
11

Sum-Product Networks:

A New Deep Architecture

Hoifung Poon
Microsoft Research

Joint work with Pedro Domingos

2

Graphical Models: Challenges

2

Bayesian Network Markov Network

Sprinkler Rain

Grass Wet

Advantage: Compactly represent probability

Problem: Inference is intractable

Problem: Learning is difficult

Restricted Boltzmann

Machine (RBM)

 Stack many layers

E.g.: DBN [Hinton & Salakhutdinov, 2006]

CDBN [Lee et al., 2009]

DBM [Salakhutdinov & Hinton, 2010]

 Potentially much more powerful than

shallow architectures [Bengio, 2009]

 But …

 Inference is even harder

 Learning requires extensive effort
3

Deep Learning

3

Learning: Requires approximate inference

Inference: Still approximate

Graphical

Models

4

E.g., hierarchical mixture model,

thin junction tree, etc.

Problem: Too restricted

Graphical

Models

Existing

Tractable

Models

5

This Talk: Sum-Product Networks

Compactly represent partition function

using a deep network

Graphical

Models

Existing

Tractable

Models

Sum-Product

Networks

6

Graphical

Models

Existing

Tractable

Models

Sum-Product

Networks

Exact inference linear time

in network size

7

Graphical

Models

Existing

Tractable

Models

Sum-Product

Networks

Can compactly represent

many more distributions

8

Graphical

Models

Existing

Tractable

Models

Sum-Product

Networks

Learn optimal way to

reuse computation, etc.

9

1010

Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion

 Bottleneck: Summing out variables

 E.g.: Partition function

Sum of exponentially many products

Why Is Inference Hard?

 1 1

1
(, ,) , ,N j N

j

P X X X X
Z

 

 j

X j

Z X  

11

Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  I[X1=1]  I[X2=1]

+ 0.2  I[X1=1]  I[X2=0]

+ 0.1  I[X1=0]  I[X2=1]

+ 0.3  I[X1=0]  I[X2=0]

Network Polynomial [Darwiche, 2003]

12

Alternative Representation

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  I[X1=1]  I[X2=1]

+ 0.2  I[X1=1]  I[X2=0]

+ 0.1  I[X1=0]  I[X2=1]

+ 0.3  I[X1=0]  I[X2=0]

13

Network Polynomial [Darwiche, 2003]

Shorthand for Indicators

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4  X1  X2

+ 0.2  X1  X2

+ 0.1  X1  X2

+ 0.3  X1  X2





 

14

Network Polynomial [Darwiche, 2003]

Sum Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4  X1  X2

+ 0.2  X1  X2

+ 0.1  X1  X2

+ 0.3  X1  X2





 

e: X1 = 1

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
 

Easy: Set both indicators to 1
15

Graphical Representation




0.4

  

0.2 0.1
0.3


X1 X2X1


X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

16

But … Exponentially Large

Example: Parity

Uniform distribution over states with even number of 1’s

17






X2 X2


X3 X3


X1 X1 X4

         

X4


X5 X5

2N-1

N2N-1

17

But … Exponentially Large

Example: Parity

Uniform distribution over states of even number of 1’s

18






X2 X2


X3 X3


X1 X1 X4

         

X4


X5 X5

Can we make this more compact?

18

19

Use a Deep Network

19

O(N)

Example: Parity

Uniform distribution over states with even number of 1’s

20

Use a Deep Network

20

Example: Parity

Uniform distribution over states of even number of 1’s

Induce many hidden layers

Reuse partial computation

Arithmetic Circuits (ACs)

 Data structure for efficient inference

 Darwiche [2003]

 Compilation target of Bayesian networks

 Key idea: Use ACs instead to define a

new class of deep probabilistic models

 Develop new deep learning algorithms

for this class of models

21

22

Sum-Product Networks (SPNs)

 Rooted DAG

 Nodes: Sum, product, input indicator

 Weights on edges from sum to children

22






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2

23

Distribution Defined by SPN

P(X)  S(X)

23






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2

23

2424






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6

X1


X2

1 0 1 1e: X1 = 1

P(e)  Xe S(X) S(e)

Can We Sum Out Variables?

=
?

25

Valid SPN

 SPN is valid if S(e) = Xe S(X) for all e

 Valid  Can compute marginals efficiently

 Partition function Z can be computed by
setting all indicators to 1

25

26

Valid SPN: General Conditions

Theorem: SPN is valid if it is complete & consistent

26

Incomplete Inconsistent

Complete: Under sum, children

cover the same set of variables

Consistent: Under product, no variable

in one child and negation in another

S(e)  Xe S(X) S(e)  Xe S(X)

Semantics of Sums and Products

 Product  Feature  Form feature hierarchy

 Sum  Mixture (with hidden var. summed out)

27





I[Yi = j]

i

j

…… ……


j

wij


i

…… ……

wijSum out Yi

28

Inference

Probability: P(X) = S(X) / Z






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1





0.51

29

Inference

If weights sum to 1 at each sum node

Then Z = 1, P(X) = S(X)






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 0 1

0.6 0.9 0.7 0.8

0.42 0.72

X: X1 = 1, X2 = 0

X1 1

X1 0

X2 0

X2 1





0.51

30

Inference

Marginal: P(e) = S(e) / Z






0.7 0.3


X1 X2

 



0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 1 1

0.6 0.9

0.69 = 0.51  0.18
e: X1 = 1

X1 1

X1 0

X2 1

X2 1





31

Inference

0.7 0.3


X1 X2

0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3  0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1





MPE: Replace sums with maxes

MAX MAX MAX MAX

MAX

 

0.7  0.42 = 0.294

Darwiche [2003]

32

Inference

0.7 0.3


X1 X2

0.80.30.1
0.20.70.90.4

0.6


X1 X2

1 0 1 1

0.6 0.9 0.7 0.8

0.42 0.72

0.3  0.72 = 0.216e: X1 = 1

X1 1

X1 0

X2 1

X2 1





MAX: Pick child with highest value

MAX MAX MAX MAX

MAX

 

0.7  0.42 = 0.294

Darwiche [2003]

33

Handling Continuous Variables

 Sum  Integral over input

 Simplest case: Indicator  Gaussian

SPN compactly defines a very large

mixture of Gaussians

34

SPNs Everywhere

 Graphical models

34

• Existing tractable mdls. & inference mthds.

• Determinism, context-specific indep., etc.

• Can potentially learn the optimal way

35

SPNs Everywhere

 Graphical models

 Methods for efficient inference

35

E.g., arithmetic circuits,

AND/OR graphs, case-factor diagrams

SPNs are a class of probabilistic models

SPNs have validity conditions

SPNs can be learned from data

36

SPNs Everywhere

 Graphical models

 Models for efficient inference

 General, probabilistic convolutional network

36

Sum: Average-pooling

Max: Max-pooling

37

SPNs Everywhere

 Graphical models

 Models for efficient inference

 General, probabilistic convolutional network

 Grammars in vision and language

37

E.g., object detection grammar,

probabilistic context-free grammar

Sum: Non-terminal

Product: Production rule

3838

Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion

39

General Approach

 Start with a dense SPN

 Find the structure by learning weights

Zero weights signify absence of connections

 Can learn with gradient descent or EM

4040

The Challenge

 Gradient diffusion: Gradient quickly dilutes

 Similar problem with EM

 Hard EM overcomes this problem

4141

Our Learning Algorithm

 Online learning  Hard EM

 Sum node maintains counts for each child

 For each example

 Find MPE instantiation with current weights

 Increment count for each chosen child

 Renormalize to set new weights

 Repeat until convergence

4242

Outline

 Sum-product networks (SPNs)

 Learning SPN

 Experimental results

 Conclusion

43

Task: Image Completion

 Methodology:

 Learn a model from training images

 Complete unseen test images

 Measure mean square errors

 Very challenging

 Good for evaluating deep models

44

Datasets

 Main evaluation: Caltech-101 [Fei-Fei et al., 2004]

 101 categories, e.g., faces, cars, elephants

 Each category: 30 – 800 images

 Also, Olivetti [Samaria & Harter, 1994] (400 faces)

 Each category: Last third for test

Test images: Unseen objects

45

SPN Architecture

Whole Image

Region

Pixel



  

…

......



x







......



 



......

 …

y

46

Decomposition



47

Decomposition



     

 

……

……

4848

Systems

 SPN

 DBM [Salakhutdinov & Hinton, 2010]

 DBN [Hinton & Salakhutdinov, 2006]

 PCA [Turk & Pentland, 1991]

 Nearest neighbor [Hays & Efros, 2007]

49

Caltech: Mean-Square Errors

DBNNN SPN

Left Bottom

PCA DBM DBNNN SPNPCA DBM

50

SPN vs. DBM / DBN

 SPN is order of magnitude faster

 No elaborate preprocessing, tuning

 Reduced errors by 30-60%

 Learned up to 46 layers

SPN DBM / DBN

Learning 2-3 hours Days

Inference < 1 second Minutes or hours

51

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

52

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

53

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

54

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

55

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

56

Example Completions

SPN

DBN

Nearest Neighbor

DBM

PCA

Original

5757

Open Questions

 Other learning algorithms

 Discriminative learning

 Architecture

 Continuous SPNs

 Sequential domains

 Other applications

End-to-End Comparison

58

Data
General

Graphical Models
Performance

Data
Sum-Product

Networks
Performance

Approximate Approximate

Approximate Exact

Given same computation budget,

which approach has better performance?

Graphical

Models

Existing

Tractable

Models

Sum-Product

Networks

59

True Model Approximate Inference

Optimal SPN

6060

Conclusion

 Sum-product networks (SPNs)

 DAG of sums and products

 Compactly represent partition function

 Learn many layers of hidden variables

 Exact inference: Linear time in network size

 Deep learning: Online hard EM

 Substantially outperform state of the art on
image completion

