the regret expression
above.

CLAIM 2. For each time step t, the set of all possible
distributions Dt(Gt−1) for a balanced adversary forms
a convex polytope in 2k-dimensional space.

Proof. First, note that if two distributions are feasible, a
convex combination of them is also feasible. Thus the
set of feasible distributions is convex. Second, the fea-
sibility conditions can all be described with linear equali-
ties/inequalities. Finally, the set of feasible distributions is
bounded. Thus the set of feasible distributions is a convex
polytope.

CLAIM 3. There is a fixed finite set of distributions (over
2k actions) such that at every time step t and every pre-
vious history, the minimax optimal adversary can always
choose a distribution from this set.

Proof. Given that the set of possible distributions is a con-
vex polytope, at every t, it is a weakly dominant strategy
for the adversary to choose from one among the vertices
of this polytope. This is because the expression for regret
(which the adversary maximizes) is linear in distributions,
i.e., a convex combination of two distributions will yield a
regret which is the convex combination of the correspond-
ing regrets. Furthermore, this convex polytope of possible
distributions remains the same, independent of t and pre-
vious history.

REMARK 1. Note that this polytope of possible distribu-
tions has exponentially many vertices. This is easy to see:

for every subset S of {1, . . . , k}, treat experts in S as a
group and those in S̄ as a group. With probability half,
set the gains of experts in S to be 1 and those in S̄ to be 0,
and with the remaining probability do the opposite. Each
such distribution is a vertex, and there are exponentially
many of them.

REMARK 2. For concreteness, for the case of k = 3 and
k = 4, we list all the vertices of the distribution polytopes.
While describing a distribution, we shall list only actions
in its support, as it turns out the respective probabilities
can be reconstructed from the balanced condition for
any extremal distribution in our convex polytope. While
describing an action, we list the set of experts whom
we advance. For instance, the list {1}, {23} reads as
“advance expert 1 with probability 0.5; advance experts 2
and 3 (but not 1) with remaining probability”. Similarly,
the list {234}{12}{13}{14} reads as “with probability
2/5 advance experts 2,3, and 4; with probability 1/5
advance experts 1 and 2; with probability 1/5 advance
experts 1 and 3; with probability 1/5 advance experts 1
and 4.” For k = 3 and k = 4 the lists are (excluding the
trivial distribution {} that advances no experts at all, the
distributions {123} for k = 3 and {1234} for k = 4 that
advance all the experts together):

k = 4
{123}{4} {1}{2}{34}
{124}{3} {1}{3}{24}
{134}{2} {1}{4}{23}
{234}{1} {2}{3}{14}

{2}{4}{13}
{12}{34} {3}{4}{12}
{13}{24}
{14}{23} {12}{134}{234}

{13}{124}{234}
{1}{23}{24}{34} {14}{123}{234}
{2}{13}{14}{34} {23}{124}{134}
{3}{12}{14}{24} {24}{123}{134}
{4}{12}{13}{23} {34}{123}{124}

{123}{124}{134}{234} {123}{14}{24}{34}
{124}{13}{23}{34}

{1}{2}{3}{4} {134}{12}{23}{24}
{234}{12}{13}{14}

k = 3
{1}{23}
{2}{13}
{3}{12}
{1}{2}{3}
{12}{13}{23}

Encouraged by a very simple optimal adversary for
k = 2, one may think that similar behavior extends to



3 or more experts. Unfortunately, this is not the case.
The optimal adversary will be time dependent for k = 3.
For instance, if only one step remains before deadline the
optimal adversary would do the following:

• if G1T−1 = G2T−1 = G3T−1, then {1}{2}{3};

• if G1T−1 = G2T−1 > G3T−1, then {1}{23} or
{13}{2};

• if G1T−1 > G2T−1, then any balanced strategy.

B.2 k experts, finite horizon: optimal algorithm We
note that given a finite time horizon T and finite list of
balanced distributions for the adversary, one can write
a dynamic program for the maximal value of the regret
at any time period t ≤ T and initial vector of gains
Gt ∈ [T ]k. We can solve this program by using backward
induction over time and furthermore given the regret
function at every time step t ∈ [T ] and vector of gains
Gt ∈ [T ]k we can compute the best strategy for the
algorithm. The running time of such an algorithm would
be O(T k). This approach gives us the answer for a small
number of experts and reasonably small time horizon
T . On the other hand, it becomes impractical as T and
especially k get larger, and furthermore, it does not tell
us much about intrinsic structure of the optimal algorithm
and the optimal adversary.

Even for k = 2 the optimal algorithm depends on
the time remaining before the deadline T . For example, if
the leading expert is ahead of the lagging expert by more
than the number of remaining time steps, then the optimal
algorithm should always choose the leading expert; on the
other hand, if the difference between leading and lagging
experts is smaller than the time remaining, then there
should be non zero chance of selecting the lagging expert.

The probability matching algorithm. Given this,
the main question in the finite horizon case if there is
a simple description of the optimal algorithm. For the
case of k = 2 experts, we show that the answer is yes:
the optimal algorithm is a simple probability matching
algorithm. I.e., the optimal algorithm follows expert i
with the probability that, given the current cumulative
gains of both the experts and the number of remaining
steps, expert i will finish as the leading expert.

The derivation of this optimal algorithm is related
to how we derive the optimal algorithm for the geomet-
ric horizon case. So we do this towards the end of Sec-
tion C.2.

C Geometric Horizon Model
CLAIM 6. Observations on the geometric horizon model.
The following statements are true:

1. The minimax regret defined by the class of binary ad-
versaries is exactly the same as that defined by gen-
eral adversaries: infA supD{0,1} Rδ(D{0,1},A) =
infA supD[0,1] Rδ(D[0,1],A).

2. For each time step t and for every possible history
g[0,t−1], the minimax optimal adversary can pick
Dt(g[0,t−1]), such that E

Dt(g[0,t−1])
[git] is the same for

each expert i .

3. A balanced adversary D inflicts the same regret
on every algorithm A. Since the minimax optimal
adversary can always be balanced, the minimax
optimal regret is given by:

Rδ(D,A)

= Rδ(D)

=

∞∑
t=0

δ · (1− δ)t

E
g[0,t]∼D


max
i∈[k]

Git −
∑
i∈[k]Git

k




4. For each time t, the set of all possible distributions
Dt(Gt−1) for the adversary forms a convex polytope
with exponentially many (in k) vertices .

5. There is a fixed finite set of distributions (over 2k

actions) such that at every time t and every previous
history, the minimax optimal adversary can always
choose a distribution from this set.

REMARK 3. The third point in Claim 6 above says that
the minimax optimal adversary makes all algorithms
achieve the same regret. In particular, if the precise real-
ization of the stopping time random variable was leaked
to the algorithm, the minimax optimal regret is not in-
fluenced in any way. On the other hand, if the adver-
sary knew the realization of the stopping time informa-
tion, it could potentially increase the minimax optimal re-
gret. This proves that the algorithm does not benefit from
knowing the precise realization of the stopping time infor-
mation, whereas the adversary could potentially benefit
from it.

C.1 Two experts: optimal algorithm, adversary and
regret

Notational convention. At each time step t we al-
ways enumerate experts in the decreasing order of their
cumulative gains Gt, i.e., experts 1 and 2 don’t refer to
identities of experts but to the leading expert and trail-
ing expert respectively. Observe that the strategy of the



optimal adversary at any moment t should not change if
cumulative gains Gt of all experts are changed by the
same amount for every expert. Thereby, at every time
step t we shall always adjust the total gains Gt of our
experts, so that the leading expert 1 has zero cumulative
gain Ĝ1t = 0. We denote the adjusted gain of the lagging
expert Ĝ2t = G2t −G1t by x (note that x ≤ 0).

We denote by f(x) the optimal regret the adversary
can obtain for an initial configuration of G = (0, x), i.e.,
leading expert has 0 gain and lagging expert has x gain
(again, recall that x ≤ 0). The useful thing about this
notation is that if we start at (0, x) for any x, and the
game immediately ends at that round, we get a regret of
0: the max expert gain is 0, and the algorithm didn’t get
any chance to get any gain because the game ended right
away. So 0− 0 = 0 is the regret.

System of Equations. We are now ready to write our
system of equations connecting these f(x)’s. Our discus-
sion of Cover’s result in Section 3 showed that the min-
imax optimal adversary in the finite horizon model was
independent of the horizon T , and advanced expert 1 or 2
mutually exclusively with probability 1

2 each. The inde-
pendence from time horizon T in the finite horizon model
immediately means that this adversary is also minimax
optimal for the geometric horizon model: it doesn’t care
when the game ends. This adversary advances the leading
expert with probability 1

2 and lagging expert with proba-
bility 1

2 . Thus, starting from the (0, x) configuration, we
go to the (1, x) configuration with probability 1

2 (corre-
sponds to adversary advancing the leading expert), and go
to the (0, x + 1) configuration with probability 1

2 (corre-
sponds to adversary advancing the lagging expert). In the
meanwhile, the algorithm would have gained 1 with prob-
ability 1

2 regardless of which expert was advanced. This
can be transcribed to an equation right away except that
the (1, x) configuration is not in our standard format: our
standard format normalizes the largest gain to 0. To per-
form such a normalization here, notice that the paths of
the optimal adversary starting at (1, x) and (0, x− 1) are
indetical except that the “max expert gain” is precisely
one larger when starting from (1, x) than when starting
from (0, x − 1). We take this into account in our equa-
tions. Summarising this as an equation we get,

f(x) = δ · 0 + (1− δ)

·
[

1

2

(
f(x− 1) + 1

)
+

1

2
f(x+ 1)− 1

2

]
= (1− δ) ·

[
f(x− 1) + f(x+ 1)

2

]
.

When x is 0 we have to take special care because
(0, x + 1) is just (0, 1). First we rewrite gains in the

descending order to obtain the (1, 0) configuration. But
this is not in starndard format: so we go to the (0,−1)
format and add a 1 to the regret in this process. Thus the
difference of (0, 0) from (0, x) is that normalization has to
be done for both choices of adversary, as against for just
one choice. We get,

f(0) = δ · 0 + (1− δ)

·
[

1

2

(
f(0− 1) + 1

)
+

1

2

(
f(0 + 1) + 1

)
− 1

2

]
= (1− δ) ·

[
f(−1) +

1

2

]
.

Combining these two equations, we get the following
system:

f(x) = (1− δ) · f(x− 1) + f(x+ 1)

2
(C.1)

f(0) = (1− δ) ·
(
f(−1) +

1

2

)
(C.2)

Optimal regret. Thus we need to solve this recur-
rence relation for f(x). The characteristic polynomial of
this recurrence is x2 − 2

1−δx+ 1 = 0, which has two real

roots ξ1 > 1 > ξ2, and ξ1·ξ2 = 1, given by 1±
√

1−(1−δ)2
1−δ .

The solution to our recurrence relation is then of the form
f(x) = c1 · ξx1 + c2 · ξx2 . As the regret cannot grow faster
than a linear function and cannot be negative, it follows
that c2 must be 0. Combining f(x) = c1ξ

x
1 with equa-

tion (C.2), we get c1 · ξ01 = (1 − δ) ·
(
c1 · ξ−11 + 1

2

)
.

This gives us that c1 = 1
ξ1−ξ2 . The optimal regret is

simply the regret starting at (0, 0), which is given by
f(0). Thus the optimal regret is f(0) = c1ξ

0
1 = c1 =

1
ξ1−ξ2 = 1−δ

2
√

1−(1−δ)2
. Thus, as δ → 0, the optimal regret

f(0)→ 1
2

1√
2δ

.
Optimal algorithm. Note that because of minimax

principle, we were able to compute the precise regret
without even knowing anything about the algorithm. We
now proceed to compute the optimal algorithm for k = 2.
This will reveal how even without knowing the optimal
adversary a priori, we can simultaneously discover both
the optimal adversary, optimal regret and the optimal
algorithm (a useful exercise to the significantly more
complicated case of k = 3).

Given configuration (0, x) (with x ≤ 0 as usual),
the optimal algorithm assigns probabilities p1(x) and
p2(x) = 1− p1(x) respectively for choosing leading and
lagging experts. We drop the arguments for probabilities
when it is clear from context. The adversary has four
choices, namely advancing expert 1 alone, or expert 2
alone, or both experts, or none of the experts. For x < 0



this corresponds to decreasing x by 1, increasing x by 1,
not changing x for the last two choices. When x = 0,
we have to take care of the fact that advancing 1 alone
and 2 alone are similar, in that both of them need the
normalizing +1. Putting what we just described into
equations, we get (note the extreme RHS corner gives the
adversary’s actions corresponding to each expression, and
this is common for both x < 0 and x = 0):

f(x) = (1-δ) ·max


f(x− 1) + 1− p1 //{1}
f(x+ 1)− p2 //{2}
f(x) + 1− p1 − p2 //{12}
f(x) //{}

(C.3)

f(0) = (1-δ) ·max


f(0− 1) + 1− p1 //{1}
f(0− 1) + 1− p2 //{2}
f(0) + 1− p1 − p2 //{12}
f(0) //{}

We realize that p1(0) = p2(0) = 1
2 by symmetry (the

optimal algorithm is indifferent when the expert gains
are the same). By removing strictly suboptimal actions
{}, {12} of the adversary, we obtain

f(0) = (1− δ)
(
f(−1) +

1

2

)
.

Similarly, the first part of expression (C.3) for x < 0 boils
down to
(C.4)

f(x) = (1−δ)·max

(
f(x−1)+1−p1, f(x+1)−p2

)
.

We further simplify equation (C.4). Notice that the
optimal algorithm in minimax equilibrium must make
the adversary indifferent between any two actions the
adversary is randomizing over. In this case it means that
for each x < 0 the probabilities p1(x) and p2(x) must
be chosen by the optimal algorithm in such a way that
f(x) = (1− δ)(f(x− 1) + 1− p1(x)) = (1− δ)(f(x+
1) − p2(x)). Note that adding these two equations and
dividing by 2, we get equation (C.1). Thus we can solve
for optimal regret. Additionally, solving for p1(x) and
p2(x) we obtain

p1(x) = 1− 1

2
ξx1 ; p2(x) =

1

2
ξx1(C.5)

This proves the optimality of the algorithm 1 for k =
2. We summarise our results for k = 2 in the following
theorem. For convenience we replace the negative number
x by positive d = −x, and also replace ξ1 by ξ = ξ2 =
1
ξ1
∼ 1−

√
2δ.

THEOREM 4.1. In the geometric horizon model for 2
experts with parameter δ ∈ (0, 1):

1. The optimal adversary, at every time step, advances
the leading expert alone with probability 1

2 and
lagging expert alone with probability 1

2 .

2. The optimal regret is 1−δ
2
√

1−(1−δ)2
→ 1

2
1√
2δ

as δ →
0.

3. The optimal algorithm, at every time step, computes
the difference d(≥ 0) of cumulative gains between
the leading and lagging expert, and chooses them
with probabilities p1(d) = 1 − 1

2ξ
d, and p2(d) =

1
2ξ
d. Here ξ =

1−
√

1−(1−δ)2
1−δ ∼ 1−

√
2δ.

C.2 Two experts: interpretation as a probability
matching algorithm

Geometric horizon model. The quantity ξ turns out
to be precisely equal to the probability that a simple
random walk that starts at 1 will reach 0 before the
geometric process gets killed. To see this, just note that it
is the root of the equation which captures the probability
of the above event ξ = (1−δ) ·0+δ · 12 ·(1+ξ2) (the root

that is smaller than 1), which is ξ =
1−
√

1−(1−δ)2
1−δ . Now,

note that the minimax optimal adversary advances one of
the experts uniformly at random and doesn’t advance the
other. This means that the gap between the cumulative
gains of the leading and the lagging experts evolves as a
random walk, and the probability that given a separation
of d, the lagging expert will match the leading expert is
precisely ξd. Once they match, each expert has an equal
probability 1

2 of being the leading expert6. This means,
the probability that the currently lagging expert will finish
as the leading expert is precisely 1

2ξ
d, and the probability

that the currently leading expert will finish as the leading
expert is 1− 1

2ξ
d.

Finite horizon model. We now show that for the
finite horizon case too, the optimal algorithm is precisely
a probability matching algorithm, i.e, the algorithm picks
each expert with the probability that the respective expert
finishes in the lead (we break possible ties in favor of
the unique expert who doesn’t have any expert ahead of
him in each of the last two steps). We set up equations
very similar to (C.3) and (C.4) in the finite horizon model

6If the experts are tied, the leader is chosen uniformly at random



except that f now will be a function of both x and the
number of time steps left ` = T − t until the deadline.
Thus

f(x, 0) = 0, if x ≤ 0(C.6)

f(x, `) =
f(x+ 1, `− 1) + f(x− 1, `− 1)

2
,

if ` > 0, and x < 0

f(0, `) = f(−1, `− 1) +
1

2
,

if ` > 0, x = 0.

We consider a simple random walk SRW(x, `) that
starts from position x and does ` steps (we also use
SRW (x, `) to denote the location of this walk after `
steps). It turns out that g(x, `) = E[|SRW(x,`)|]−|x|

2 satisfies
exactly the same set of equations (C.6) as f(x, `) does.
Thus f(x, `) = g(x, `). Analogously to the geometric
model, we can also derive that p2(x, `) = f(x + 1, ` −
1) − f(x, `) for x < 0 and p2(0, `) = p1(0, `) = 1

2 . We
immediately get the desired probability matching result
for x = 0. To get the same for x < 0, we do a
natural coupling of random walks SRW(x + 1, ` − 1)
and SRW(x, `) in the expression p2(x, `) = g(x + 1, `−
1) − g(x, `). When SRW(x + 1, ` − 1) arrives at y in
this coupling, SRW(x, `) does one more iteration from the
location y − 1. The expression g(x+ 1, `− 1)− g(x, `),
given that SRW(x + 1, ` − 1) arrives at y can be written
as:

|y| − |x+ 1|
2

−
1
2 |y − 2|+ 1

2 |y| − |x|
2

=
1
2 (|y| − |y − 2|) + 1

2

=


0 if y ≤ 0

1/2 if y = 1

1 if y > 1

The first line in the RHS of the above expression cor-
responds to the situations where SRW(x, `) arrives at
y − 1 < 0 at step ` − 1, i.e., the second expert does not
reach the leader till step ` − 1 (and therefore the first ex-
pert is the unique one who didn’t lag in steps ` − 1 and
`); the second line corresponds to the situations where the
second expert reaches the leader at step ` − 1 (and there-
fore overtakes him with probability 1/2 in the last step);
the third line represents situations when the second expert
is the unique leader after ` − 1 steps (and therefore the
second expert is the unique one that didn’t lag in steps
`− 1 and `). This yields the desired probability matching
result.

Uniqueness of the optimal algorithm. In the geo-
metric horizon model, we explicitly solve the infinite sys-
tem of equations and realize that they have a unique so-
lution proving the uniqueness of the optimal algorithm.
In the finite horizon model, although we don’t explicitly
solve the system of equations, the discussion in the previ-
ous paragraph shows that the probabilities chosen by the
optimal algorithm are unique, and hence the optimal algo-
rithm is unique.

C.3 Three experts, geometric horizon: optimal al-
gorithm, adversary and regret We derive the optimal
adversary, algorithm and regret here. We restate Theo-
rem 4.2 for ease of reading.

THEOREM 4.2. In the geometric horizon model for 3
experts with parameter δ ∈ (0, 1):

1. The optimal regret is 2
3

1−δ√
1−(1−δ)2

→ 2
3

1√
2δ

as δ →
0.

2. The optimal algorithm, at every time step, computes
the differences dij between the cumulative gains
of experts (i denotes the expert with ith largest
cumulative gains, and hence dij ≥ 0 for all i <
j). As a function of the dij’s the algorithm follows
the leading expert with probability p1(d) = 1 −
ξd12

2 − ξd13+d23

6 , the second expert with probability

p2(d) = ξd12

2 − ξd13+d23

6 , and the lagging expert

with probability p3(d) = ξd13+d23

3 . Here ξ =
1−
√

1−(1−δ)2
1−δ ∼ 1−

√
2δ.

3. The optimal adversary, at every time step, com-
putes the differences dij’s, and follows the following
strategies below as a function of the dij’s. Strategy
{1}{2}{3} means: exclusively advancing with prob-
ability 1/3 expert 1 (leading expert), expert 2 (mid-
dle expert), and expert 3 (lagging expert). Strategy
{1}{23} means: advancing with probability 1

2 ex-
pert 1 alone, or advancing experts 2 and 3 together.

0 < d12 < d13 : {1}{23}, or {13}{2}.
0 = d12 < d13 : {1}{23}, or {13}{2}.
0 < d12 = d13 : {1}{23}, or {1}{2}{3}.
0 = d12 = d13 : {1}{2}{3}.

Notational convention. At each time period t we
always enumerate experts in the decreasing order of their
cumulative gains Gt. We observe that the strategy of
the adversary at any moment t should not change if
cumulative gains Gt of all experts are changed by the
same amount for every expert. Thereby, at every time



step t we shall always adjust the total gains Gt of our
experts, so that the leading expert 1 has zero cumulative
gainG1t = 0. We denote the adjusted gainGi+1t−G1t by
xi(t) for each i ∈ [2]; we denote by x(t) = (x1(t), x2(t))
the vector of adjusted gains. Note that both x1(t) and
x2(t) are negative.

We denote by f(x) the optimal regret the adversary
can obtain for an initial configuration G = (0, x1, x2)
(where again x1, x2 ≤ 0). Much like the case of k = 2,

the advantage of this convention is that if we start from
configuration (0, x1, x2) and stop immediately, the “max-
expert-gain - algorithm’s gain” is just 0.

Algorithm assigns probabilities p1(x), p2(x), and
p3(x) = 1 − p1(x) − p2(x) respectively to the leading,
middle and lagging experts. Similarly to the case k = 2
the adversary now has eight choices and the regret satisfies
the following expression for each x : 0 > x1 > x2.

(C.7) f(x1, x2) = δ · 0 + (1− δ) ·max



f(x1 − 1, x2 − 1) + 1− p1 // {1}
f(x1 + 1, x2 + 1)− p2 − p3 // {23}
f(x1 − 1, x2) + 1− p1 − p3 // {13}
f(x1 + 1, x2)− p2 // {2}
f(x1, x2 − 1) + 1− p1 − p2 // {12}
f(x1, x2 + 1)− p3 // {3}
f(x1, x2) + 1− p1 − p2 − p3 // {123}
f(x1, x2) // {}

We note that we can omit the lines {123} and {} in the RHS of the expression above. For the boundary points
x : 0 = x1 > x2 and x : 0 > x = x1 = x2 we need to take into account in (C.7) the possibility that the order
0 ≥ x1 ≥ x2 might change:

f(0, x2)

1− δ
= max



f(−1, x2 − 1) + 1− p1
f(−1, x2) + 1− p2 − p3
f(−1, x2) + 1− p1 − p3
f(−1, x2 − 1) + 1− p2
f(0, x2 − 1) + 1− p1 − p2
f(0, x2 + 1)− p3

f(x, x)

1− δ
= max



f(x− 1, x− 1) + 1− p1 //{1}
f(x+ 1, x+ 1)− p2 − p3 //{23}
f(x, x− 1) + 1− p1 − p3 //{13}
f(x+ 1, x)− p2 //{2}
f(x, x− 1) + 1− p1 − p2 //{12}
f(x+ 1, x)− p3 //{3}

(C.8)

For x : 0 = x1 = x2 we have

(C.9) f(0, 0) = (1− δ) max



f(−1,−1) + 1− p1 //{1}
f(0,−1) + 1− p2 − p3 //{23}
f(0,−1) + 1− p1 − p3 //{13}
f(−1,−1) + 1− p2 //{2}
f(0,−1) + 1− p1 − p2 //{12}
f(−1,−1) + 1− p3 //{3}



Our approach here will be a guess and verify ap-
proach. While there are several strategies possible for the
adversary, we discovered that the optimal strategy for the
adversary is to play {1}, {23} or {13}, {2} for most of
the x (at least for those x : 0 > x1 > x2). We will now
compute the consequences of this being the optimal adver-
sary and finally verify if our guess was true. So playing
{1}, {23} or {13}, {2} for most of the time means that for
x : 0 > x1 > x2 we have

f(x1, x2) =
1− δ

2

[
f(x1 − 1, x2) + f(x1 + 1, x2)

]
f(x1, x2) =

1− δ
2

[
f(x1 − 1, x2 − 1)+

f(x1 + 1, x2 + 1)

]
.(C.10)

One can write generating function for f(x1, x2) :

G(u, v) =
∑
x1,x2

f(x1, x2)ux1vx2

We can write two functional relations on G(u, v)
from expression (C.10) and further derive a parametric
expression for f(x1, x2):

f(x1, x2) = c1 ·ξx1
1 +c2 ·ξ2x2−x1

1 +c3 ·ξ−x1
1 +c4 ·ξx1−2x2

1 ,

where c1, c2, c3, c4 are unknown parameters and ξ1 >
1 > ξ2 are the roots of the characteristic polynomial
x2 − 2

1−δx+ 1 = 0. It turns out that, as the regret cannot
grow faster than a linear function and cannot be negative,
it follows that c4 and also c3 must be 0.

From the algorithm’s point of view, the probabilities
p1(x), p2(x), and p3(x) must be chosen in such a way that
adversary will be indifferent between playing {1}, {23},
{13}, and {2} for x : 0 > x1 > x2. From this condition
we derive that

1− p1 =

(
ξ1 − ξ2

2

)(
c1 · ξx1

1 + c2 · ξ2x2−x1
1

)
p2 =

(
ξ1 − ξ2

2

)(
c1 · ξx1

1 − c2 · ξ
2x2−x1
1

)
p3 =

(
ξ1 − ξ2

2

)(
2c2 · ξ2x2−x1

1

)
We also assume that the above formula for p(x) extends
to the points of the form x : 0 = x1 > x2 and
x : 0 > x1 = x2 and x : 0 = x1 = x2. We equate

p1(x) and p2(x) for x : 0 = x1 > x2, as now leading
and middle experts are identical from the adversary’s
point of view. Similarly, we equate p2(x) and p3(x) for
x : 0 > x1 = x2; and equate p1(x), p2(x) and p3(x) for
x : 0 = x1 = x2. From these equations we deduce that

c1 =
1

ξ1 − ξ2
; c2 =

1

3 (ξ1 − ξ2)
.

This results in the following expression for the regret
f(x):

(C.11) f(x) =
ξx1
1

ξ1 − ξ2
+

ξ2x2−x1
1

3 (ξ1 − ξ2)
,

which gives us regret of 4
3(ξ1−ξ2) at x = (0, 0). As δ → 0

the regret

Rδ =
4

3 (ξ1 − ξ2)
=

2(1− δ)
3
√
δ · (2− δ)

−→
δ→0

2

3
√

2δ
.

THEOREM C.1. Equation (C.11) gives the precise value
of the regret for every normalized x : 0 ≥ x1 ≥
x2. Moreover, the optimal algorithm chooses leading,
middle and lagging experts respectively with the following
probabilities p1(x), p2(x), and p3(x):

1− p1(x) =
ξx1
1

2
+
ξ2x2−x1
1

6

p2(x) =
ξx1
1

2
− ξ2x2−x1

1

6

p3(x) =
ξ2x2−x1
1

3
(C.12)

Proof. To prove this theorem we shall first verify that the
function f(·) given by (C.11) together with the probabil-
ities (C.12) satisfies combined system of equations (C.7),
(C.8), (C.9) for every x : 0 ≥ x1 ≥ x2.

Then the expression (C.11) immediately gives us an
upper bound on the regret function f(x). Indeed, if we
fix strategy of the algorithm to be as in (C.12), then
f(x) would be an upper bound on the regret that the best
response adversary (with respect to this fixed algorithm)
could get.

Finally, to show matching lower bound we will con-
sider the best response strategy of the adversary in (C.11),
i.e., those lines in RHS of (C.7), (C.8), (C.9) which are
equal to LHS. We will make sure that among these strate-
gies the adversary can always compose a mixed strategy
which is balanced, i.e. the one that makes algorithm com-
pletely indifferent between all experts. Assume that we
have restricted our adversary to these mixed strategies.



Then any algorithm will be the best response algorithm,
in particular the algorithm defined by (C.12). Hence, this
particular restricted strategy of the adversary provides a
lower bound given by (C.11) on the regret function f(x).

We begin by verifying (C.7) for the interior points

x : 0 > x1 > x2.

LEMMA C.1. Equation (C.7) holds true for the interior
points x : 0 > x1 > x2.

ξx1
1

ξ1 − ξ2
+

ξ2x2−x1
1

3 (ξ1 − ξ2)
= (1− δ) ·max



ξ
x1−1
1

ξ1−ξ2 +
ξ
2x2−x1−1
1

3(ξ1−ξ2) +
ξ
x1
1

2 +
ξ
2x2−x1
1

6 // {1}
ξ
x1+1
1

ξ1−ξ2 +
ξ
2x2−x1+1
1

3(ξ1−ξ2) −
ξ
x1
1

2 −
ξ
2x2−x1
1

6 // {23}
ξ
x1−1
1

ξ1−ξ2 +
ξ
2x2−x1+1
1

3(ξ1−ξ2) +
ξ
x1
1

2 −
ξ
2x2−x1
1

6 // {13}
ξ
x1+1
1

ξ1−ξ2 +
ξ
2x2−x1−1
1

3(ξ1−ξ2) −
ξ
x1
1

2 +
ξ
2x2−x1
1

6 // {2}
ξ
x1
1

ξ1−ξ2 +
ξ
2x2−x1−2
1

3(ξ1−ξ2) +
ξ
2x2−x1
1

3 // {12}
ξ
x1
1

ξ1−ξ2 +
ξ
2x2−x1+2
1

3(ξ1−ξ2) −
ξ
2x2−x1
1

3 // {3}
ξ
x1
1

ξ1−ξ2 +
ξ
2x2−x1
1

3(ξ1−ξ2) // {123}
ξ
x1
1

ξ1−ξ2 +
ξ
2x2−x1
1

3(ξ1−ξ2) // {}

Proof. Clearly, the lines {} and {123} in the RHS are
smaller than the LHS. Since we have chosen f(x) accord-
ing to (C.10), it immediately follows that the average of
the lines {1} and {23} in RHS as well as average of the
lines {13} and {2} in RHS are equal to the the LHS. We
further notice that p1, p2, p3 were chosen so that the RHS
expressions in lines {1} and {23} are equal as well as are
equal expressions in lines {13} and {2}. This makes the

expressions in lines 1-4 in the RHS to be equal to the LHS.
We are only left to verify that LHS is greater than or

equal to the expressions in the lines 5 and 6 in the RHS.
We recall that ξ1 > 1 > ξ2 are the roots of the polynomial
x2 − 2

1−δx+ 1, so that ξ1 · ξ2 = 1 and ξ1 + ξ2 = 2
1−δ .

For the line {12} in RHS we need to verify the
following.

1

1− δ

(
ξx1
1

ξ1 − ξ2
+

ξ2x2−x1
1

3 (ξ1 − ξ2)

)
≥ ξx1

1

ξ1 − ξ2
+
ξ2x2−x1−2
1

3 (ξ1 − ξ2)
+
ξ2x2−x1
1

3

Equivalently, we need to show(
δ

1− δ

)
ξx1
1

ξ1 − ξ2
≥ ξ2x2−x1

1

3 (ξ1 − ξ2)

(
ξ22 −

1

1− δ
+ ξ1 − ξ2

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
ξ22 −

1

1− δ
+

2

1− δ
− 2ξ2

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
2

1− δ
ξ2 − 1− 2ξ2 +

1

1− δ

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
δ

1− δ

)
(2ξ2 + 1) .

The last inequality holds true as

ξ2x1−2x2
1 ≥ 1 ≥ 2ξ2 + 1

3
.

Similarly for the line {3} in RHS we need to verify that

1

1− δ

(
ξx1
1

ξ1 − ξ2
+

ξ2x2−x1
1

3 (ξ1 − ξ2)

)
≥ ξx1

1

ξ1 − ξ2
+
ξ2x2−x1+2
1

3 (ξ1 − ξ2)
− ξ2x2−x1

1

3



After some transformation we need to show that

(
δ

1− δ

)
ξx1
1

ξ1 − ξ2
≥ ξ2x2−x1

1

3 (ξ1 − ξ2)

(
ξ21 −

1

1− δ
− ξ1 + ξ2

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
ξ21 −

1

1− δ
+

2

1− δ
− 2ξ1

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
2

1− δ
ξ1 − 1− 2ξ1 +

1

1− δ

)
=

ξ2x2−x1
1

3 (ξ1 − ξ2)

(
δ

1− δ

)
(2ξ1 + 1) .

We further compare LHS with RHS of the last in-
equality. We need to prove that

ξ2x1−2x2
1 ≥ 2ξ1 + 1

3
.

Since x1 > x2, we observe that ξ2x1−2x2
1 ≥ ξ21 . The

desired inequality is true, as ξ21 ≥
2ξ1+1

3 .

We next consider a few cases for boundary points
when there are ties between leading, middle and legging
experts. However, if there is no change in the order of
experts after adversary’s action, most of our derivations in
Lemma C.1 applies to the boundary cases as well.

LEMMA C.2. Equation (C.8) holds true for the boundary
points x : 0 = x1 > x2.

Proof. We note that the expressions in the lines {1}, {13},
{12}, and {3} of (C.8) are the same as in Lemma C.1 for
x1 = 0, since the order of leading, middle, and legging
experts does not change for any of these choices of the
adversary.

We observe that p1 = 1− 1
2 −

ξ
2x2
1

6 = 1
2 −

ξ
2x2
1

6 = p2
for boundary points x : 0 = x1 > x2. Furthermore, as
first two experts are the same, leading and middle expert
are equivalent from the perspective of the adversary. It
implies that lines {1} and {2} as well as lines {13} and
{23} in the RHS of (C.8) are identical. We conclude the
proof by observing that

1. LHS is equal to the line {1} in RHS (same argument
as in Lemma C.1), which is equal to the expression
in the line {2} of RHS.

2. LHS is equal to the expression in the line {13} in
RHS (same argument as in Lemma C.1), which is
the same as the line {23} in RHS.

3. LHS is at least the expressions in the lines {12} and
{3} (same argument as in Lemma C.1). Indeed, we

only used the fact that x1 − x2 > 0 and analyti-
cally all the rest derivations remain the same as in
Lemma C.1.

LEMMA C.3. Equation (C.8) holds true for the boundary
points x : 0 > x = x1 = x2.

Proof. We note that the expressions in the lines {1}, {2},
{12}, and {23} of (C.8) are the same as in Lemma C.1
for x = x1 = x2, since the order of leading, middle, and
legging experts does not change for any of these choices
of the adversary.

We observe that p2 =
ξx1
2 −

ξx1
6 =

ξx1
3 = p3 for

boundary points x : 0 > x = x1 = x2. Furthermore, as
last two experts are the same, middle and legging experts
are equivalent from the perspective of the adversary. It
implies that lines {2} and {3} as well as lines {13} and
{12} in the RHS of (C.8) are identical. We conclude the
proof by observing that

1. LHS is equal to the expression in the line {2} in RHS
(same argument as in Lemma C.1), which is equal to
the expression in the line {3} of RHS.

2. LHS is at least the expression in the line {12} in RHS
(same argument as in Lemma C.1), which is the same
as the line {13} in RHS. Indeed, for the line {12} we
don’t need x1 to be strictly greater than x2 and our
derivations as in Lemma C.1 do not change.

3. LHS is equal to the expressions in the lines {12} and
{3} (same argument as in Lemma C.1).

LEMMA C.4. Equation (C.9) holds true for the boundary
point x : 0 = x1 = x2.

Proof. We observe that p1 = 1 − ξ01
2 −

ξ01
6 =

ξ01
2 −

ξ01
6 =

p2 =
ξ01
3 = p3. Therefore, the lines {1}, {2}, and

{3} in RHS are identical, similarly are identical the lines



{12}, {23}, and {13}. We also notice that expression
in the lines {1} and {12} in (C.9) are special cases of
the corresponding expressions in (C.7) for x1 = x2 =
0. Expression in the line {12} in RHS is not greater
than LHS, because our derivations from Lemma C.1
analytically remain the same and for the expression in line
{12} we only need x1 ≥ x2.

We conclude the proof by observing that

1. LHS is equal to the expression in the line {1} in RHS
(same argument as in Lemma C.1), which is equal to
the expressions in the lines {2} and {3} in RHS.

2. LHS is at least the expression in the line {12} in RHS
(same argument as in Lemma C.1), which is the same
as the lines {13} and {23} in RHS.

We summarize below the best choices for the adver-
sary (lines in RHS of (C.7),(C.8),(C.9) which are equal to
LHS).

x : 0 > x1 > x2 {1}, {23}, {13}, {2}.

x : 0 = x1 > x2 {1}, {2}, {13}, {23}.

x : 0 > x1 = x = x2 {1}, {23}, {2}, {3}.

x : 0 = x1 = x2 {1}, {2}, {3}.

The corresponding mixed balanced strategies of the
adversary are:

x : 0 > x1 > x2 {1}{23}, or {13}{2}.

x : 0 = x1 > x2 {1}{23}, or {13}{2}.

x : 0 > x1 = x = x2 {1}{23}, or {1}{2}{3}.

x : 0 = x1 = x2 {1}{2}{3}.

This concludes the proof of Theorem C.1 and hence
Theorem 4.2.

D Comparison with multiplicative weights algorithm
In this section, we show that the optimal algorithm is not
in the family of multiplicative weight algorithms.

Multiplicative weights algorithm (MWA). Given
cumulative gainsG1t−1, . . . , Gkt−1 for the k experts after
t − 1 steps, MWA computes the exponentials of these
cumulative gains and follows expert i with probability
proportional to these exponentials. Formally, MWA at
time t follows expert i with probability exp(ηGit−1)∑

j exp(ηGjt−1)
,

where η is a parameter that can be tuned. For the special
case of 2 experts, this description can be simplified: let
d(t− 1) = G1t−1 −G2t−1 where we use 1 and 2 denote
the leading and lagging experts respectively. Then, MWA
follows the leading expert with probability eηd(t−1)

eηd(t−1)+1
and

the lagging expert with probability 1
eηd(t−1)+1

.

D.1 Optimal algorithm is not in the MWA family
Even for k = 2 experts, the optimal algorithm is not in
the MWA family. From the tuple representation of MWA
and OPT, namely,

MWA:

(
eηd

eηd + 1
,

1

eηd + 1

)
, and OPT:

(
1− 1

2
ξd,

1

2
ξd
)

,

it is clear that the optimal algorithm cannot be expressed
as a multiplicative weights algorithm. We now show that
even a convex combination of MWAs cannot express it.

FACT D.1. No convex combination of multiplicative
weight algorithms can express the optimal algorithm.

Proof. We show that even if at every step, the parameter η
was allowed to be drawn from a measure µ, MWA cannot
express the optimal algorithm, i.e., for no measure µ can
we have that for all integer d ≥ 0,

∫∞
−∞

dµ(η)
eηd+1

= 1
2ξ
d,

or equivalently,
∫∞
−∞

dµ(η)
(ξeη)d+ξd

= 1
2 . Let η0 be such that

ξeη0 = 1 (note that ξ < 1). The measure on {η : η < η0}
should be 0 for otherwise the denominator in the integral
goes to 0 as d → ∞, which will make the integral go to
∞ where as the RHS is just 1

2 . Likewise, any measure on
η : η > η0 doesn’t contribute to the integral as d → ∞
since the integral will anyway be 0 in the region (η0,∞).
Thus, for the integral to be 1

2 as d→∞, we need µ(η0) =
1
2 . We now expand twice the LHS, namely, the integral∫∞
η0

2dµ(η)
(ξeη)d+ξd

by splitting it into two terms: the first term
is the integral at η0 where the measure is µ(η0) = 1

2
and ξeη0 = 1, and the second term is the integral in the
region (η0,∞). So we have

∫∞
η0

2dµ(η)
(ξeη)d+ξd

= 1
ξd+1

+∫
(η0,∞)

2dµ(η)
(ξeη)d+ξd

. If this were to be equal to twice the

RHS, namely 1, we need ξd

ξd+1
=
∫
(η0,∞)

2dµ(η)
(ξeη)d+ξd

. Or

equivalently, we need 1
ξd+1

=
∫
(η0,∞)

2dµ(η)
(ξ2eη)d+ξ2d

. Now,
as d → ∞, the LHS approaches 1. For the RHS to
approach 1 as d → ∞, we need that µ(η′) = 1

2 , where
η′ is such that ξ2η′ = 1. This completes the proof.
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