
Approximate Query Processing: No Silver Bullet

Surajit Chaudhuri, Bolin Ding, Srikanth Kandula
Microsoft Reseach

{surajitc,bolind,srikanth}@microsoft.com

ABSTRACT
In this paper, we reflect on the state of the art of Approximate Query
Processing. Although much technical progress has been made in
this area of research, we are yet to see its impact on products and
services. We discuss two promising avenues to pursue towards in-
tegrating Approximate Query Processing into data platforms.

1. INTRODUCTION
While Big Data opens the possibility of gaining unprecedented

insights, it comes at the price of increased need for computational
resources (or risk of higher latency) for answering queries over
voluminous data. The ability to provide approximate answers to
queries at a fraction of the cost of executing the query in the tra-
ditional way, has the disruptive potential of allowing us to explore
large datasets efficiently. Specifically, such techniques could prove
effective in helping data scientists identify the subset of data that
needs further drill-down, discovering trends, and enabling fast vi-
sualization. In this article, we will focus on approximate query
processing schemes that are based on sampling techniques.

An approximate query processing (AQP) scheme can be char-
acterized by the generality of the query language it supports, its
error model and accuracy guarantee, the amount of work saved at
runtime, and the amount of additional resources it requires in pre-
computation. These dimensions of an AQP scheme are not inde-
pendent and much of the past work makes specific choices along
the above four dimensions. Specifically, it seems impossible to
have an AQP system that supports the richness of SQL with sig-
nificant saving of work while providing an accuracy guarantee that
is acceptable to a broad set of application workloads. Put another
way, you cannot have it all.

If indeed there is no silver bullet, it begs the question if AQP is
an impossible dream. In fact, even after decades of research, AQP
remains largely confined to academic research and is not a well-
established paradigm in today’s products and services. Since appli-
cations routinely leverage application-specific approximations, the
lack of adoption of AQP should not be viewed as evidence that ap-
proximation is uninteresting for applications. Instead, if we were to
look at the current state of AQP, we will be led to believe that, while

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17 May 14-19, 2017, Chicago, IL, USA

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4197-4/17/05.

DOI: http://dx.doi.org/10.1145/3035918.3056097

approximation is interesting for applications, approximation at the
query processing layer has proven ineffective for applications, be-
cause either the semantics of error models and the accuracy guar-
antees of AQP or the extent of savings in work accrued by AQP
have been unsatisfactory.

We firmly believe that the value proposition of AQP, outlined in
the opening of this article, is considerable in the world of big data.
We should not give up the pursuit of such systems. However, crit-
ical rethinking of our approach to AQP research is warranted with
the exclusive goal of making such systems practical [30]. The first
step in such rethinking is to be clear about what combinations of
the four dimensions of AQP will make it possible for applications
to find AQP systems attractive. In this article, we suggest two re-
search directions to pursue based on our reflection.

One promising approach may be to cede control over accuracy
to the user. This approach is based on accepting the reality that
AQP systems will not be able to offer a priori (i.e., before the query
is executed by the AQP system) accuracy guarantee for arbitrary
SQL queries. In such cases, it is better instead to equip the appli-
cation programmer with language primitives that assist them with
injecting approximation into their data intensive computation. To
that end, we extend our query languages with sampling operators
that enable the application programmer to express their application-
specific semantics of accuracy. We will call such methods query-
time sampling and discuss them in Section 2. To make sure that the
programmer has sufficiently powerful options to use sampling in
arbitrary SQL queries, novel samplers are needed. Like selection,
sampling a relation can make all subsequent computation cheaper
due to data reduction. However, unlike selection, pushing down
sampling operators is not always possible. Thus, the introduction
of new samplers introduces the novel cost-based query optimiza-
tion challenge of identifying the most performant plan among plans
that are equivalent while preserving the semantics of samplers. The
performance gains depend on how deep in the query plan the sam-
plers can be pushed and on the availability of physical access meth-
ods. Note that this model gives the programmer the ability to use
the full power of relational languages (SQL and its variants) for
their applications.

A second direction that we find attractive is one where AQP sys-
tems promise any incoming query an accuracy guarantee that is
query-independent. Such a contract allows a uniform way to lever-
age the AQP system for exploratory queries instead of having to
worry about potentially different amounts of error for each query.
At this point, we can provide this guarantee only for OLAP class
of queries (and not for all of SQL) and for a few error metrics.
Moreover, to achieve significant savings in work at runtime, such
an approach requires pre-computation. We discuss these meth-
ods in Section 3. The key intuitions are to leverage indices in a

http://dx.doi.org/10.1145/3035918.3056097


clever manner (e.g., only for small groups) in addition to using pre-
computed samples. Unlike several prior techniques where accuracy
estimates are computed a posteriori (e.g., confidence intervals over
samples), we will show how such approaches can provide a priori
error bounds.

There is such a large body of work on AQP that we do not at-
tempt to summarize all of it. Hence, we discuss all work related
to the above two directions outlined above, and review some open
problems in Section 4. Beyond technical advances in the above
two directions (as well as any other approach that provides a clear
value proposition to applications), more will be needed to make
AQP a reality. To promote user adoption, we believe that it is cru-
cially important to implement AQP in existing data platforms. It
is also important to think about new scenarios that go beyond de-
cision support queries and ask ourselves how approximate query
processing may be of value. These two issues are briefly discussed
in Section 5.

2. QUERY-TIME SAMPLING
In query-time sampling, the user explicitly specifies sampler op-

erations in the query. The syntax from the SQL:2008 standard lets a
user choose the sampler type, the sampling fraction and optionally
other sampler parameters. A query optimizer can consider samplers
as logical operators in the plan and can choose appropriate physi-
cal implementations (e.g., reservoir sampling, sampling an index)
in a cost-based manner. Each sampler operator has precise seman-
tics and the query output accurately reflects the user specification.
There is a rich history of work on query-time sampling beginning
with [71, 75]. The key advantage of such sampling is that oper-
ations that follow the sampler can execute more quickly or with
fewer resources. However, note that in this approach, the query
execution layer only knows how to faithfully execute sampler op-
erators. For general SQL queries, the querying system provides no
statistical accuracy guarantee.1 Early work [71] focused on a sam-
pler operator that picks input rows uniformly-at-random with the
given probability. Many databases and big data systems support
such a uniform sample operator [2, 3, 4, 16, 25, 38, 66, 73, 80].
Online aggregation methods [28, 37, 50, 53, 57, 74] also uniformly
sample the inputs. However, they do so in a progressive manner
which leads to further challenges which we will discuss in §2.3.
We begin by discussing some serious limitations of the uniform
sampler operator which prevent it from being used universally, and
introduce new sampler operators.

2.1 Beyond Uniform Sampling
It is natural for a user to want to insert samplers deep in their

query (e.g., sampling before a join or a selection) because doing so
would save more work at runtime.

Groups and predicates: Consider executing the following query
SELECT ZipCode, AVG(Salary) FROMR GROUP BY ZipCode on a
uniform sample of the relationR.

The uniform sample may miss the small groups entirely
or yield too few rows leading to inaccurate estimates of AVG

for small groups. Similar concerns arise when executing
queries with predicates, e.g., SELECT COUNT(∗) FROM R WHERE

County = ‘SanJuan′, on a uniform sample of the input; the uni-
form sample may yield zero rows that pass the predicate or may
yield too few rows leading to an inaccurate answer.

A standard solution for the above issue is to bias the sampling
toward small groups and rows that pass predicates [10, 11, 13, 32].
1For a sub-class of query sub-expressions, which will be described
precisely in §2.2, a posteriori error estimates can be offered.

An operator formulation for such sampling is the distinct sampler:
given parameters C, f, p, the distinct sampler yields at least f rows
(if they exist) for each distinct value of column set C and all rows
are passed with at least a probability p. A distinct sampler over the
group-by or predicate columns will pass at least f rows for each
value of these columns.

Because the distinct sampler executes at runtime in a query
pipeline, unlike the case of general stratified sampling [10, 11,
13, 32], the distinct sampler has some stringent implementation re-
quirements. Desirable properties for any sampler operator include
finishing in one pass over data, having a small memory footprint
and requiring no coordination at runtime among tasks that oper-
ate in parallel on partitions of data. A recent work shows how to
achieve these properties for the distinct sampler [60].

Joins: In typical databases and certainly in big data systems, the
data is spread across multiple tables. Since joins are costly, it is
useful to ask whether sample-then-join can have equivalent accu-
racy to join-then-sample [34, 38]? If this is possible, then joins can
execute over sampled inputs.

Most methods only support the special case of many-to-one
equijoins; e.g., key foreign-key or multiple such joins in a star
schema [11, 13, 64]. In such joins, there is a fact table and each
row from the fact table matches with at most one row from the
other dimension tables (in the presence of predicates on dimension
tables). Hence, such joins mirror a predicate over a wider rowset.
As discussed for the case of predicates above, a distinct sample of
the fact table over the join columns can suffice for such joins.

For many-to-many equi-joins, uniformly sampling the join in-
puts has both poor performance and accuracy. When multiple in-
puts are large, sampling only one input has only a small perfor-
mance improvement. Observe that for a desired sampling fraction
over the join output, pushing down uniform random sampling on
the join inputs is not performant, as the sampling fraction on each
join input will often need to be much larger than the desired sam-
pling fraction over the join output. Further, since a row in one input
can match with multiple rows in another input, obtaining a uniform
sample of the join result also requires that rows in each input be
sampled based on the frequency with which they match in the other
tables [11, 34, 35, 38, 41, 58, 64]. The applicability of techniques
that have been proposed to support such correlated sampling does
not extend to general queries such as when the input to join is a
nested SQL statement.

We now consider what kind of sampling operator might help us
effectively sample inputs to the join (i.e., push down the sampling
operation) in order to obtain a sample of the output of the join. Our
proposal for universe sampler addresses this need. Universe sam-
pler is a slight relaxation of the uniform sampler and has higher
variance but is appealing under many practical cases. Given pa-
rameters C, p, the universe sampler picks uniformly at random a
p-fraction of the values of columnset C and outputs all rows that
have those values. If multiple join inputs apply the same universe
sampler on the join columns, i.e., they pick the same random values
of the join columns,2 then universe-sample-then-join is identical to
join-then-universe-sample. Note again that the universe sample of
join output is not a uniformly random sample; it has a higher vari-
ance which can be precisely quantified. However, not only can the
universe sampler be pushed down to the inputs of join, it is also
performant because only a p fraction sample of inputs is needed to
achieve a p fraction sample of the join output. A similar idea has
been used earlier to estimate document similarity [20], to estimate
join cardinality [81] and to clean stale views [62]; however, the uni-

2this requires some support from the query optimizer.



verse sampler can be used more broadly towards sampling general
queries [60].

2.2 Query Optimization over Samplers
While the above sampler operators can be inserted as desired by

the user, large performance gains are possible when these operators
execute deep in the plan (e.g., universe sampler on join inputs as
opposed to sampling the join output). Therefore, a natural question
to ask is given a user-specified query with samplers, can we auto-
matically generate plans that are more performant while preserving
the accuracy?

Suppose samplers are specified as table valued functions. Con-
sider the following important class of query sub-expressions where
the user computes grouped aggregates over a sampled relation.

SELECT C, Agg1, . . . , Aggn
FROM R SAMPLE <samplertype> <samplerparams>
GROUP BY C

Here, C is a set of columns, Aggi are SUM-like aggregates and
most importantly R can be any general relational expression con-
sisting of, e.g., nested SQL statements. Note that this class of query
sub-expressions is much broader than is supported by many AQP
techniques [10, 11, 13, 32, 57, 64].

For any query sub-expression in the above class, a query plan
transformation rule is said to be accuracy-preserving if the follow-
ing conditions hold: (1) Each group in the query answer has the
same likelihood of appearing in both plans. (2) Estimates of aggre-
gates for each group have the same expected value in both plans.
(3) The plan produced by the transformation rule has a no worse
variance of the estimate of aggregate (compared to the plan before
the transformation).

For the above class of query sub-expressions, a recent work shows
that the query optimizer can offer more performant plans while of-
fering the same accuracy as the query specified by the user [59].
We briefly sketch the approach below.

If only the uniform sampler is supported, it is easy to show that
accuracy is preserved when pushing the sampler below selections,
projections and to the fact table in foreign-key equijoins; several
prior methods implicitly use this property [10, 11]. If the samplers
get pushed on to the base tables, they can also leverage physical
access methods (e.g., indices, columnar layouts) [71].

Interaction with the query optimizer is more interesting, how-
ever, when multiple samplers are available. The following TPC-
DS style query illustrates how interaction between samplers helps
pushdown.

SELECT COUNT(∗) FROM
(SELECT DISTINCT customer_sk
FROM store_sales, store_returns
WHERE ss_customer_sk = sr_customer_sk)
SAMPLE UNIFORM 10%

The above syntax implies that COUNT(∗) is to be computed over a
sampled relation. Since the join is not a key foreign-key join, push-
ing the uniform sampler below the join leads to large error (see §2.1
and [34]). However, a 10% universe sampler on customer_sk has
the same accuracy as the uniform sampler. Because of SELECT

DISTINCT, we know that each distinct value of customer_sk oc-
curs exactly once in the input of the sampler. Hence, a universe
sampler which picks 10% of the distinct values of customer_sk
uniformly-at-random is statistically identical to a uniform sampler
which picks 10% of the rows uniformly-at-random. Now, the uni-
verse sampler can be pushed below the equi-join. Doing so can

reduce cost substantially especially when the join is distributed.
The universe sampler can also be pushed down further, in each re-
lation, past selections, projections, foreign-key equijoins and any
equijoins on customer_sk; all of which can further lower cost.3

To facilitate sampler pushdown, as discussed in the above exam-
ple, we need to identify a set of query transformation rules that lo-
cally preserve accuracy. However, in many important cases, whether
pushing down an accuracy-preserving sampler will improve the
plan cost depends on the dataset, as in traditional query optimiza-
tion. Furthermore, a vast number of alternative plans are available.
Hence, a cost-based exploration within the context of QO is appro-
priate. The following TPC-DS style query illustrates these aspects.

SELECT i_color, SUM(ss_sales) FROM
(SELECT ∗ FROM store_sales, item
WHERE ss_item_sk = i_item_sk)
SAMPLE DISTINCT {{i_color}, 30, 10%}

Here, the user may have used the distinct sampler to ensure
that at least 30 rows will be sampled for each group (distinct
value of i_color). Column ss_item_sk is a foreign key and
store_sales is much larger than the item table. Hence, pushing
the sampler to store_sales can improve performance. But, this
pushdown appears impossible since the i_color column does not
appear in store_sales. Note however that i_color is function-
ally dependent on the join column ss_item_sk; hence pushing the
distinct sampler {{ss_item_sk}, 30, 10%} onto store_sales
will preserve accuracy. Whether or not such pushdown improves
performance, however, depends on the number of distinct values of
ss_item_sk relative to the number of distinct values of i_color.
Since the former is larger, gains from pushing the sampler below
the join may be offset by the larger sample size. Thus, a cost-based
optimization is needed to pick the appropriate plan.

Motivated by the above examples, a recent work considers the
rich interaction between samplers in a query optimizer [59]. It of-
fers several sampler pushdown rules that locally preserve accuracy.
Using these rules the QO explores many alternative plans in the
typical cost-based manner.4 A key point to note is that the new
samplers beyond the uniform sampler open up the opportunity for
new plan transformation rules; using these rules the QO can push
samplers deeper into the query plan while preserving accuracy. Of
course, the magnitude of performance gains depend on how deep
the samplers can go in the query plan.

2.3 Online Aggregation
Online aggregation is an important alternative approach to the

query-time sampling method that we discussed above. Online ag-
gregation methods (e.g., [28, 37, 50, 53, 54, 57, 74]) progressively
execute the query on prefixes of the input; they present the result
to the user and update the result as more input is processed. Under
the assumption that every prefix is a uniform random sample of the
whole input, confidence intervals for aggregates can be offered for
some queries. As more input rows are processed, the confidence in-
tervals shrink. The key advantage of online aggregation is that the
user receives an approximate answer quickly and may terminate the
query when the confidence levels are satisfactory.

Although online aggregation has an attractive value proposition,
unlike the techniques based on samplers described in Section 2.1
3The query syntax used here does not show one important aspect,
the actual aggregates in the answer are in practice replaced by ex-
pressions that are unbiased estimators of these aggregates.
4The system also uses pushdown rules that preserve accuracy only
in a weaker sense (e.g., when input size is large) because they can
lead to large performance gains; refer to the papers for details.



and Section 2.2, online aggregation needs significantly more work
to integrate into existing data platforms. First, they need physical
access methods that satisfy the criteria that each prefix of the input
is a uniform random sample. Without such support, random access
over tables has high I/O cost. Maintaining the invariant that every
prefix of the input is a random sample of the input as data evolves
is also challenging. Some works address the physical design is-
sues [55, 56, 76]. Next, online aggregation needs special opera-
tor implementations to support progressive execution (e.g., ripple
join) [50, 57, 64]. Ripple join [50] is a family of operators that pro-
gressively compute a join but it requires the inputs to the join to be
memory resident for efficiency. This limitation is relaxed by SMS
join [54] which divides the overall join into a union over many rip-
ple joins each of which computes a join over portions of the input
that are guaranteed to fit within memory. The DBO system [57]
improves join operator efficiency further and shows how to lever-
age indices on input. WanderJoin [64] takes the use of indices to an
extreme; it shows that given appropriate indices, a random walk-
like method which joins individual rows from the inputs can yield
a random sample of the join output. However, these indices could
be expensive to create.

3. ACCURACY GUARANTEES USING PRE-
COMPUTED SAMPLES

To achieve a much sharper reduction on response time compared
to the query-time sampling techniques introduced in Section 2, we
can draw samples from the data in a pre-processing step and use
them to process incoming queries. This intuition is hardly novel.
Indeed, there is a long line of work developed based on this idea,
e.g., [11, 10, 31, 17, 32, 33, 72, 79, 13]. Random samples from
data rows can be drawn and materialized as sample tables in the
database. These pre-computed “small” sample tables are used to
answer an incoming query, thus achieving significant reduction in
running time of the query.

As mentioned in the introduction, there are no silver bullets. In-
deed, AQP systems based on pre-computed samples focus on a sub-
class of SQL queries. A query in this class is a SQL query with
an aggregation on one or more columns, along with a predicate, a
group-by operator, and possibly foreign-key joins. Such aggrega-
tion queries are, however, very common and important in OLAP
and many business intelligence applications.

Although AQP systems based on pre-computed samples offer
low latency, a key drawback is that such systems typically do not
offer a priori accuracy guarantees. This deficiency makes query-
ing such systems “hit or miss” despite significant investments in
pre-computation that such systems demand.

In Section 3.1, we review a few representative examples of past
work. In Section 3.2, we reflect on the accuracy models provided
by such systems and explain why they fall short. In Section 3.3, we
discuss what we consider to be a promising approach - the ability
to give an accuracy guarantee in a query-independent manner using
pre-computed samples.

3.1 Choosing Samples in Pre-processing
There is a trade-off between pre-processing and query-time costs

and the accuracy of answers. How the samples are chosen and how
large the sample table are both crucial factors in the accuracy and
the effectiveness of the technique in reducing of the running time
of the query. Deciding the criteria for selecting tuples for inclusion
in the sample table is challenging. Consider an ad-hoc query with
a predicate. It could be that after the sample table is filtered by
the predicate, we may not have sufficiently many sample rows left

to accurately estimate the answer to the query. Ideally, our goal is
to ensure that sufficiently many sample rows are left in each group,
after the predicate in the incoming query is evaluated on the sample
table and the group-by is executed, so that the estimated answers
have sufficiently small errors. Similarly, the accuracy of estimation
for an aggregate such as SUM(A) is sensitive to whether the outlier
values of attribute A are in the sample.

Inspired by the stratified sampling technique [65] from statis-
tics, AQP systems calibrate sampling fractions in different parts of
a table to create samples to address this challenge. In some AQP
systems, such calibration is done purely based on the schema and
statistics of the table (workload-independent), e.g., [11, 10, 31, 17].
This line of work was initiated by the AQUA system [11, 10],
which considers all possible combinations of grouping columns
and chooses a different sampling fraction per combination. There is
another line of work that utilizes historical workload distributions
(workload-aware), e.g., [32, 33, 72, 79, 13], with the assumption
that future workloads are identical to, or at least, have a similar dis-
tribution to the past ones. For example, workloads are used in [46]
to construct biased samples. STRAT [32, 33] aims to minimize
the expected relative error of the query workload. We now discuss
in detail one example workload-independent and workload-aware
technique for creating the sample table.

Babcock et al. [17] proposes small group sampling, a stratified
sampling technique that builds both a global uniform sample and
a biased sample on each single column. Uniform sampling does
a satisfactory job at providing good estimates for the large groups
in an aggregation query. To improve the accuracy of aggregations
on small groups, for each column, rows with infrequent values in
that column are included in the biased sample. A query is executed
on the union of a uniform sample and all biased samples whose
columns appear in the query to estimate the answer. A shortcoming
of this approach is that, in real workloads, small groups may be
caused by the intersection of constraints on two or more columns,
which cannot be captured by the above set of biased samples.

BlinkDB [14, 13] is a representative workload-aware AQP sys-
tem, which can handle small groups on multiple columns if these
column combinations (or parts of them) are common in the work-
load. It first abstracts workload information to the set of columns
that appear in a query (called a QCS), so that it can get a mean-
ingful estimation of the workload distribution. For each possible
QCS, it can create a stratified sample – similar stratified samples
on single columns can be found in Babcock et al. [17]. But since
it is too expensive to create and maintain stratified samples for all
QCSs, BlinkDB formulates an optimization problem to decide how
to allocate space budget across samples for different QCSs based
on previous workloads to minimize the loss of accuracy from sam-
ples for the overall workload distribution.

The inherent deficiency of workload-aware AQP systems is that
the workload may keep changing [67], especially for exploratory
workloads where AQP would be the most beneficial. Detecting
workload distribution changes and re-optimizing samples accord-
ingly can be an expensive recurring task in these systems.

Another goal while building the sample table is to ensure that
rows with different values on an aggregation column are captured,
as mentioned at the beginning of this subsection. The outlier index
proposed in [31] stores rows with outlier values on each column. It
is used together with a uniformly random sample to produce unbi-
ased estimations with reduced variances for SUM and AVG.

3.2 Lack of A Priori Accuracy Guarantees
As queries are answered against pre-computed samples, it is im-

portant for an AQP system to provide estimated errors in the an-



swers. There are several ways to measure errors in previous sys-
tems. For example, confidence intervals (CI) are used in [11, 13].
A CI = [est− w, est + w] with 90% confidence level means that,
informally, with 90% (pre-sampling) probability, the CI covers the
true answer, where est is the estimated answer for a group [65].
Mean squared error is another error model used in [32, 17]. Boot-
strap [85] is used to provide tighter error estimations in the answers.

No matter which of the above error models is used, a common
issue in the accuracy contracts of previous systems is that they can
estimate the error in an answer only after the query is processed,
but cannot guarantee that the error is below a pre-specified thresh-
old in advance. Let’s take the error models based on CIs as an ex-
ample. They can be easily supported for a broad class of sampled
inputs and for complex queries. CIs are calculated using, e.g., the
central limit theorem (CLT) or the Hoeffding inequality [47], and
can also be supported for different aggregate functions. However,
CIs are data-dependent. Namely, when the values on a column A
have a large standard deviation or a large range MAX(A)− MIN(A),
the resulting CI for a query with an aggregation SUM(A) could be
arbitrarily large. This is a critical issue for AQP systems using
pre-computed samples: with the sizes of sample tables fixed after
pre-processing, the errors or CIs can be either small or large for
an incoming query. Thus, the effectiveness of the system is “hit or
miss”.

3.3 AQP with Query-Independent Accuracy
Guarantee

To the best of our knowledge, all previous AQP systems based on
pre-computed samples (including those discussed in Section 3.1),
succeed in estimating errors for an ad-hoc query a posteriori but
fail in bounding errors (≤ ε) of every incoming query in the sup-
ported query class a priori. The ability to bound the error of an AQP
system for every query makes such AQP systems far more attrac-
tive. Asking queries on such systems then will have a Service Level
Agreement and no longer appear to be a “hit or miss” experience.

Such a strong guarantee cannot be realized for all different aggre-
gates and error models. We will focus on queries with SUM as the
aggregation function to illustrate how previous approaches fail in
providing this guarantee, and the key innovations in a recent work,
Sample+Seek [39], towards having a query-independent accuracy
guarantee for a subclass of aggregation queries. Consider the fol-
lowing simple query as an example.

SELECT B, SUM(A) FROM T
WHERE C = 10
GROUP BY B

• Better sampling strategy is needed. If the predicate “WHERE C =
10” is not selective, i.e., a large number of rows in T satisfy it,
previous approaches like Babcock et al. [17] and BlinkDB [13]
rely on mainly a uniformly random sample to estimate SUM(A) for
each group. Since each row is in the sample with equal probability,
the estimation has a large variance (error) if the distribution on A
is skewed. Both approaches can estimate the error but the error can
be arbitrarily large for a fixed sample size.

The core idea in the sampling strategy used in Sample+Seek is to
pick a row with probability proportional to its value on column A.
The intuition is that rows with values close to the average of A can
be picked with lower probability than the outliers without having a
huge impact on the resulting estimation of SUM(A). This strategy
can be thought of as a randomized version of the outlier indexing
in [31] with an optimal accuracy guarantee. It also generalizes the
accuracy analysis of uniform sampling for COUNT in [9].

• Help from indices needed. If the predicate “WHERE C = 10”
is selective, i.e., only a few rows in T satisfy it, a global random
sample does not suffice as it may contain none of these rows. We
do not need to estimate the selectivity in advance. Instead, we can
always process the query with pre-computed samples first; if there
are not sufficiently many sample rows satisfying the predicate, we
turn to indices in [39] for help. Note that these indices can use the
traditional implementation of indices in most data platforms. These
indices are used in two ways. In one way, a one-dimensional index
can be used to retrieve all the rows satisfying “C = 10” – since
there are only a few such rows, we can scan them for the exact
answer. We refer to such indices as Low-Frequency Index. Also, an
index may be used to retrieve a random sample of the IDs of rows
satisfying “C = 10”, with the property that the ID of a row appears
in this sample with probability proportional to its value on A. In
order to draw this sample for a predicate on multiple columns, we
need to compute index intersection on multiple one-dim indices;
however, we only need a prefix of the index intersection result –
the indices can be built in such a way that the prefix gives us the
desired sample of row IDs. Only for row IDs in this small sample,
we need to perform index seeks to look up values of the rows on
columns A and B, in order to estimate SUM(A) for each group.

The biased samples in Babcock et al. [17] can also be used in
the first way above, but they cannot handle selective predicates on
two or more columns, e.g., “C = 10 AND D = 20”, with the same
accuracy guarantee. Stratified samples on QCSs in BlinkDB [13]
can handle selective predicates on more than one column, but stor-
age constraints may limit the number of multi-dimensional QCSs
that can be effectively supported.

• Accuracy guarantee can be provided. The samples and their
sizes in Sample+Seek are calibrated carefully with the indices, and
they together can seamlessly cover both selective and non-selective
queries. For COUNT and SUM, Sample+Seek can provide query-
independent accuracy guarantee in terms of the distribution accu-
racy: namely, we can normalize both the exact and the estimated
answers such that the normalized values of all groups sum up to 1,
and the distribution error is defined to be the L2 distance between
the two normalized answers. For example, suppose the exact an-
swer to the example query is x = 〈69, 31〉 with two groups on B,
and the estimated answer x̂ = 〈70, 32〉 is provided; the distribution
error in x̂ is

√
(69/100− 70/102))2 + (31/100− 32/102)2 ≈

0.005. It is guaranteed that, for any query in the supported class,
the distribution error in the estimated answer is always no more
than a pre-specified error threshold ε, with high probability.

One can refer to [39] for how to support different types of pred-
icates,5 e.g., range constraints, on multiple columns, and foreign-
key joins across tables. It is also discussed how the accuracy guar-
antee generalizes for other aggregates, e.g., AVG and STD.

It is an open problem to generalize the strong accuracy guarantee
above for other error models, e.g., mean squared error. The formal
specification of the AQP problem with accuracy guarantee may be
stated as follows: for a user-given error threshold ε in a database,
pre-compute samples and indices whose total size is a function of
the database size, the class of queries supported, the set of columns
in aggregates and predicates, and the error threshold ε; such that
the system ensures that any incoming query in the supported class
can be answered using pre-computed samples and indices with an
error at most ε, with high probability.

5A technical requirement for the indices in Sample+Seek to work
effectively is that the predicates are sargable, which is common in
OLAP workloads.



3.4 Comparison with Query-Time Sampling
AQP techniques based on pre-computed samples achieve a sharp

reduction in response time in comparison to query-time sampling
techniques, but are limited to a subclass of aggregation queries
(single-block and with only key foreign-key joins). If the notion
of distribution accuracy is satisfactory to the user, Sample+Seek,
described above, provides a rigorous and a priori accuracy guar-
antee in a query-independent manner. However, such a guaran-
tee requires support for pre-computed sample tables as well as in-
dices. The cumulative costs of maintaining various samples and
indices (especially for different aggregation functions and on mul-
tiple aggregation columns) may lead to large pre-computation (and
maintenance) overhead. Considering this overhead, the ability to
compress these samples and indices to reduce the storage over-
head while maintaining run-time efficiency is a technical challenge
worth addressing. Note also that larger error tolerance helps reduce
such overhead. Sample+Seek as well as other approaches that opti-
mize samples in a workload-independent way (e.g., Babcock et al.
[17]) are better if the workload distribution is unpredictable. Sys-
tems which optimize samples based on historical workloads (e.g.,
BlinkDB [14, 13]) might be a good alternative if the workload dis-
tribution is static and the number of columns is not large.

In contrast, query-time sampling, using approaches described
in §2.1 and §2.2, does not need pre-computation or maintenance
overhead of sample tables (and indices, for Sample+Seek). And,
if queries can have nested SQL statements or joins that are not
key foreign-key equijoins then current pre-computation based tech-
niques cannot be used and query-time sampling remains the only
alternative. However, query-time sampling may have smaller per-
formance gains unless samplers can be pushed deep into the query
plan and unless there exist physical access methods on base tables
when sampler operators are pushed down to those base tables. Fur-
thermore, unlike Sample+Seek, no accuracy guarantee is provided
at the query level. Query-time sampling also blends with existing
Data Platforms most seamlessly and additional sampling operators
can be added by using the extensibility mechanisms. However, on-
line aggregation, a variant of query-time sampling, has higher en-
gineering cost of integration with existing data platforms.

4. RELATED WORK
There is such a vast body of work in approximate query pro-

cessing. In fact, a broader definition of approximate query pro-
cessing could also include techniques such as entity matching and
de-duplication. However, in this paper (and in this section on re-
lated work), we consider only approximate query processing from
the perspective of answering queries with significant reduction in
work or latency with only low error in estimated answers.

SnappyData [78, 5] supports approximate answers in a stream-
ing, transactional and interactive system. It reuses many findings
from BlinkDB [13] and some lessons are summarized in [68]. Spark-
SQL [6] supports online aggregation and so-called delta update
queries with bootstrap-based error bounds [84]. Beyond these in-
stances, approximate query processing has not gained wide adop-
tion in data platforms.

While several research works consider issues in sampling over
streams [19, 36, 18], sampler operators are not well-supported in
streaming engines (e.g., Trill [27], Spark Streaming [83]) with one
notable exception [5], as discussed above. Sampling may help be-
cause these engines are memory constrained and, unlike sketches,
samples can support more general queries.

In terms of a priori guarantees on error, only COUNT can be sup-
ported by uniform or stratified samples. SUM, AVG, and STD are

supported using the measure-biased sampler [39] and GEE [29] can
support DISTINCT COUNT. A posteriori estimates of error are easier
to offer; for COUNT, SUM, AVG, and STD and for any generalized uni-
form sampler, it is possible to compute a posteriori variance-based
bounds and tail probability bounds [70]; similar support is also pos-
sible for the distinct and universe sampler. Handling aggregates on
arbitrary arithmetic expressions and user-defined functions is more
challenging in general and many problems remain open.

To support an accuracy latency tradeoff, BlinkDB [13] uses error-
latency profiles (ELP) to choose among multiple pre-computed sam-
ples. The ELP of a query records the observed accuracy and latency
when a query is executed on a sample; it is constructed by execut-
ing the query on all pre-computed samples. The key challenge they
address is: when a new query arrives with an accuracy and perfor-
mance target, how to consult the ELPs to find an appropriate sam-
ple (if any)? In the context of query-time sampling, one can apply
sampler pushdown rules that locally trade-off a small degradation
in accuracy for better performance [59].

To improve costing inside query optimizers, samples are used to
quickly estimate the cardinality of query sub-expressions [81, 63,
41]. Cardinality estimation is akin to a COUNT(∗) query without
group. Hence, even though these techniques are related to AQP
they do not generalize to query answering.

Nirkhiwale et al. [70] show how to compute unbiased estimators
of SUM-like aggregates and variance of estimators for plans with ar-
bitrarily many generalized uniform sampler (GUS) operators. The
key idea is to transform plans with arbitrarily many samplers to
a new plan that has a single GUS operator just before the aggre-
gate such that the two plans are equivalent. This transformation
helps derive closed form expressions for the unbiased estimator and
the estimator’s variance. The above insight is extended in [60] to
consider operators that are not GUS (e.g., the distinct and universe
sampler in §2.1) and to analyze the likelihood of missing groups.
It remains an open issue to extend this analyses method for other
samplers (e.g., non GUS, not distinct and not universe). Alterna-
tively, one can use the bootstrap operator over samples to estimate
plan accuracy [12, 85, 84].

In the rest of this section, we discuss other approaches to approx-
imate query processing. View materialization [52, 15, 49] tech-
niques pre-compute answers to some queries and create summaries
to accelerate OLAP and decision-support queries exactly (no ap-
proximation). Several engines use a subset of these techniques [1,
8, 7]. Numerous efforts reduce the sizes of data cubes on high-
dimensional data; see [51] for a survey. Similarly, histograms [48],
wavelets [82, 26, 48] and sketches (discussed below) can be used
to compute some aggregates approximately; see [47] and [38] for
good summaries of these techniques. The intuition is that these
data structures act as synopses of the original data and suffice to
approximately answer a subclass of queries. Their key advantage
is that for some queries, these techniques give better answers than
sampling-based systems (e.g., exact, or estimates with a small vari-
ance). The common drawbacks are that they cannot support gen-
eral queries; they have a large space overhead for high-dimensional
datasets and the space overhead becomes even larger to support se-
lections and group-by’s.

Sketches are a specific type of data synopses [38, 40, 45] that
has had a huge impact on data stream processing [69]. Sketches are
specific to particular aggregates and can be computed in one pass
over the data. Once computed, the sketch can answer queries on the
corresponding aggregate without having to examine the raw inputs.
Because sketches gain compactness and computational efficiency
at the cost of information loss, after a sketch is constructed for one



aggregate or predicate, the sketch cannot be used to support queries
having other aggregates or predicates.

Another line of work [44, 43, 24, 42, 22] answers a specific
class of queries by accessing only a bounded number of data rows
with the help of indices built on application-induced cardinality
constraints. The BEAS system [23] uses a similar idea for AQP.
A recent work [77] proposes a deterministic approximate querying
scheme. It uses novel bit-sliced indices and evaluates a query on
the first few bits of all the rows as an approximation. Effectiveness
of such an approach for applications need to be studied.

5. WHERE TO GO FROM HERE?
As mentioned in the introduction, despite much technical progress,

approximate query processing has not gone mainstream. As a com-
munity, we can continue to make more technical progress but in
our opinion, we should pause and ask ourselves what it will take
to make approximate query processing real. In this paper, we have
argued that there is no silver bullet. In other words, there does
not appear to be a single technical challenge, solving which would
then realize the potential of approximate query processing. We
have argued that we must ask ourselves what clear value propo-
sition can we offer to users of an approximate query processing
system? Based on that analysis, we have proposed a two-pronged
approach. On one hand, we should equip an application program-
mer with important primitives in the query language so that they
can write application logic that does application-specific approxi-
mation. This motivated our work on query-time sampling (§2). On
the other hand, for a restricted query language but one that caters
to business intelligence and OLAP queries, we can provide accu-
racy guarantee in a query-independent way, using pre-computed
samples and indices (§3). By sharply reducing the latency for ad-
hoc queries along with an accuracy guarantee, data analysts can
have a new way to interact with the system for data exploration
queries. Beyond these two approaches, we as a community need to
envision alternatives where approximate query processing can offer
high value to users.

Beyond pursuing clear value propositions for approximate query
processing as discussed above, we offer these recommendations:

Integrate AQP with data platforms: AQP techniques that can be
retrofitted easily into existing data platforms will be able to ride the
curve on the engine improvements such as vectorization, colum-
nar layouts, and architectural trends. With its integration with data
platforms, AQP techniques will have a greater chance of reaching
a broad base of users. In contrast, stand-alone systems will have
to meet a very high bar both in terms of performance and the re-
quired support for querying functionality before they are widely
used. Data lake or data warehouse systems present a particularly
promising opportunity for AQP. Because queries on such platforms
can consume enormous amounts of cluster hours (e.g., log analy-
sis pipelines over click-logs or crawl-logs or cluster-logs), even if
query-time sampling offers a small relative reduction in cost (e.g.,
50%), these savings may be large in absolute terms. Furthermore,
pre-computed samples could be used to support an interactive mode
on large datasets in data lake systems; even though the query space
is restricted, users may be enticed by the low latency responses and
accuracy guarantees only.

Approximate execution mode for querying: Exposing an ap-
proximate mode for queries, especially for interactive queries, will
provide a powerful way to safely experiment with the effectiveness
of AQP systems and thus over time overcome the resistance to ac-
cept approximate answers. We envision an experimentation mode

where whenever a data analyst submits an ad-hoc query, the system
will compute both the true answer and the answer using the AQP
system concurrently. If the AQP technique can respond quickly, the
result may be presented as a quick-but-imprecise preview of the full
answer inviting the user to provide one of two responses: “continue
to answer the full query” or “cancel the full query”. Such a setting
will allow us to better evaluate the effectiveness of the AQP sys-
tems by obtaining implicit user feedback. Ideally, such a mode can
be targeted at queries that are more likely to benefit. Unlike on-
line aggregation which offers a continuously changing answer, the
approximate mode will offer only two possible answers; one from
executing the query fully and another from the AQP plan. Further-
more, unlike online aggregation, the approximate mode does not
need new operator implementations (as mentioned in §2.3). Such
an approach to evaluation can also be used for batch queries where
AQP can reduce resource usage.

Experiment with new scenarios: Interactive exploration over data
is perhaps the most direct application for AQP, as discussed. Here,
the queries could be relatively simple (e.g., only select-project-join-
groupby operations) and the user may not need a precise answer
but cares deeply about extremely quick responses [21]. Another
use case is that of production query pipelines; we see many peri-
odically recurring queries in our big data clusters that analyze logs
to compute KPIs for human consumption or for visualization dash-
boards. The inputs to such queries are enormous e.g., click logs,
server access logs. The outputs, restricted by human cognition and
screen sizes, are rather small. Hence, such queries typically have
groups and aggregates and AQP may reduce cost. However, these
queries also tend to be non-trivial (e.g., nested SQL statements).
Yet another important scenario is the challenge of extracting a sam-
ple efficiently from a back-end batch processing system so that the
sample can be reused repeatedly for experimentation by data ana-
lysts on their desktop. New scenarios also bring with them possi-
bly different kinds of accuracy requirements. For example, the user
may only care about the rank order of the result [61] or the user
may only want to preserve the labels that are output by a machine
learning classifier. How best to support different kinds of accuracy
requirements for AQP remains an open question.

Approximate query processing started with a very attractive value
proposition. It is even more attractive today with the data deluge.
But unless we rethink our approach to approximate query process-
ing with an eye towards scenarios and clear value propositions, we
will have only technical results, not usable systems.

Acknowledgements
We are deeply thankful to Christian Konig and Vivek Narasayya
for reading numerous versions of this document; their feedback has
improved this report substantially.

6. REFERENCES
[1] Microsoft powerbi. https://powerbi.microsoft.com/en-us/.
[2] Oracle data mining blog: To sample or not to sample.

https://blogs.oracle.com/datamining/entry/to_sample_or_
not_to_sample.

[3] Sampler in oracle sql server. http://bit.ly/2n7TZow.
[4] Sampling in google bigquery.

https://cloud.google.com/bigquery/docs/reference/
standard-sql/functions-and-operators#approx_top_sum.

[5] SnappyData.IO. http://www.snappydata.io.
[6] Sparksql support for continuous answers with error bars.

https://www.slideshare.net/SparkSummit/agarwal-zeng.

https://powerbi.microsoft.com/en-us/
https://blogs.oracle.com/datamining/entry/to_sample_or_not_to_sample
https://blogs.oracle.com/datamining/entry/to_sample_or_not_to_sample
http://bit.ly/2n7TZow
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#approx_top_sum
https://cloud.google.com/bigquery/docs/reference/standard-sql/functions-and-operators#approx_top_sum
http://www.snappydata.io
https://www.slideshare.net/SparkSummit/agarwal-zeng


[7] Sql server analysis services. https://technet.microsoft.com/
en-us/library/ms175609(v=sql.90).aspx.

[8] Tableau. https://www.tableau.com/products/cloud-bi.
[9] J. Acharya, I. Diakonikolas, C. Hegde, J. Z. Li, and

L. Schmidt. Fast and near-optimal algorithms for
approximating distributions by histograms. In PODS, 2015.

[10] S. Acharya, P. B. Gibbons, and V. Poosala. Congressional
samples for approximate answering of group-by queries. In
SIGMOD, 2000.

[11] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
The aqua approximate query answering system. In SIGMOD,
1999.

[12] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar, M. Jordan,
S. Madden, B. Mozafari, and I. Stoica. Knowing when
you’re wrong: Building fast and reliable approximate query
processing systems. In SIGMOD, 2014.

[13] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Eurosys, 2013.

[14] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer, S. Madden,
and I. Stoica. Blink and it’s done: Interactive queries on very
large data. PVLDB, 5(12), 2012.

[15] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated
selection of materialized views and indexes in sql databases.
In VLDB, 2000.

[16] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark sql: Relational data processing in spark.
In SIGMOD, 2015.

[17] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample
selection for approximate query processing. In SIGMOD,
2003.

[18] B. Babcock, M. Datar, and R. Motwani. Sampling from a
moving window over streaming data. In SODA, 2002.

[19] A. Bagchi, A. Chaudhary, D. Eppstein, and M. T. Goodrich.
Deterministic sampling and range counting in geometric data
streams. ACM Trans. Algorithms, 2007.

[20] A. Broder. On the resemblance and containment of
documents. In Proceedings of the Compression and
Complexity of Sequences. IEEE Computer Society, 1997.

[21] J. Brutlag. Speed matters for Google web search.
http://bit.ly/1b4RKoZ, 2009.

[22] Y. Cao and W. Fan. An effective syntax for bounded
relational queries. In SIGMOD, 2016.

[23] Y. Cao, W. Fan, and C. Hu. Data driven approximation with
bounded resources. PVLDB, 10, 2017.

[24] Y. Cao, W. Fan, T. Wo, and W. Yu. Bounded conjunctive
queries. PVLDB, 7(12), 2014.

[25] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel
Processing of Massive Datasets. In VLDB, 2008.

[26] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim.
Approximate query processing using wavelets. VLDBJ,
10(2-3), 2001.

[27] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. Platt, J. Terwilliger, J. Wernsing, and R. DeLine.
Trill: A high-performance incremental query processor for
diverse analytics. In VLDB, 2015.

[28] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable
progressive analytics on big data in the cloud. In VLDB,
2014.

[29] M. Charikar, S. Chaudhuri, R. Motwani, and V. R.
Narasayya. Towards estimation error guarantees for distinct
values. In PODS, 2000.

[30] S. Chaudhuri. What next?: a half-dozen data management
research goals for big data and the cloud. In PODS, 2012.

[31] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and
V. Narasayya. Overcoming limitations of sampling for
aggregation queries. In ICDE, 2001.

[32] S. Chaudhuri, G. Das, and V. Narasayya. A robust,
optimization-based approach for approximate answering of
aggregate queries. In SIGMOD, 2001.

[33] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified
sampling for approximate query processing. TODS, 32(2),
2007.

[34] S. Chaudhuri, R. Motwani, and V. Narasayya. On random
sampling over joins. In SIGMOD, 1999.

[35] S. Chaudhuri, R. Motwani, and V. R. Narasayya. Random
sampling for histogram construction: How much is enough?
In SIGMOD, 1998.

[36] K.-T. Chuang, H.-L. Chen, and M.-S. Chen.
Feature-preserved sampling over streaming data. ACM
Trans. Knowl. Discov. Data, 2009.

[37] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In NSDI,
2010.

[38] G. Cormode, M. Garofalakis, P. Haas, and C. Jermaine.
Synopses for massive data: Samples, histograms, wavelets,
sketches. Found. Trends databases, 2012.

[39] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and
C. Wang. Sample + seek: Approximating aggregates with
distribution precision guarantee. In SIGMOD, 2016.

[40] M. Durand and P. Flajolet. Loglog counting of large
cardinalities (extended abstract). In ESA, 2003.

[41] C. Estan and J. F. Naughton. End-biased samples for join
cardinality estimation. In ICDE, 2006.

[42] W. Fan, F. Geerts, Y. Cao, T. Deng, and P. Lu. Querying big
data by accessing small data. In PODS, 2015.

[43] W. Fan, F. Geerts, and L. Libkin. On scale independence for
querying big data. In PODS, 2014.

[44] W. Fan, X. Wang, and Y. Wu. Querying big graphs within
bounded resources. In SIGMOD, 2014.

[45] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. In DMTCS, 2007.

[46] V. Ganti, M.-L. Lee, and R. Ramakrishnan. Icicles:
Self-tuning samples for approximate query answering. In
VLDB, 2000.

[47] M. N. Garofalakis and P. B. Gibbons. Approximate query
processing: Taming the terabytes. In VLDB, 2001.

[48] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. Optimal and approximate computation of summary
statistics for range aggregates. In PODS, 2001.

[49] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Min. Knowl. Discov., 1(1),
1997.

[50] P. J. Haas and J. M. Hellerstein. Ripple joins for online
aggregation. In SIGMOD, 1999.

[51] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2011.

https://technet.microsoft.com/en-us/library/ms175609(v=sql.90).aspx
https://technet.microsoft.com/en-us/library/ms175609(v=sql.90).aspx
https://www.tableau.com/products/cloud-bi
http://bit.ly/1b4RKoZ


[52] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD, 1996.

[53] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. SIGMOD, 1997.

[54] C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, and A. Pol.
The sort-merge-shrink join. ACM Trans. Database Syst.,
2006.

[55] C. Jermaine, A. Pol, and S. Arumugam. Online maintenance
of very large random samples. In SIGMOD, 2004.

[56] C. M. Jermaine. Online random shuffling of large database
tables. IEEE Trans. Knowl. Data Eng., 19(1):73–84, 2007.

[57] C. M. Jermaine, S. Arumugam, A. Pol, and A. Dobra.
Scalable approximate query processing with the DBO
engine. In SIGMOD, 2007.

[58] N. Kamat and A. Nandi. Perfect and maximum randomness
in stratified sampling over joins. CoRR, abs/1601.05118,
2016.

[59] S. Kandula. Errata and proofs for “quickr”. Technical Report
TR-2017-14, MSR, 2017.

[60] S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl,
S. Chaudhuri, and B. Ding. Quickr: Lazily approximating
complex adhoc queries in bigdata clusters. In SIGMOD,
2016.

[61] A. Kim, E. Blais, A. G. Parameswaran, P. Indyk, S. Madden,
and R. Rubinfeld. Rapid sampling for visualizations with
ordering guarantees. PVLDB, 8(5), 2015.

[62] S. Krishnan, J. Wang, M. Franklin, K. Goldberg, and
T. Kraska. Stale view cleaning: Getting fresh answers from
stale materialized views. In VLDB, 2015.

[63] P.-A. Larson, W. Lehner, J. Zhou, and P. Zabback.
Cardinality estimation using sample views with quality
assurance. In SIGMOD, 2007.

[64] F. Li, B. Wu, K. Yi, and Z. Zhao. Wander join: Online
aggregation via random walks. In SIGMOD, 2016.

[65] S. L. Lohr. Sampling: Design and Analysis. Thomson, 2009.
[66] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,

M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. In VLDB, 2010.

[67] B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon. Cliffguard: A
principled framework for finding robust database designs. In
SIGMOD, 2015.

[68] B. Mozafari and N. Niu. A handbook for building an
approximate query engine. In IEEE Data Engineering
Bulletin, 2015.

[69] S. Muthukrishnan. Data streams: Algorithms and
applications. Foundations and Trends in Theoretical
Computer Science, 1(2), 2005.

[70] S. Nirkhiwale, A. Dobra, and C. Jermaine. A sampling
algebra for aggregate estimation. In PVLDB, 2013.

[71] F. Olken. Random Sampling from Databases. PhD thesis,
UCBerkeley, 1993.

[72] C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, and
B. Reed. Interactive analysis of web-scale data. In CIDR,
2009.

[73] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for data
processing. In SIGMOD, 2008.

[74] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
aggregation for large mapreduce jobs. PVLDB, 4(11), 2011.

[75] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of
the number of tuples satisfying a condition. In SIGMOD,
1984.

[76] A. Pol, C. M. Jermaine, and S. Arumugam. Maintaining very
large random samples using the geometric file. VLDB J.,
17(5):997–1018, 2008.

[77] N. Potti and J. M. Patel. Daq: a new paradigm for
approximate query processing. PVLDB, 8(9), 2015.

[78] J. Ramnarayan, B. Mozafari, S. Wale, S. Menon, N. Kumar,
H. Bhanawat, S. C. Y. Mahajan, R. Mishra, and K. Bachhav.
Snappydata: A hybrid transactional analytical store built on
spark. In SIGMOD, 2016.

[79] L. Sidirourgos, M. L. Kersten, and P. A. Boncz. Sciborq:
Scientific data management with bounds on runtime and
quality. In CIDR, 2011.

[80] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive- a
warehousing solution over a map-reduce framework. In
VLDB, 2009.

[81] D. Vengerov, A. Menck, M. Zait, and S. Chakkappen. Join
size estimation subject to filter conditions. In VLDB, 2015.

[82] J. S. Vitter and M. Wang. Approximate computation of
multidimensional aggregates of sparse data using wavelets.
In SIGMOD, 1999.

[83] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP, 2013.

[84] K. Zeng, S. Agarwal, A. Dave, M. Armbrust, and I. Stoica.
G-ola: Generalized on-line aggregation for interactive
analysis on big data. In SIGMOD, 2015.

[85] K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical
bootstrap: a new method for fast error estimation in
approximate query processing. In SIGMOD, 2014.


	Introduction
	Query-time sampling
	Beyond Uniform Sampling
	Query Optimization over Samplers 
	Online Aggregation

	Accuracy Guarantees using Pre-Computed Samples
	Choosing Samples in Pre-processing
	Lack of A Priori Accuracy Guarantees
	AQP with Query-Independent Accuracy Guarantee
	Comparison with Query-Time Sampling

	Related Work
	Where to go from here?
	References

