
Glimpse: Continuous, Real-Time Object Recognition on
Mobile Devices

Tiffany Yu-Han Chen
MIT CSAIL

yuhan@csail.mit.edu

Lenin Ravindranath
Microsoft Research

lenin@microsoft.com

Shuo Deng
MIT CSAIL

shuodeng@csail.mit.edu
Paramvir Bahl

Microsoft Research
bahl@microsoft.com

Hari Balakrishnan
MIT CSAIL

hari@csail.mit.edu

ABSTRACT
Glimpse is a continuous, real-time object recognition sys-
tem for camera-equipped mobile devices. Glimpse captures
full-motion video, locates objects of interest, recognizes and
labels them, and tracks them from frame to frame for the
user. Because the algorithms for object recognition entail
significant computation, Glimpse runs them on server ma-
chines. When the latency between the server and mobile de-
vice is higher than a frame-time, this approach lowers object-
recognition accuracy. To regain accuracy, Glimpse uses an
active cache of video frames on the mobile device. A subset
of the frames in the active cache are used to track objects on
the mobile, using (stale) hints about objects that arrive from
the server from time to time. To reduce network bandwidth
usage, Glimpse computes trigger frames to send to the server
for recognizing and labeling. Experiments with Android
smartphones and Google Glass over Verizon, AT&T, and a
campus Wi-Fi network show that with hardware face detec-
tion support (available on many mobile devices), Glimpse
achieves precision between 96.4% to 99.8% for continuous
face recognition, which improves over a scheme performing
hardware face detection and server-side recognition without
Glimpse’s techniques by between 1.8-2.5×. The improve-
ment in precision for face recognition without hardware de-
tection is between 1.6-5.5×. For road sign recognition, which
does not have a hardware detector, Glimpse achieves preci-
sion between 75% and 80%; without Glimpse, continuous
detection is non-functional (0.2%-1.9% precision).

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems; Interactive sys-
tems

Keywords
mobile computing; wearable computing; cloud computing;
caching; Google Glass

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SenSys’15, November 1–4, 2015, Seoul, South Korea.
c© 2015 ACM. ISBN 978-1-4503-3631-4/15/11 $15.00

DOI: http://dx.doi.org/10.1145/2809695.2809711.

Stop signStop sign

Frame 1 (t = 0 ms) Frame 20 (t = 660 ms)

Figure 1: Offloading every frame to a server re-
duces trackability (right): the stop sign’s location
is wrong.

1. INTRODUCTION
Cameras of good quality are now available on almost every

handheld and wearable mobile device. The high resolution
of these cameras coupled with pervasive wireless connectiv-
ity makes it feasible to develop continuous, real-time object
recognition applications. These applications locate objects
in a video stream and label them with information associated
with the objects. For example, an application that helps a
user assemble furniture can pinpoint and label each piece [53,
6], a driver assistance application that locates and labels
road signs can improve driver safety [28], a tourist applica-
tion that recognizes landmarks and buildings can improve
user experience, and so on. Researchers have also proposed
applications of object recognition for smart homes [45, 42]
and perceptual user interfaces [54, 36].

To support these applications, the object recognition sys-
tem must provide high trackability, i.e., it should be able to
locate an object accurately and label it with an identifier.
Achieving high trackability in real-time on mobile devices is
challenging because the required computer-vision algorithms
are computationally intensive and must run at the real-time
rate of 30 frames per second (see §2.3). Hardware support
for face detection (locating a face) is available today, but
labeling a face scales with the size of the corpus of faces,
and is infeasible on a mobile device.

For these reasons, object recognition tasks must be of-
floaded to more powerful servers. Offloading is a well-known
idea [13, 23, 22], but in the context of continuous recogni-
tion, it must be applied with care because wireless network
latencies are too high. For example, if it takes 700 millisec-
onds to transfer a frame and recognize its objects at a server
(measured time on an LTE network), when the results arrive
they will be over 20 frames old, and the located object may

Figure 2: The three computationally-intensive stages of the object recognition pipeline.

no longer be at the reported position. An example is shown
in Figure 1: the user sees incorrect results.

This paper presents the design, implementation, and eval-
uation of Glimpse, a continuous, real-time object recognition
system that achieves high trackability, while reducing the
amount of network bandwidth consumed relative to alter-
native designs. Glimpse achieves high trackability by main-
taining an active cache of frames on the mobile device, and
computing over the cached frames using the stale hints that
arrive from the server to get an estimate of an object’s lo-
cation in the current frame. Because tracking an object
through every cached frame takes too long, the active cache
subsamples frames using the rate of change between scenes,
the network delay, and the device capability.

Glimpse reduces bandwidth consumption by strategically
sending only certain trigger frames to the server to obtain
object recognition hints. Trigger frames are ones for which
the server’s answer is likely to differ from the local tracking.

Glimpse occupies an interesting point in the design space
of possible ways to split computation between the server and
mobile. The server does the hard work of recognition and
labeling, sending back both labeled objects and features to
use in the mobile’s active cache, but this information is al-
ways a little stale. The mobile tracks the objects locally us-
ing the active cache, not going through every cached frame,
and whenever a response for a past frame arrives from the
server, it “catches up” to the current frame and processes
subsequent frames in real time.

The active cache and trigger frames are generic techniques
that may be applied to a wide range of real-time, vision-
based systems. Advances in computing hardware and vision
algorithms are likely to change the placement of components
in a system like Glimpse in the future. For instance, today,
there is no hardware support on mobile devices for detec-
tion of objects other than faces, but that may change in
the future. As long as the processing delay is significantly
higher than the time between subsequent frames (33 ms),
the results will be stale by the time it is shown to the user.
The active cache will hide this latency from the user, while
trigger frames reduce the number of frames that must be
processed. We discuss the generality of these techniques in
§9.

We have implemented Glimpse for recognizing road signs
and faces and have conducted experiments with Android
smartphones and Google Glass. We evaluate two versions
of Glimpse, sw and hw. In both versions, object recognition
(labeling) runs on the server. In the sw version, object de-
tection for road signs and faces run on the server as well,
whereas in the hw version (implemented only for faces), de-
tection runs in mobile hardware.

Our main experimental results are:

1. Over campus Wi-Fi, Verizon LTE, and AT&T’s LTE,
Glimpse (hw) achieves precision between 96.4% to 99.8%
for face recognition. By contrast, a scheme that per-
forms hardware face detection and server-side recogni-
tion without Glimpse’s techniques achieves precision
between about 38.4% and 56.5%; the improvement
with Glimpse (hw) is between 1.8-2.5×. These im-
provements are due to the active cache.

2. The improvement in precision for face recognition with-
out hardware (sw) is between 1.6-5.5×. For road sign
recognition, which does not have a hardware detec-
tor, the improvement is enormous: 42× for Wi-Fi and
375× for Verizon LTE (road sign recognition does not
work in the baseline here). Again, the active cache is
responsible for these improvements.

3. Trigger frames reduce the bandwidth by up to 2.3×
and consumes 25-35% less energy compared to using
the active cache alone, while retaining the same accu-
racy.

A video demonstration of Glimpse is at the URL, http:
//people.csail.mit.edu/yuhan/glimpse.

2. BACKGROUND AND DESIGN
This section describes the object recognition pipeline and

tracking, and Glimpse’s challenges and architecture.

2.1 Object recognition pipeline
The recognition pipeline for objects or faces, which runs

on a video frame, consists of three stages: detection, feature
extraction, and recognition (Figure 2).

Detection: This stage searches the frame for objects of
interest and locates them with bounding boxes, but without
labels. The object detector uses distinctive characteristics
of objects such as a closed boundary for cars, a prominent
color contrast from the background for road signs, and region
differences for faces (the eyes are darker than the cheeks).

Feature extraction: This stage processes the content
inside the bounding box computed by the detector to ex-
tract features that represent the object, using methods like
the scale-invariant feature transform (SIFT) [34, 12] and
speeded-up robust features (SURF) [7, 12].

Recognition/Labeling: This stage recognizes the ob-
ject and assigns a label to it using a machine-learning classi-
fier trained offline using a database of labeled object images.
The training phase extracts feature vectors as mentioned
above, after which it constructs a model such as a Support
Vector Machine [18]. Online, it uses the trained model to
convert feature vectors into a label.

2.2 Object tracking
The goal of object tracking is to follow a moving object

from one frame to the next in a video stream. Glimpse

http://people.csail.mit.edu/yuhan/glimpse
http://people.csail.mit.edu/yuhan/glimpse

Frame i Frame i+1

Optical flow estimationFeature points

Figure 3: Extracting feature points on a road sign in
frame i, computing the optical flow for each of the
points, and locating the points in frame i+ 1.

Scheme Device-only Offload to Server (Wi-Fi)

Road sign recognition 11.32 J 0.54 J
Face recognition 5.16 J 0.44 J

Table 1: Energy consumption of the object recogni-
tion pipeline for a single frame on a Samsung Galaxy
Nexus.

uses the Lucas-Kanade tracking algorithm [35], which maps
the location of the object from one frame to the next in
two steps: (1) extract feature points representing the mov-
ing object [49], and (2) estimate where those feature points
could be in the second frame to locate the object. For the
first step, one can reuse the feature points and the bounding
box obtained in the feature extraction and detection stages.
Alternatively, one could apply algorithms such as good fea-
tures to track [49], SIFT [34], or SURF [7] to locate corners
and prominent points in the moving object. These features
points are then tracked across frames using optical flow tech-
niques [8, 24], which compute the velocity of points between
frames.

The result of the tracking stage is a set of successfully
tracked feature points in the second frame. Figure 3 shows
an example of extracted feature points on a road sign, and
the result of tracking. In general, object tracking is a faster
operation compared to the recognition pipeline.

2.3 Challenges and approach
We ran the various recognition and tracking tasks de-

scribed above on different platforms and measured their per-
formance. Table 2 shows the results for Google Glass, a
smartphone, and a server machine. We found that all stages
showed significant processing time differences between the
server and the mobile device. For example, running object
detection on the device can be 11-21× slower than running
it on a typical server machine; feature extraction can be 18×
slower, and recognition can be 14× slower.

The increased processing time also leads to increased en-
ergy consumption. Table 1 compares the energy consump-
tion for processing a single frame on the device and offload-
ing. The energy consumed by executing the entire pipeline
on the device is 12-21× more compared to energy consumed
when each frame is offloaded to the server.

The feature extraction and the recognition stage have a
large memory requirement. Beyond a point, the trained
model will be too big to fit in a mobile device’s memory.
In addition, maintaining and updating the database of la-
beled objects is best done on the server.

Recently, some mobile device manufacturers have incor-
porated face detection in hardware [1]. The facility signifi-

Glimpse	
 Server	

Glimpse	
 Client	

Object	

Detection	

(software)	

Feature	

Extraction	

Object	

Recognition	

Object	

Tracking	

Object	
 labels,	
 bounding	
 boxes	

Feature	
 points	

Frame	
 or	

bounding	
 boxes	

Frame	

Differencing	

Camera	
 Display	

Object	
 labels,	

bounding	
 boxes	
 Frames	

Object	

Detection	

(hardware)	

Trigger	

Frame	

Active	

Cache	
 	

Figure 4: Glimpse Architecture. We explain active
cache in §3 and trigger frame in §4.

cantly reduces detection time by 6×, from 1129 ms to 175
ms (Table 2 rows 5 and 6). Feature extraction and recog-
nition, however, are still expensive operations that are best
executed on the server. Moreover, there are no hardware de-
tectors for other objects other than faces on devices today.

Finally, we note that object tracking is fast on the mobile
device (last row of Table 2).

These results demonstrate the importance of offloading
object recognition tasks to the servers. Offloading, however,
presents a key challenge: network delivery and server pro-
cessing latency, which could be several hundred milliseconds
(or more) for individual frames. Sending every frame to the
server would significantly degrade trackability (Figure 1).

Figure 4 shows the processing architecture of Glimpse.
The Glimpse client runs on the mobile device, receives and
stores frames captured by the device’s camera, and sends
trigger frames to the server. The server runs the stages of
the recognition pipeline on each frame it receives, producing
bounding boxes with labels as well as feature points for each
recognized object. The client uses the feature points in its
tracking phase through the active cache, processing only a
carefully selected subset of frames to track, adjusting the
bounding boxes to the current frame (§3), thereby hiding
the network latency from the user. It continuously annotates
the user display with the tracked bounding boxes and object
labels.

The key aspects of Glimpse are its active cache and trigger
frames, which are described in the next two sections.

3. ACTIVE CACHE
The active cache addresses the following problem: how to

locate moving object(s) on the mobile device when it takes
many frame-times to obtain information, which turns out to
be stale, about the object(s) from the server?

Our approach tracks objects on the mobile device by com-
puting the optical flow [8, 24] of features between the pro-
cessed frame for which results are obtained from the server
and the current frame viewed by the user. To aid this track-
ing, in addition to returning labels and bounding boxes, the
server also returns the feature points for recognized objects
in the processed frame. Tracking these feature points will al-
low us to move the bounding box to the correct location in
the current frame. Unfortunately, this solution only works if
the displacement of the object is small between the frames.

Stage Google Glass
Execution Time

(ms)

Mobile Client
Execution Time

(ms)

Server
Execution Time

(ms)

Model
Memory

Usage (MB)

Settings

Road Sign Detection [2] - 2353 ± 242.4 110 ± 32.1 - Server uses 4 cores.
Road Sign Feature - 1327.73 ± 102.4 69 ± 15.2 0.21/object Using convolutional neural
Extraction networks with the BVLC

GoogleNet model [29, 26, 51].
Server uses a GPU.

Road Sign 793.3 ± 102 162.1 ± 73.2 11 ± 1.6 0.03/object Using linear SVM [18] to
Recognition classify 1K objects with 4K

features. Server uses a GPU.

OpenCV Face Detection 3130.18 ± 800.1 2263.71 ± 478.15 197.77 ± 10.56 0.89 Using the frontal face clas-
sifier [56, 55]; the minimum
size of the detected face is
30×30 pixels.

FaceSDK Face Detection - 1129 ± 239.5 92.26 ± 21.79 0.12 Mobile client: Nokia Lumia
928.

Hardware-based Face
Detection [4]

- 174.6 ± 70.0 - - Mobile client: HTC One M8.

Facial Feature 309.8 ± 101.2 84.55 ± 25.57 19 ± 3.15 35 Extracting 57K features
Extraction around 27 landmarks [9, 10].
Face 2912.3 ± 448 537.8 ± 224.1 41.13 ± 3.11 1.25/object Using linear SVM to classify
Recognition 224 objects with 57K fea-

tures.

Tracking 43.22 ± 9.1 37.7 ± 11.5 1.2 ± 0.4 0 Lucas-Kanade tracking with
3 pyramid levels and 30 fea-
ture points [35].

Table 2: Performance of object detection, feature extraction, recognition, and tracking. Unless stated other-
wise, the Mobile Client is a Samsung Galaxy Nexus Android smartphone and Server is a Intel Core i7 with
3.6GHz, 4-core CPU. The performance is averaged across 1293 frames with resolution 640 × 480.

The performance of tracking degrades as the displacement
increases. Figure 5 shows an example. When the user’s
view is changing, objects move within hundreds of millisec-
onds. Hence running merely one object tracking from the
processed frame to the current frame is insufficient to achieve
good accuracy (we give experimental results in §7).

To accurately find the location of objects in the current
frame, Glimpse maintains an active cache of intermediate
frames; it runs object tracking through a subset of the cache.

This approach works because tracking works when the
object displacement is small, which is generally the case in
consecutive frames. The active cache stores all the subse-
quent frames from the frame that gets transmitted to the
server for processing. When the mobile device receives the
recognition results from the server, it runs object tracking
from the processed frame, through the cached frames, to
catch up with the current frame.

Unfortunately, it is not practical to run through all the
cached frames. Object tracking for a frame takes over 30 ms
on today’s mobile platforms (see Table 2). Tracking through
every frame in the cache does not allow us to catch up to the
frame being viewed. For example, suppose we send frame
1 to the server and the end-to-end delay to obtain results
from the server is 1 second. At 30 frames per second, we
would have cached 33 frames. Because it takes 38 ms to
track an object on a mobile device, we need at least 1140
ms to run through all the cached frames. By the time we
produce a result for frame 30, the user is already viewing
frame 64, rendering the results stale. Note that we cannot
start object tracking on the cached frames before we obtain
results from the server because we need the bounding boxes
and feature points for tracking.

Therefore, we have to speed up the processing of cached
frames to catch up with the current frame as fast as possible.
Discarding frames will speed-up the computation, but might
sacrifice trackability. Glimpse uses an adaptive subsampling
strategy that takes the observed delay, the device’s capabil-

Frame 0 (t = 0 ms)

Frame 15 (t = 495 ms)

Frame 30 (t = 1000 ms)

Figure 5: Tracking performance degrades as the dis-
placement of the object increases.

ities, and the changes of the scene into consideration. The
method subsamples frames without compromising trackabil-
ity by solving two problems:

1. How many frames to select from the active cache?
2. Which frames to select?

3.1 How many frames to select?
Let fi be the ith frame captured by the camera. If we send

fi to the server for recognition, we store subsequent frames
in the active cache. Assuming the results come back when
the client is viewing frame fi+(n−1), we will have cached
n frames (fi to fi+(n−1)) in that duration. Our goal is to
pick l out of n frames, or p = l/n fraction of frames so
that we can catch up without sacrificing tracking perfor-
mance. A smaller p allows us to swiftly catch up to the
current frame, but might degrade performance since we dis-
card many frames; a bigger p ensures reliable tracking, but
it takes more time and we would be left with stale results.

The selection of p depends on two factors: (i) the end-to-
end processing delay of a frame (i.e., the value of n), and
(ii) the execution time e of the tracking algorithm on the
client. The lower the mobile’s computation capability, the
larger the value of e, so p must be small. When the network

High-movement

Frame i Frame i+1 Frame i Frame i+1

Low-movement

Figure 6: Frame differencing.

delay is low, n is small, and we can select a larger p without
degrading trackability.

For any given platform, using a set of videos tagged with
ground truth, we simulate different n, e, and p, and pick the
p that maximizes trackability. In our experiments, when e
is 30 ms or more, p = 0.1 works the best for different values
of n. But when e is 20 ms or less, the best p depends on n
(§7.2). At runtime, we measure e for every tracking call and
maintain an average. We directly find n as the number of
cached frames. We query a model stored locally with e and
n to get p.

3.2 Which frames to select?
Given a sequence of frames F = {fi, ..., fi+(n−1)} stored

in the cache and a fraction p, we select l = p ∗ n frames
from the cache for tracking. A straightforward approach is
to pick l frames at regular intervals, but this method does
not give us the best results when objects are moving across
frames. For instance, if the object only starts moving after
frame fi+(n/2), we can skip frames in the first half.

The selected l frames should capture as much movement as
possible, and not have much redundancy between each other.
To solve this problem, we first need a metric to characterize
movement between two frames. This metric must be easy to
compute, lest we lose the benefit of iterating through only a
subset of frames.

Glimpse uses a lightweight frame differencing function to
calculate the “movement” between two frames (Figure 6).
First, we convert the frame to grayscale and compute the
absolute difference of pixel values ai,j(x, y) for every pixel
(x, y) between frame i and frame j, and consider it signifi-
cant if it exceeds a threshold:

ai,j(x, y) = |fi(x, y)− fj(x, y)| (1)

di,j(x, y) =

{
1 ai,j(x, y) > φ
0 otherwise

(2)

Based on our experiments, we pick φ = 35, a value sen-
sitive enough to capture scene movements and robust to
changes caused by noise. We then compute the frame dif-
ference (movement metric) di,j between frame i and frame
j as:

di,j =
∑
x,y

di,j(x, y), di,j ≥ 0 (3)

Computing di,j is linear in the size of the frame, taking
only a few milliseconds on a mobile device; it can be com-
puted when the frame is inserted into the active cache.

Using the frame difference metric, the frame selection prob-
lem can now be redefined as follows: given a sequence of
frame differences D = {di,i+1, ..., di+(n−2),i+(n−1)}, divide D
into (l + 1) partitions, such that the maximum sum over all
the partitions is minimized. This is a linear partition prob-
lem, which can be solved with a dynamic program in O(ln2)

Figure 7: Tracked feature points deviate due to
changes in the angle of the object.

time, by defining H[n, l] as the optimum value of a partition
arrangement with n frame differences and l partitions:

H[n, l] =
i+n

min
j=i

(max{H[j, l − 1],

i+n∑
k=j

dk,k+1}) (4)

4. TRIGGER FRAMES
Unlike existing systems [20, 14, 22] that need to send ev-

ery frame (or as many as the network can handle) to the
server, Glimpse reduces bandwidth consumption by sending
only certain trigger frames to the server to obtain the object
recognition hints.

The Glimpse client uses three techniques:
1. It monitors tracking performance and sends frames to

the server when the local tracking is about to fail.
2. It sends frames to the server when there is a significant

change in the scene.
3. If the scene is constantly changing, it avoids sending

too many frames by keeping track of the number of
frames in flight.

Detecting tracking failure.
As shown in Figure 7, the tracked feature points would

deviate from their correct location and degrade trackability
performance as the size, angle, or appearance of the objects
changes. When tracking degrades, the client sends a frame
to the server to get a new set of feature points to track.

To measure the tracking performance, we make the fol-
lowing observation: since all tracked points are on the same
object, when an object moves between frames, the mov-
ing distance of those points between frames should be sim-
ilar. Therefore, we can quantify the tracking performance
by measuring these distances between frames. We use the
standard deviation of distance of all tracked points between
two frames. The larger the standard deviation, the higher
the possibility that tracking is failing. We use a threshold
of ωstd to identify trigger frames, set using experiments to
balance between getting new features in a timely way and
not sending too many frames.

Detecting scene changes.
In addition to monitoring tracking performance of recog-

nized objects, we should also identify trigger frames when
new objects come into the scene. However, it is too ex-
pensive to run object detection on the client. To detect if
the scene has changed, Glimpse uses the frame differencing
technique described in §3.2. We use the formula in Equa-
tion 3 to quantify how much the frame has changed from the
previously transmitted frame. When the number of “signif-
icantly different pixels” between the current frame and the
previously transmitted frame is greater than a threshold,
φmotion, we identify it as a trigger frame.

Limiting the number of frames in flight.
When the scene is constantly changing, the above heuris-

tics could trigger many frames to be sent to the server, caus-
ing a network or server bottleneck and also increasing energy
consumption. Glimpse limits the number of in-flight frames
sent to the server for which results are pending. When there
are already imax frames in flight, and we identify a trigger
frame, the client waits to receive the results for a frame be-
fore sending the next frame1. Our experiments show that,
having imax = 1 frame strikes a good balance between ac-
curacy and resources consumed for various network types
(§7).

5. IMPLEMENTATION
We have implemented the Glimpse client for Android smart-

phones and Google Glass. We also ported the client to Linux
for evaluating Glimpse in a controlled setting (§6).

Glimpse Client: The Android implementation of Glimpse
uses the OpenCV library (version 2.4.10) [40] written in
C/C++ on top of JNI. To speed up the computation, ex-
cept the dynamic program for frame selection, all the core
functions are written in C++, and are invoked using JNI.
On Google Glass, running frame differencing on a 640 ×
480 frame using Java takes 220 ms, compared to only 32 ms
using C++. We use a separate thread for receiving camera
frames and a separate thread for computation (§7.4 describes
the detailed energy/overhead measurements). For object
tracking, we use the Lucas-Kanade function [35] provided in
OpenCV with the default parameters. We declare an object
has disappeared if its bounding box is too small (15 × 15
pixels for road signs [47], and 25 × 25 pixels for faces), or we
do not have enough feature points to draw the bounding box
(i.e., the number of feature points is fewer than 4). OpenCV
returns frames captured from the camera in both RGB and
grayscale format. Because object tracking does not require
a color image, we store the frame as a grayscale image in
the active cache. We use 640 × 480 frames and compress
each frame into a JPEG image (quality level = 70) before
transmission. Each frame is sent using HTTP POST request
with multi-part/form-data content type.

Glimpse Server: The server implements the road sign
recognition pipeline and the face recognition pipeline (§2.1).

For road signs, we first detect them using boundary, shape,
and color [2]. We speed up detection by parallelizing the im-
age processing with four cores. For feature extraction, we
train a convolutional neural network model [26, 29] (BVLC
GoogleNet Model [51]) using labeled road signs to obtain
the computer-crafted features. For classification, we train
a SVM classifier with a linear kernel [18] using the features
extracted in the previous step. To enable road sign tracking,
we use the good features to track [49] and return 30 feature
points (the top 26 features and the 4 corners of the bounding
box) to the client for tracking.

For face detection at the server, we use the Viola-Jones
object detector [56, 55] to determine the locations of faces
in the frame. In our implementation, we use the Microsoft
Face SDK Viola-Jones detector (C#) because it is faster
than the OpenCV implementation (Table 2), and generates
fewer false positives. For feature extraction, we first locate
27 semantic facial landmarks such as eyes, nose, and mouth

1We always send the current frame to the server even if the
identified trigger frame was in the past.

in a facial image using a boosted shape regression [9]. We
then build the features by extracting multi-scale patches cen-
tered at facial landmarks [10] and describe each patch with
the local binary pattern (LBP) descriptor. Similar to clas-
sifying road signs, we also train a linear SVM model for
classifying faces. For face tracking, we return feature points
for the 27 landmarks and the four corners of the bounding
box computed during the detection and feature extraction
stage.

To train the road sign feature extraction and classifica-
tion models, we use a subset (50%) of the labeled road signs
in our dataset (§6). To train the face classification model,
we use a training dataset with 224 subjects, with 20 to 40
images for each face. 211 out of the 224 subjects are pub-
lic figures and the images are collected from the web with
URLs from PubFig [30] and CFW [62]. For the subjects
featured in our video dataset (§6), we collected images from
their Facebook pages. When the server starts, it reads the
detection, feature extraction, and classification models from
disk into memory for faster processing.

If the client cannot reach the server to send a trigger
frame because of network failures, we continue to retry pe-
riodically. In the mean time, if we are able to track ob-
jects locally, we continue tracking them. Currently, Glimpse
does not support completely disconnected operation. It in-
forms the user that the service is disconnected and stops
annotating objects. To support disconnected operation, we
could implement a lightweight, less-accurate object recogni-
tion pipeline locally with a small set of features, trained on
a few objects. When the client gets disconnected from the
server, we could run the local object recognition pipeline.
Note that because the local processing will still be compu-
tationally expensive with a high response latency, the active
cache and trigger frames will remain important.

6. EVALUATION
We evaluated Glimpse using real-world data and trace-

driven emulation. Emulation allows us to compare Glimpse
with other schemes under reproducible conditions. We also
ran Glimpse on Android smartphones and Google Glass to
measure its resource consumption.

6.1 Data Collection
We collected two datasets to capture different scenarios,

and to evaluate Glimpse’s ability to recognize and track dif-
ferent objects. For ground truth, we manually inspected
every frame, assigned labels, and marked the objects of in-
terest with bounding boxes. Labeling the video frames is a
cumbersome manual process; to the best of our knowledge,
we are not aware of any publicly available labeled mobile
video dataset.

1. Face Dataset: We recorded 26 videos with an An-
droid smartphone. The videos are at 30 frames per
second at a resolution of 640 × 480 pixels per frame.
The length of each video ranged from 10 seconds to
16 minutes. Scenarios in the video include shopping
with friends, chatting in a restaurant, and waiting at a
subway station. In all, we have collected and curated
30 minutes of video, with 54,020 frames and 35,824
(non-distinct) faces.

2. Road Sign Dataset: We downloaded 4 walking videos
recorded with Google Glass on YouTube. Two videos
are from the United States, one from England, and

Object Dwell Time (sec)
0.5 2 5 10 15 20 25 30

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Face Dataset
Road Sign Dataset

(a) The CDF of the
dwell time of each ob-
ject.

Object Moving Speed (pixels/frame)
0 5 10 15 20 25

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Face Dataset
Road Sign Dataset

(b) The CDF of object
moving speed.

Lighting (luminance intensity)
0 25 50 75 100 125 150 175 200

C
D

F

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Face Dataset
Road Sign
Dataset

(c) The CDF of lu-
minance intensity of
frames.

Figure 8: Dataset characteristics.

one from China. In total, we have 35 minutes of video,
with 63,003 frames and 5,424 labeled road signs.

Figure 8(a) shows the CDF of dwell time of each object
for the two datasets. The dwell time is the total time an
object continuously appears in the view of the camera. In
the road sign dataset, 50% of the road signs have a dwell
time less than 2 seconds, and 90% of the road signs are less
than 5 seconds. In the face dataset, 50% of the faces have a
dwell time less than 5 seconds, and 90% of the faces are less
than 20 seconds. Figure 8(b) shows the CDF of movement
of objects between successive frames (in pixels per frame).
Our datasets contain objects moving at various speeds. In
the road sign dataset, 90% of the signs move less than 15
pixels between two successive frames (the inter-frame time
is 33.33 ms). In the face dataset, 90% of the objects move
less than 10 pixels.

Figure 8(c) shows the CDF of luminance intensity (0 -
255) of each frame; a smaller value indicates a darker frame.
Our dataset contains varied lighting conditions (luminance
intensity between 50 to 160). Note that mobile cameras au-
tomatically adjust their aperture to avoid excessively bright
or dark images.

6.2 Experimental Setup
To conduct comparative and reproducible experiments, we

built an emulation framework with a Linux machine running
the Glimpse Client, and a Windows machine running the
Glimpse Server. The client stores all the 30 recorded videos
locally. To simulate a camera feed, each video frame has
a timestamp indicating when it should be processed by the
client.

We connect the client and server with a crossover Ethernet
cable. To emulate different types of networks, we run the
Mahimahi tool [37] on the client. Mahimahi takes network
measurement traces as input, and delays each packet deliv-

ery time based on the per packet delay in the input trace.
In our evaluation, we use wireless network traces described
in two recent papers [59, 16], which included Wi-Fi, Verizon
Wireless’s LTE, and AT&T’s LTE network. In addition to
controlling the network, we also simulate the compute delays
for tracking and frame differencing using micro-benchmarks
collected from smartphones and Google Glass hardware.

6.3 Evaluation Metrics
To evaluate Glimpse’s trackability, we use intersection

over union (IOU) [14] as the measure. The IOU of object i
is defined as

IOUi =
area |Oi ∩Gi|
area |Oi ∪Gi|

, (5)

where Oi is the bounding box of the detected object, and Gi

is the bounding box of object i’s ground truth. We consider
the object to be successfully tracked if IOUi > 50% [14] (i.e.,
accurately located), and the label matches the ground truth.

To quantify Glimpse’s performance across large number
of video frames, we define the following metrics:
• Precision (%), defined as the ratio of the number

of objects successfully tracked to the total number of
objects detected by the scheme.
• Recall (%), defined as the ratio of the number of ob-

jects successfully tracked to the total number of objects
in the ground truth.
• F1 score (%), defined as the harmonic mean of pre-

cision and recall.
• Bandwidth Usage (Kbits/s), measured as the total

number of kilobits transmitted per second between the
client and server.

We normalize both precision and recall for each evaluated
scheme using the best precision (93%) and the best recall
(96%) we can achieve. We obtain the best results when there
are no network and server delays and when the client tracks
every frame. The trackability in this ideal condition is less
than 100% because our ground truth misses a few objects
that object tracking is able to correctly track, and object
tracking misses a few objects that we are able to correctly
tag as ground truth (e.g., objects that are too small). With
this normalization, we are able to measure the performance
of Glimpse’s techniques independent of imperfections in the
vision algorithms or labeling.

7. RESULTS
To evaluate Glimpse, we compare it to the following schemes

to measure the benefits of the techniques in Glimpse:
• Server only: In this scheme, there is no tracking at

the client. The client sends frames to the server and
outputs the responses as they arrive. We evaluated
different server-only schemes, changing the maximum
number of frames in flight, and present results for 1
frame and 30 frames in flight (the results for other
values are in between these two).
• No active cache: Here, the client tracks between

the frame sent to the server (processed frame) and the
current frame, without an active cache. It sends a new
frame to the server once we receive a response for the
previous frame.
• Active cache only (no trigger frame): Here, the

client maintains an active cache and tracks through
frames using our dynamic programming (DP) algo-

1	

10	

100	

1000	

10000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Server	
 only	
 	
 	
 	
 	
 	
 	

(30	
 frames)	

Server	
 only	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(1	
 frame)	

Glimpse	
 	
 	
 	
 	
 	
 	

(active	
 cache	

only)	

Glimpse	
 	
 	
 	
 	
 	

(active	
 cache
+trigger)	

B
an

dw
id
th

	
 u
sa

ge
	
 (K

bi
ts
/s
)	
 i
n	

lo
g	

sc
al
e	

	

P
re
ci
si
on

/R
ec

al
l	
 (
%
)	

Precision	
 (%)	
 Recall	
 Bandwidth	
 Usage	
 (Kbits/s)	

Figure 9: Performance of Glimpse on Wi-Fi for
tracking faces. The end-to-end delay (the latency
from mobile to server and obtain a response) is 425-
455 ms in all schemes, except for 30 frames in flight
(542.2 ms).

1	

10	

100	

1000	

10000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Server	
 only	
 	
 	
 	
 	
 	
 	

(30	
 frames)	

Server	
 only	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(1	
 frame)	

Glimpse	
 	
 	
 	
 	
 	
 	

(active	
 cache	

only)	

Glimpse	
 	
 	
 	
 	
 	

(active	
 cache
+trigger)	

B
an

dw
id
th

	
 u
sa

ge
	
 (K

bi
ts
/s
)	
 i
n	

lo
g	

sc
al
e	

P
re
ci
si
on

/R
ec

al
l	
 (
%
)	

Precision	
 (%)	
 Recall	
 (%)	
 Bandwidth	
 Usage	
 (Kbits/s)	

Figure 10: Performance of Glimpse on Verizon’s
LTE for tracking faces. The end-to-end delay is 656-
721 ms in all schemes, except for 30 frames in flight
(1102.5 ms).

rithm, but there are no trigger frames. The client sends
a new frame to the server after receiving response for
the previous frame.

In §7.1 we show the end-to-end performance of Glimpse
and how it compares to other schemes. In §7.2 and §7.3,
we show the benefits of the active cache and trigger frames,
respectively. Finally, we evaluate the energy consumption
and overhead in §7.4.

7.1 End-to-end performance
We use the network conditions as described in §6.2. Fig-

ures 9, 10, and 11, show the end-to-end performance for face
recognition on Wi-Fi, Verizon, and AT&T’s LTE networks,
respectively. Figures 12 and 13 show the end-to-end per-
formance for road sign recognition on Wi-Fi and Verizon’s
LTE. On the AT&T’s LTE network, the network latencies
are too high to do real-time road sign recognition. The dwell
times of road signs are short (Figure 8), and in most cases,
the object moves out of the frame before we get a response
from the server.

Significant improvement in precision and recall:
Under all network conditions, Glimpse significantly improves
the trackability (precision and recall) compared to Server-
only schemes [22]. The improvement is more prominent
as the network delay increases. Even in the fastest net-

1	

10	

100	

1000	

10000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Server	
 only	
 	
 	
 	
 	
 	
 	

(30	
 frames)	

Server	
 only	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(1	
 frame)	

Glimpse	
 	
 	
 	
 	
 	
 	

(active	
 cache	

only)	

Glimpse	
 	
 	
 	
 	
 	

(active	
 cache
+trigger)	

B
an

di
w
dt

h	

U
sa

ge
	
 (K

bi
ts
/s
)	
 i
n	

lo
g	

sc
al
e	

P
re
ci
si
on

/R
ec

al
l	
 (
%
)	

Precision	
 (%)	
 Recall	
 (%)	
 Bandwidth	
 Usage	
 (Kbits/s)	

Figure 11: Performance of Glimpse on AT&T’s LTE
for tracking faces. The end-to-end delay is 927-
1041.2 ms in all schemes, except for 30 frames in
flight (7391.7 ms).

1	

10	

100	

1000	

10000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Server	
 only	
 	
 	
 	
 	
 	
 	

(30	
 frames)	

Server	
 only	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(1	
 frame)	

Glimpse	
 	
 	
 	
 	
 	
 	

(active	
 cache	

only)	

Glimpse	
 	
 	
 	
 	
 	

(active	
 cache
+trigger)	
 B

an
dw

id
th

	
 U
sa

ge
	
 (K

bi
ts
/s
)	
 i
n	

lo
g	

sc
al
e	

P
re
ci
si
on

/R
ec

al
l	
 (
%
)	

Precision	
 (%)	
 Recall	
 (%)	
 Bandwidth	
 Usage	
 (Kbits/s)	

Figure 12: Performance of Glimpse on Wi-Fi for
tracking road signs. The end-to-end delay is 510-
548 ms in all schemes, except for 30 frames in flight
(683.1 ms).

work, Wi-Fi, Glimpse improves trackability by 1.8× for face
recognition. In the slowest network (AT&T’s LTE network),
Glimpse achieves a precision of 92.3% (vs. 33%), a recall of
82.6% (vs. 31.8%), an improvement of a factor of 2.8×. For
fast moving objects such as road signs (Figures 12 and 13),
the improvement is even more significant. Glimpse improves
trackability by 71× to 114×; without Glimpse, continuous
recognition is non-functional (under 1% precision and recall)
for the Server-only schemes.

Glimpse’s recall decreases as the network delay increases
because the dwell time of certain objects become shorter
than the end-to-end delay, and hence we miss them. Further,
the recall is lower for the road sign recognition compared
to face recognition because of the dwell time of road signs
are much shorter than that of faces (Figure 8). In Glimpse,
when a new object appears in the scene, we identify a trigger
frame, but we miss tracking the object till we get a response
about that object from the server. Since Glimpse allows only
one outstanding frame in flight (§7.3), in the worst case, the
discovery overhead could be two round trips worth of frames.
When dwell times of objects are longer, we use local tracking
to continuously locate the object; but when the dwell time
is short (as in the road sign’s case), we incur the discovery
overhead more often, reducing the recall. If we eliminate
the discovery overhead from the recall calculation, the recall
increases to 78% on Wi-Fi and 50.2% on Verizon’s LTE.

1	

10	

100	

1000	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Server	
 only	
 	
 	
 	
 	
 	
 	

(30	
 frames)	

Server	
 only	
 	
 	
 	
 	
 	
 	
 	
 	
 	

(1	
 frame)	

Glimpse	
 	
 	
 	
 	
 	
 	

(active	
 cache	

only)	

Glimpse	
 	
 	
 	
 	
 	

(active	
 cache
+trigger)	
 B

an
dw

id
th

	
 U
sa

ge
	
 (K

bi
ts
/s
)	
 i
n	

lo
g	

sc
al
e	

P
re
ci
si
on

/R
ec

al
l	
 (
%
)	

Precision	
 (%)	
 Recall	
 (%)	
 Bandwidth	
 Usage	
 (Kbits/s)	

Figure 13: Performance of Glimpse on Verizon’s
LTE for tracking road signs. The end-to-end de-
lay is 901.1-963.2 ms in all schemes, except for 30
frames in flight (1765.2 ms).

Networks Schemes Precision
(%)

Recall
(%)

Bandwidth
Usage

(Kbits/s)

Wi-Fi

Server only 56.5 52.2 616.1
Server only 54.7 52 52.5
(1 frame in
flight)
Glimpse 99.8 92.1 28.9

Verizon’s LTE

Server only 50.8 47.4 605.2
Server only 47 44.3 40.2
(1 frame in
flight)
Glimpse 99.4 90.7 25

AT&T’s LTE

Server only 38.4 31.6 335.8
Server only 41.3 39 32.1
(1 frame in
flight)
Glimpse 96.4 85.5 20.7

Table 3: Glimpse with face detection in hardware.

Significant bandwidth reduction: Figures 9, 10, 11,
12, and 13 also show the bandwidth usage for various schemes.
Trigger frames reduce the amount of bandwidth used with-
out compromising precision or recall compared to using only
the active cache.

7.1.1 Face detection in hardware
As mentioned in §2.3, some mobile devices [1] are now

equipped with face detection hardware. Even with face de-
tection at the client, the recognition operation still needs to
be offloaded to the server. If Glimpse’s goal is to only de-
tect faces, the face detection hardware can help us reduce
the amount of the data transmitted to the server. Instead
of sending the entire frame, we can send only the bound-
ing box of faces. Even in this case, Glimpse needs to hide
the latency of face detection at the client and the latency
introduced by the network and the server.

To show that active cache and trigger frames are benefi-
cial irrespective of where detection happens, we evaluated
Glimpse on the face dataset with face detection done on
the client. Table 3 shows the results. The baseline scheme
sends only the detected faces to the server instead of the
entire trigger frame. Glimpse considers the current frame
as a trigger frame if (1) tracking fails, or (2) the face detec-
tion hardware detects a new face that the system does not
recognize.

We measure the hardware face detection latency using the
Android FaceDetectionListener [4] API on a HTC One M8
and incorporate it into our emulator. The face detection

Datasets
Networks Glimpse

(active cache
only) F1 score

(%)

No active
cache F1
score (%)

Road Sign
Wi-Fi 71.4 48.5
Verizon’s LTE 50.9 26.1

Face
Wi-Fi 95.1 87.2
Verizon’s LTE 91.9 82.1
AT&T’s LTE 88 78.1

Table 4: The F1 score of Glimpse (active cache only)
vs. without maintaining an active cache.

latency is listed in Table 2, and the number we get is similar
to the one reported in [11].

Without Glimpse, even with the face detection hardware,
the trackability is poor, and the bandwidth usage remains
high since the device does not have the capability to rec-
ognize the face, and needs to send all the detected regions
to the server for recognition. Glimpse improves the track-
ability by 1.8× to 2.3×. Since Glimpse tracks the face on
the client, face detection hardware helps us detect when new
faces appear, reducing the bandwidth usage.

These results demonstrate that regardless of where pro-
cessing happens, if the processing incurs a latency, Glimpse
hides it effectively using its active cache. Similarly, trigger
frames enables the system to reduce the number of frames
actually processed thereby saving resources.

7.2 Benefits of the active cache
Table 4 shows that maintaining an active cache improves

the trackability, compared to the No active cache scheme,
which does tracking without a cache.

The performance of No active cache degrades as the net-
work delay increases because it becomes harder to track the
object without going through intermediate frames.

For the road sign video, on Wi-Fi, the No active cache
approach achieves 48.5% F1 score comparing to 71.4% with
the active cache, which is an 1.4× gain. For the face video,
we also improve the F1 score by up to 12% (AT&T’s LTE).

The benefits of the active cache stem from our ability to
pick the right frames for tracking. As we show next, simply
tracking through all frames in the cache can lead to poor
performance.

7.2.1 Picking a subset of frames from the active cache
As discussed in §3.1, object tracking on the client takes

tens of milliseconds. By the time the client processes all the
frames in the cache, depending on the end-to-end delay, the
final tracking result could be stale as hundred of milliseconds
would have elapsed.

The fraction of frames that can be processed depends on
the execution time of object tracking e, and the number of
frames in the cache n. Figure 14 shows the F1 score (y-axis)
when we change the fraction of frames picked (x-axis) for
different n (lines) and different e (sub-graphs). When e is
30 ms, and n is 30 frames, if we were to pick every frame
in the cache for tracking, the F1 score is less than 30%.
Similarly, if we do not pick any intermediate frame, the F1
score is less than 65%.

Figure 14 shows that the best fraction depends on e and
n. In our experiments, e was between 30 ms and 40 ms;
hence, we chose 0.1 (independent of n). As hardware capa-
bilities improve, e will decrease, and the fraction to choose
will change with n.

Fraction p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
1

sc
or

e
(%

)

0
10
20
30
40
50
60
70
80
90

100

Delay = 10 frames
Delay = 20 frames
Delay = 30 frames
Delay = 40 frames

(a) e = 10 ms.

Fraction p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
1

sc
or

e
(%

)

0
10
20
30
40
50
60
70
80
90

100

Delay = 10 frames
Delay = 20 frames
Delay = 30 frames
Delay = 40 frames

(b) e = 20 ms.

Fraction p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
1

sc
or

e
(%

)

0
10
20
30
40
50
60
70
80
90

100

Delay = 10 frames
Delay = 20 frames
Delay = 30 frames
Delay = 40 frames

(c) e = 30 ms.

Fraction p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
1

sc
or

e
(%

)

0
10
20
30
40
50
60
70
80
90

100

Delay = 10 frames
Delay = 20 frames
Delay = 30 frames
Delay = 40 frames

(d) e = 40 ms.

Figure 14: Performance of tracking based on the fraction of frames picked from the active cache using both
datasets.

Network DP-based F1 score
(%)

Fixed-interval F1
score (%)

Wi-Fi 82.2 ± 7.5 73.3 ± 12.4
Verizon’s 3G 77 ± 9.4 59 ± 11.7

Table 5: F1 score for hard videos in the dataset.
For this experiment, we selected 50% of all videos
that had the worst F1 score. For Wi-Fi, we use both
the face and road sign datasets. For Verizon’s 3G
network, we use only the face dataset.

Video ID
0 5 10 15 20 25 30

B
an

dw
id

th
 U

sa
ge

 (
K

bi
ts

/s
)

0

100

200

300

400

500

600

700

800
 Active Cache
 Glimpse

Figure 15: Bandwidth usage of each video by
Glimpse and the Active cache scheme without trig-
ger frames. The Active cache line is sorted by band-
width usage. The Glimpse line shows the bandwidth
usage of the corresponding video.

7.2.2 Dynamic programming to pick frames
What is the benefit of the dynamic programming algo-

rithm (§3.2) for frame selection compared to a scheme that
simply selects one out of every k frames regularly? Given
the fraction of frames to pick from the active cache, we use a
dynamic programming approach to capture the object move-
ment instead of picking frames at a regular interval.

We found that for every video in our dataset, the dynamic
programming algorithm performs equal to or better than
selecting frames at regular intervals. The gain is small for
videos with little movement (for them it is immaterial which
frames we choose), but high-motion videos are a different
story. The aggregate improvement in precision and recall
across all videos is only around 4%, but our approach out-
performs the fixed-interval scheme on scenarios where there
is a lot of movement. Table 5 shows the F1 score for the hard
videos in our dataset. For this experiment, we selected 50%
of the videos that had the worst F1 score. On these hard
cases, the dynamic programming method improves the F1
score by about 12-31% on average depending on the network
type.

7.3 Benefits of trigger frames
Under all network conditions (figures in §7.1), trigger frames

reduce bandwidth by at least 1.5× (2.3× in the worse case)
compared to the Active cache only scheme, without appre-
ciably reducing precision or recall. We save a factor of 31.3×
compared to naively sending every frame to the server.

Figure 15 shows the bandwidth usage for each video. It
compares the scheme without trigger frames and Glimpse
with trigger frames. Glimpse consistently reduces the band-
width usage. For certain videos, Glimpse provides as much
as 6× savings. By transmitting less data to the server,
Glimpse also saves energy in the mobile device compared
to a scheme without trigger frames. We describe the energy
measurements in detail in §7.4.

The bandwidth savings stem from Glimpse’s ability to lo-
cally track objects without going to the server, and its ability
to accurately identify tracking failure and scene changes. We
evaluate the importance of both detecting tracking failure
and detecting new objects (frame differencing) to identify
trigger frames. We compare Glimpse’s performance with a
scheme that identifies trigger frames only by frame differ-
encing. Though the bandwidth consumed reduces by 53%,
the precision and recall also reduce by up to 12%. We get
similar performance degradation if we detect only tracking
failure without identifying new objects. Hence, detecting
both tracking failure and new objects are crucial for identi-
fying trigger frames.

We also evaluate the impact of various thresholds used
to trigger frames. Figure 16 shows the F1 score and band-
width usage for varying values of these thresholds. As ωstd,
the standard deviation of feature point distance, increases,
Glimpse becomes more tolerable to deviation of feature points.
The number of trigger frames decreases, reducing bandwidth
usage, but trackability also decreases because of imminent
tracking failures. Similarly, as φmotion increases, Glimpse
becomes less sensitive to new objects, and we get fewer trig-
ger frames. The bandwidth usage decreases, but the track-
ability decreases as well because we start missing objects.
We pick ωstd = 0.5 and φmotion = 153600 (half the number
of pixels in a frame) to strike a balance between bandwidth
usage and accuracy. Also, allowing more frames in flight has
no impact on accuracy, but almost doubles the bandwidth
usage. Hence, we use imax = 1 in practice.

7.4 Energy consumption
We evaluate the energy consumption of Glimpse by mea-

suring the energy consumption of its components and scal-
ing them in proportion to their usage. We use a Samsung

Feature Point Distance Standard Deviation !
std

0.2 0.4 0.5 0.6 0.8 1 2

B
an

dw
id

th
 U

sa
ge

 (
K

bi
ts

/s
)

0

100

200

300

400

F
1

sc
or

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

Bandwidth Usage
F1 score

(a) ωstd, the standard deviation
of feature point distance.

Frame Differencing ?
motion

(pixel) #105
0.64 1.28 1.8432 2.4576

B
an

dw
id

th
 U

sa
ge

 (
K

bi
ts

/s
)

0

100

200

300

400

F
1

sc
or

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

Bandwidth Usage
F1 score

(b) φmotion, the frame difference
threshold.

Number of Frames in Flight i
max

1 2 3

B
an

dw
id

th
 U

sa
ge

 (
K

bi
ts

/s
)

0

100

200

300

400

F
1

sc
or

e
(%

)

0

10

20

30

40

50

60

70

80

90

100

Bandwidth Usage
F1 score

(c) imax, the number of frames
in flight.

Figure 16: Bandwidth usage and F1 score for various parameters on identifying trigger frames for the face
dataset. We see the same trends for the road sign dataset.

Mode Power
(mW)

Current
(mA)

Battery
Life (h)

Sleep 56 15.1 122.5
Idle 1009.2 272.9 6.8

Screen on + 2124.6 574.2 3.2
Frame

Capturing
Verizon’s LTE

uplink
2928.2 791.4 2.3

(Active)
Verizon’s LTE

downlink
1737 496.3 3.7

(Active)
Verizon’s LTE 1324.6 358 5.2

(Idle)
Wi-Fi uplink 1871.5 506 3.7

Wi-Fi downlink 1289.9 347.8 5.3

Table 6: Energy measurement for various operations
on the Samsung Galaxy Nexus with an 1850 mAh
battery.

Component Execution
Time (ms)

Frame differencing 7
Active cache (DP frame selection) 1.7
Tracking failure detection < 1
Tracking 37.7

Table 7: Average execution time of each of
Glimpse’s components on the Samsung Galaxy
Nexus.

Galaxy Nexus smartphone with a 1.2 GHz dual-core ARM
processor, 1 GB RAM, and a 1850 mAh battery. The CPU
has four operating frequencies: 350, 700, 920, and 1200 MHz.

Table 6 shows the energy consumption for various oper-
ations on the smartphone. Without any computation, cap-
turing frames from the camera with the screen turned on
consumes 2124.6 mW, and the CPU runs at 350 MHz. When
Glimpse is running, it uses two cores, and the CPU raises
its frequency to one of the three higher settings, consuming
an average of 2947 mW. Transmitting a frame via LTE con-
sumes a total of 2928.2 mW and in Verizon’s LTE, the radio
tail length [15] is around 10.2 secs. Transmitting one frame
on Wi-Fi consumes 1871.5 mW on average. Table 7 shows
the average execution time of Glimpse’s components. Based
on our trace-level emulation, we model the expected energy
consumption for running Glimpse.

Table 8 shows the expected battery life when running
Glimpse. Compared to a scheme that sends 1 frame every
RTT (1 frame in flight), Glimpse improves the battery life

Network Glimpse battery
life time (h)

1 frame/RTT battery
life time (h)

Wi-Fi 1.9 ± 0.1 1.4
Verizon’s LTE 1.5 ± 0.1 1.2

Table 8: Estimated battery life time.

by 35% on Wi-Fi and 25% on LTE. For Google Glass (Wi-
Fi), based on the energy measurement numbers reported
in [33], compared to a scheme that sends 1 frame every RTT,
Glimpse can improve the battery life by 24%.

8. RELATED WORK
We discuss prior work on network latency hiding, object

recognition, and mobile computation offloading.
Network latency hiding: Latency hiding techniques

have been widely used as a method for hiding state incon-
sistencies between distributed nodes. It has been used to
mitigate the effects of network latency and provide smooth
user experiences in many distributed interactive applica-
tions, including remote display [31, 43] and multi-player net-
work games [5, 57]. A common form of latency hiding tech-
nique is dead reckoning, where clients simulate the states of
other hosts using speculation; incorrectly predicted states
are rolled back when the actual ones arrive from the hosts.

Glimpse has similar goals, but object movements in video
are harder to predict. The results obtained from the server
are stale and cannot be directly shown to the user; we need
to carefully correct the results to provide a smooth user ex-
perience. To the best of our knowledge, Glimpse is the first
work that successfully hides network and server latency for
object recognition applications.

Object recognition: Object recognition identifies and
locates objects in an image. There is a huge body of work on
object recognition in the computer vision community, and
state-of-the-art methods [52, 10, 21, 19, 32, 3] achieve high
precision. Unfortunately, these techniques have significant
computation and memory needs, and in practice, realizing
them on a mobile platform is difficult. Glimpse can use any
of these algorithms, and apply its latency hiding mechanism
to hide the processing latency. Besides, much of the ad-
vances come from the use of improved object features, which
can be easily incorporated into Glimpse for object tracking.

Other work focuses on enabling object recognition on mo-
bile devices with a client-server design. For example, some
papers [25, 27] deploy a recognition system that allows clients
to upload images to the server for object classification. Other

papers [20, 14] provide continuous object recognition on mo-
bile devices by running the tracker on the mobile client, and
the recognition on a server. Another paper [58] proposes
a location-aware face recognition framework that uses lo-
cation information as a hint to reduce the search space of
the recognition algorithm. However, these papers consider
neither the impact of network and server processing latency
on the performance of the system, nor the bandwidth and
energy consumed.

Recently, there has been work focusing on optimizing com-
puter vision algorithms to make them usable on mobile de-
vices. For example, Shen et al. [48] optimize the projection
matrix for the Sparse Representation Classification (SRC)
and implement a fast and robust face recognition system on
the mobile device. Glimpse’s techniques are orthogonal and
can be useful even for these client-only systems to hide the
processing delay and reduce the amount of resources con-
sumed.

Object tracking and scene change detection: There
are many existing tracking algorithms [60, 17] and scene
change detection techniques [39, 63]. Glimpse’s active cache
can use these tracking methods for catching up with the
current frame; similarly, trigger frames can be sent using any
of these scene change detection algorithms. Most of these
techniques require substantial computational resources, and
are not suitable for applications on mobile devices with real-
time requirements. We use the Lucas-Kanade tracking [35]
and frame differencing for their simplicity, fast execution,
and limited resource requirements.

Mobile computation offloading: Resource limita-
tions on mobile devices and the need for responsiveness for
compute- and bandwidth-intensive interactive applications
have given rise to the idea of delegating work to nearby
computers, called“cloudlets” [46], which are one wireless hop
away from the mobile device. Gabriel [22, 23] is a system
that uses cloudlets for face and object recognition. These
cloudlets run the object recognition pipeline and the client
ships every frame to the cloudlet. In contrast, Glimpse does
not require an extra cloudlet infrastructure, and is readily
deployable. Also, the use of cloudlets can still benefit from
techniques used in Glimpse to hide the processing latency of
compute-intensive recognition tasks (and the network delay
in the last hop) and save cloudlet resources by processing
only selected frames.

Several systems deal with network variability and device
heterogeneity by dynamically determining the most suitable
division of work between the cloud and client. Wishbone [38]
shows how to take a data-flow graph of operators and par-
tition them across sensor nodes and the cloud using static
profiling to determine a good split. MAUI [13] optimizes
the energy consumption for interactive applications using an
adaptive pipeline partitioning. Its profiler gathers runtime
information and finds the optimal partitioning by solving a
linear program. Cloud-Vision [50] extends the idea of code
partitioning to server farms and aims to minimize the re-
sponse time given heterogeneous communication latencies
and server compute power. Odessa [41] makes offloading
and parallelism decisions using runtime profiling with the
goal of reducing the total execution delay. Glimpse is com-
plemantary to the above systems. Glimpse’s goal is to hide
the processing delay irrespective of where the delay occurs
and reduce the number of frames processed.

9. DISCUSSION
Generality of Glimpse: Active cache and trigger frames

are generic techniques that can be applied to other vision-
based applications. The active cache technique can be ap-
plied to any vision application that has real-time constraints.
For example, a surveillance control system [61] or video anal-
ysis application that tracks objects such as cars needs to hide
the recognition delay to track the location of objects in real
time. The trigger frame technique can be applied to any
vision processing system to reduce the resources consumed.

Limitations of Glimpse: Glimpse can have reduced
performance when the detected object does not show promi-
nent contrast from the background, and does not have enough
salient feature points to enable reliable tracking. Advances
in object tracking can be easily incorporated into Glimpse.

Lighting conditions can affect the performance of vision
algorithms used in Glimpse. Our dataset covers a reason-
ably wide range of lighting conditions and we do not notice
any performance degradation – for the face dataset, under
the Wi-Fi network, the F1 score for the brightest and the
darkest videos are 98% and 97%, respectively. However, we
believe that performance can degrade in extremely low-light
conditions. Advances in cameras and vision algorithms can
help improve the performance of Glimpse in these scenarios.

Currently, Glimpse uses a fixed frame differencing thresh-
old (§4) for trigger frames. Our experiments show that a
single threshold works well for a wide range of face and road
sign recognition scenarios. It is possible that a single thresh-
old might be suboptimal when we include more recognition
scenarios, requiring an adaptive threshold [44].

Future work: One direction for future work is to incor-
porate on-board inertial sensors such as accelerometers and
gyroscopes to improve the performance of Glimpse. Inertial
sensors can identify and quantify movement, and can help
tracking and trigger frame selection. However, inertial sen-
sors only capture the movement of the device and the user,
but not the objects that the user is observing. Therefore, a
vision-based trigger frame approach would still be required.

10. CONCLUSION
We presented Glimpse, a continuous, real-time object recog-

nition system for mobile devices and wearables. Glimpse
captures full-motion video from the camera, recognizes ob-
jects, and annotates the images with bounding boxes and
labels. Because the vision algorithms for object recognition
entail significant computation, Glimpse uses a distributed
architecture with the object recognition pipeline running at
the server. To hide the processing latencies, Glimpse uses
an active cache of video frames on the client and performs
object tracking on a subset of frames to correct the stale
results obtained from the processing pipeline. To save re-
sources, Glimpse locally tracks objects, and identifies trig-
ger frames by efficiently detecting tracking failure and scene
changes. Experiments with Glimpse shows that it achieves
high precision and recall, saves bandwidth, and significantly
outperforms other schemes.

11. ACKNOWLEDGMENTS
We thank the industrial partners of the MIT Center for

Wireless Networks and Mobile Computing (Wireless@MIT)
for their support. We also thank the volunteers who helped
gather our datasets.

12. REFERENCES
[1] iPhone 6 Face Detection.

https://www.apple.com/iphone-6/cameras/.
[2] Road sign detection and shape reconstruction using gielis

curves.
https://sites.google.com/site/mcvibot2011sep/home.

[3] DeepFace: Closing the Gap to Human-Level Performance
in Face Verification. In CVPR, 2014.

[4] Android camera.facedetectionlistener.
http://developer.android.com/reference/android/
hardware/Camera.FaceDetectionListener.html.

[5] J. Aronson. Dead reckoning: Latency hiding for networked
games. http://www.gamasutra.com/view/feature/131638/
dead_reckoning_latency_hiding_for_.php, 1997.

[6] R. Azuma. A survey of augmented reality, 1997.
[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool.

Speeded-up robust features (surf). In CVIU, 2008.
[8] S. S. Beauchemin and J. L. Barron. The computation of

optical flow. In CSUR, 1995.
[9] X. Cao, Y. Wei, F. Wen, and J. Sun. Face alignment by

explicit shape regression. In CVPR, 2012.
[10] D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of

dimensionality: High-dimensional feature and its efficient
compression for face verification. In CVPR, 2013.

[11] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner. Fpga-based
face detection system using haar classifiers. In FPGA, 2009.

[12] A. Collet Romea, M. Martinez Torres, and S. Srinivasa.
The moped framework: Object recognition and pose
estimation for manipulation. In IJRR, 2011.

[13] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
smartphones last longer with code offload. In MobiSys,
2010.

[14] M. Dantone, L. Bossard, T. Quack, and L. Van Gool.
Augmented faces. In ICCVW, 2011.

[15] S. Deng and H. Balakrishnan. Traffic-Aware Techniques to
Reduce 3G/LTE Wireless Energy Consumption. In
CoNEXT, 2012.

[16] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan.
WiFi, LTE, or Both? Measuring Multi-Homed Wireless
Internet Performance. In IMC, 2014.

[17] D. Exner, E. Bruns, D. Kurz, A. Grundhofer, and
O. Bimber. Fast and robust camshift tracking. In CVPRW,
2010.

[18] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and
C.-J. Lin. LIBLINEAR: A Library for Large Linear
Classification. In JMLR, 2008.

[19] V. Ferrari, L. Fevrier, C. Schmid, and F. Jurie. Groups of
adjacent contour segments for object detection. In Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
2008.

[20] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and
L. Van Gool. Server-side object recognition and client-side
object tracking for mobile augmented reality. In CVPRW,
2010.

[21] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester.
Discriminatively trained deformable part models, release 5.
http://people.cs.uchicago.edu/ rbg/latent-release5/.

[22] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan. Towards wearable cognitive assistance.
In MobiSys, 2014.

[23] K. Ha, P. Pillai, W. Richter, Y. Abe, and
M. Satyanarayanan. Just-in-time provisioning for cyber
foraging. In MobiSys, 2013.

[24] B. K. P. Horn and B. G. Schunck. Determining optical flow.
In MIT Technical Report, 1981.

[25] N. Ismail and M. I. M. Sabri. Mobile to server face
recognition: A system overview. World Academy of
Science, Engineering and Technology, 2010.

[26] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

[27] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and
K. Goldberg. Cloud-based robot grasping with the google
object recognition engine. In ICRA, 2013.

[28] R. Klette, J. Ahn, R. Haeusler, S. Herman, J. Huang,
W. Khan, S. Manoharan, S. Morales, J. Morris,
R. Nicolescu, F. Ren, K. Schauwecker, and X. Yang.
Advance in vision-based driver assistance. In ICETCE,
2011.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS. 2012.

[30] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute
and simile classifiers for face verification. In ICCV, 2009.

[31] J. R. Lange, P. A. Dinda, and S. Rossoff. Experiences with
client-based speculative remote display. In ATC, 2008.

[32] B. Leibe, A. Leonardis, and B. Schiele. Combined object
categorization and segmentation with an implicit shape
model. In ECCV, 2004.

[33] R. LiKamWa, Z. Wang, A. Carroll, F. X. Lin, and
L. Zhong. Draining our glass: An energy and heat
characterization of google glass. In CoRR, 2014.

[34] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. In IJCV, 2004.

[35] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI,
1981.

[36] A. Mayberry, P. Hu, B. Marlin, C. Salthouse, and
D. Ganesan. iShadow: Design of a Wearable, Real-time
Mobile Gaze Tracker. In MobiSys, 2014.

[37] R. Netravali, A. Sivaraman, K. Winstein, S. Das, A. Goyal,
and H. Balakrishnan. Mahimahi: A lightweight toolkit for
reproducible web measurement (demo). In SIGCOMM,
2014.

[38] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. Wishbone: Pröıň ↪Ale-based Partitioning for
Sensornet Applications. In NSDI, 2009.

[39] C.-W. Ngo, Y.-F. Ma, and H.-J. Zhang. Video
summarization and scene detection by graph modeling.
IEEE Trans. Cir. and Sys. for Video Technol., 2005.

[40] Opencv4android.
http://opencv.org/platforms/android.html.

[41] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,
and R. Govindan. Odessa: Enabling interactive perception
applications on mobile devices. In MobiSys, 2011.

[42] S. Rallapalli, A. Ganesan, K. Chintalapudi,
V. Padmanabhan, and L. Qiu. Enabling physical analytics
in retail stores using smart glasses. In Mobicom, 2014.

[43] T. Richardson, Q. Stafford-Fraser, K. Wood, and
A. Hopper. Virtual network computing. In Internet
Computing, IEEE, 1998.

[44] P. Rosin and T. Ellis. Image difference threshold strategies
and shadow detection. In BMVC, 1995.

[45] A. Sankaranarayanan, A. Veeraraghavan, and
R. Chellappa. Object detection, tracking and recognition
for multiple smart cameras. Proceedings of the IEEE, 2008.

[46] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The Case for VM-Based Cloudlets in Mobile Computing.
Pervasive Computing, IEEE, 2009.

[47] J. Schmidhuber. Multi-column deep neural networks for
image classification. In CVPR, 2012.

[48] Y. Shen, W. Hu, M. Yang, B. Wei, S. Lucey, and C. T.
Chou. Face recognition on smartphones via optimised
sparse representation classification. In IPSN, 2014.

[49] J. Shi and C. Tomasi. Good features to track. In CVPR,
1994.

[50] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, and
W. Heinzelman. Cloud-vision: Real-time face recognition
using a mobile-cloudlet-cloud acceleration architecture. In
ISCC, 2012.

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CoRR, 2014.

https://www.apple.com/iphone-6/cameras/
https://sites.google.com/site/mcvibot2011sep/home
http://developer.android.com/reference/android/hardware/Camera.FaceDetectionListener.html
http://developer.android.com/reference/android/hardware/Camera.FaceDetectionListener.html
http://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php
http://www.gamasutra.com/view/feature/131638/dead_reckoning_latency_hiding_for_.php
http://opencv.org/platforms/android.html

[52] C. Szegedy, A. Toshev, and D. Erhan. Deep neural
networks for object detection. In NIPS. 2013.

[53] G. Takacs, Y. Xiong, R. Grzeszczuk, V. Chandrasekhar,
W. chao Chen, K. Pulli, N. Gelfand, T. Bismpigiannis, and
B. Girod. Outdoors augmented reality on mobile phone
using loxel-based visual feature organization. In MIR, 2008.

[54] V. Vaitukaitis and A. Bulling. Eye gesture recognition on
portable devices. In UbiComp, 2012.

[55] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR, 2001.

[56] P. Viola and M. J. Jones. Robust real-time face detection.
In IJCV, 2004.

[57] A. I. Wang, M. Jarrett, and E. Sorteberg. Experiences from
implementing a mobile multiplayer real-time game for
wireless networks with high latency. Int. J. Comput.
Games Technol., 2009.

[58] Z. Wang, J. Yan, C. Pang, D. Chu, and H. Aghajan. Who is
here: Location aware face recognition. In PhoneSense, 2012.

[59] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and low delay
over cellular networks. In NSDI, 2013.

[60] K. Zhang, L. Zhang, and M.-H. Yang. Real-time
compressive tracking. In ECCV, 2012.

[61] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and
S. Banerjee. The design and implementation of a wireless
video surveillance system. In MobiCom, 2015.

[62] X. Zhang, L. Zhang, X.-J. Wang, and H.-Y. Shum. Finding
celebrities in billions of web images. IEEE Transactions on
Multimedia, 2012.

[63] Y. Zhuang, Y. Rui, T. Huang, and S. Mehrotra. Adaptive
key frame extraction using unsupervised clustering. In
ICIP, 1998.

	Introduction
	Background and Design
	Object recognition pipeline
	Object tracking
	Challenges and approach

	Active Cache
	How many frames to select?
	Which frames to select?

	Trigger Frames
	Implementation
	Evaluation
	Data Collection
	Experimental Setup
	Evaluation Metrics

	Results
	End-to-end performance
	Face detection in hardware

	Benefits of the active cache
	Picking a subset of frames from the active cache
	Dynamic programming to pick frames

	Benefits of trigger frames
	Energy consumption

	Related Work
	Discussion
	Conclusion
	Acknowledgments
	References

