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Graphical Models: Challenges

2

Bayesian Network Markov Network

Sprinkler Rain

Grass Wet

Advantage: Compactly represent probability

Problem: Inference is intractable

Problem: Learning is difficult

Restricted Boltzmann 

Machine (RBM)



 Stack many layers

E.g.: DBN [Hinton & Salakhutdinov, 2006]

CDBN [Lee et al., 2009]

DBM [Salakhutdinov & Hinton, 2010]

 Potentially much more powerful than 

shallow architectures [Bengio, 2009]

 But …

 Inference is even harder

 Learning requires extensive effort
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Deep Learning
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Learning: Requires approximate inference

Inference: Still approximate

Graphical 

Models
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E.g., hierarchical mixture model, 

thin junction tree, etc.

Problem: Too restricted

Graphical 

Models

Existing 

Tractable 

Models
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This Talk: Sum-Product Networks

Compactly represent partition function 

using a deep network

Graphical 

Models

Existing 

Tractable 

Models

Sum-Product 

Networks
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Graphical 

Models

Existing 

Tractable 

Models

Sum-Product 

Networks

Exact inference linear time    

in network size
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Graphical 

Models

Existing 

Tractable 

Models

Sum-Product 

Networks

Can compactly represent 

many more distributions
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Graphical 

Models

Existing 

Tractable 

Models

Sum-Product 

Networks

Learn optimal way to       

reuse computation, etc.
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Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion



 Bottleneck: Summing out variables

 E.g.: Partition function

Sum of exponentially many products

Why Is Inference Hard?

 1 1
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Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  I[X1=1]  I[X2=1]

+ 0.2  I[X1=1]  I[X2=0]

+ 0.1  I[X1=0]  I[X2=1]

+ 0.3  I[X1=0]  I[X2=0]

Network Polynomial [Darwiche, 2003]
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Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  I[X1=1]  I[X2=1]

+ 0.2  I[X1=1]  I[X2=0]
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Network Polynomial [Darwiche, 2003]



Shorthand for Indicators

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  X1  X2

+ 0.2  X1  X2

+ 0.1  X1  X2

+ 0.3  X1  X2





 

14

Network Polynomial [Darwiche, 2003]



Sum Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4  X1  X2

+ 0.2  X1  X2

+ 0.1  X1  X2

+ 0.3  X1  X2





 

e: X1 = 1

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
 

Easy: Set both indicators to 1
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Graphical Representation




0.4

  

0.2 0.1
0.3


X1 X2X1


X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3
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But … Exponentially Large

Example: Parity

Uniform distribution over states with even number of 1’s

17






X2 X2


X3 X3


X1 X1 X4

         

X4


X5 X5

2N-1

N2N-1
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But … Exponentially Large

Example: Parity

Uniform distribution over states of even number of 1’s

18






X2 X2


X3 X3


X1 X1 X4

         

X4


X5 X5

Can we make this more compact?

18
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Use a Deep Network

19

O(N)

Example: Parity

Uniform distribution over states with even number of 1’s
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Use a Deep Network

20

Example: Parity

Uniform distribution over states of even number of 1’s

Induce many hidden layers 

Reuse partial computation



Arithmetic Circuits (ACs)

 Data structure for efficient inference

 Darwiche [2003]

 Compilation target of Bayesian networks

 Key idea: Use ACs instead to define a 

new class of deep probabilistic models

 Develop new deep learning algorithms 

for this class of models

21
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Sum-Product Networks (SPNs)

 Rooted DAG

 Nodes: Sum, product, input indicator

 Weights on edges from sum to children

22






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2
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Distribution Defined by SPN

P(X)  S(X)

23






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2

23
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




0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2

1 0 1 1e: X1 = 1

P(e)  Xe S(X)           S(e)

Can We Sum Out Variables?

=
?
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Valid SPN

 SPN is valid if S(e) = Xe S(X) for all e

 Valid  Can compute marginals efficiently

 Partition function Z  can be computed by       
setting all indicators to 1 

25
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Valid SPN: General Conditions

Theorem: SPN is valid if it is complete & consistent

26

Incomplete Inconsistent

Complete: Under sum, children 

cover the same set of variables

Consistent: Under product, no variable 

in one child and negation in another

S(e)  Xe S(X) S(e)  Xe S(X)



Semantics of Sums and Products

 Product  Feature  Form feature hierarchy

 Sum  Mixture (with hidden var. summed out)
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



I[Yi = j]

i

j

…… ……


j

wij


i

…… ……

wijSum out Yi
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Inference

Probability:  P(X) = S(X) / Z






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1





0.51
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Inference

If weights sum to 1 at each sum node 

Then Z = 1, P(X) = S(X)






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1





0.51
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Inference

Marginal:  P(e) = S(e) / Z






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 1 1

0.6 0.9

0.69 = 0.51  0.18
e: X1 = 1

X1 1

X1 0

X2 1

X2 1




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Inference

0.7 0.3


X1 X2

0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3  0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1





MPE: Replace sums with maxes

MAX MAX MAX MAX

MAX

 

0.7  0.42 = 0.294

Darwiche [2003]
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Inference

0.7 0.3


X1 X2

0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3  0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1





MAX: Pick child with highest value

MAX MAX MAX MAX

MAX

 

0.7  0.42 = 0.294

Darwiche [2003]
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Handling Continuous Variables

 Sum  Integral over input

 Simplest case: Indicator  Gaussian 

SPN compactly defines a very large 

mixture of Gaussians
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SPNs Everywhere

 Graphical models

34

• Existing tractable mdls. & inference mthds.

• Determinism, context-specific indep., etc.

• Can potentially learn the optimal way
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SPNs Everywhere

 Graphical models

 Methods for efficient inference

35

E.g., arithmetic circuits, 

AND/OR graphs, case-factor diagrams

SPNs are a class of probabilistic models

SPNs have validity conditions

SPNs can be learned from data
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SPNs Everywhere

 Graphical models

 Models for efficient inference

 General, probabilistic convolutional network

36

Sum: Average-pooling

Max: Max-pooling
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SPNs Everywhere

 Graphical models

 Models for efficient inference

 General, probabilistic convolutional network

 Grammars in vision and language

37

E.g., object detection grammar,

probabilistic context-free grammar

Sum: Non-terminal

Product: Production rule
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Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion
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General Approach

 Start with a dense SPN

 Find the structure by learning weights

Zero weights signify absence of connections

 Can learn with gradient descent or EM
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The Challenge

 Gradient diffusion: Gradient quickly dilutes

 Similar problem with EM

 Hard EM overcomes this problem
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Our Learning Algorithm

 Online learning  Hard EM

 Sum node maintains counts for each child

 For each example

 Find MPE instantiation with current weights

 Increment count for each chosen child

 Renormalize to set new weights

 Repeat until convergence
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Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion
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Task: Image Completion

 Methodology:

 Learn a model from training images

 Complete unseen test images

 Measure mean square errors

 Very challenging

 Good for evaluating deep models
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Datasets

 Main evaluation: Caltech-101 [Fei-Fei et al., 2004]

 101 categories, e.g., faces, cars, elephants

 Each category: 30 – 800 images

 Also, Olivetti [Samaria & Harter, 1994] (400 faces)

 Each category: Last third for test

Test images: Unseen objects
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SPN Architecture

Whole Image

Region

Pixel



   ......

…

......



x







......



 



......

 …

y
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Decomposition


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Decomposition



     

 

……

……
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Systems

 SPN

 DBM [Salakhutdinov & Hinton, 2010]

 DBN [Hinton & Salakhutdinov, 2006]

 PCA [Turk & Pentland, 1991]

 Nearest neighbor [Hays & Efros, 2007]
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Caltech: Mean-Square Errors

DBNNN SPN

Left Bottom

PCA DBM DBNNN SPNPCA DBM
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SPN vs. DBM / DBN 

 SPN is order of magnitude faster

 No elaborate preprocessing, tuning

 Reduced errors by 30-60%

 Learned up to 46 layers

SPN DBM / DBN

Learning 2-3 hours Days

Inference < 1 second Minutes or hours



51

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original
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Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original
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Example Completions
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Example Completions
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Example Completions

SPN

DBN
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DBM

PCA

Original
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Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original
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Open Questions

 Other learning algorithms

 Discriminative learning

 Architecture

 Continuous SPNs

 Sequential domains

 Other applications



End-to-End Comparison

58

Data
General 

Graphical Models
Performance

Data
Sum-Product 

Networks
Performance

Approximate Approximate

Approximate Exact

Given same computation budget, 

which approach has better performance?



Graphical 

Models

Existing 

Tractable 

Models

Sum-Product 

Networks
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True Model Approximate Inference

Optimal SPN
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Conclusion

 Sum-product networks (SPNs)

 DAG of sums and products

 Compactly represent partition function

 Learn many layers of hidden variables

 Exact inference: Linear time in network size

 Deep learning: Online hard EM

 Substantially outperform state of the art on 
image completion


