Sum-Product Networks: A New Deep Architecture

Hoifung Poon and Pedro Domingos
Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA
{hoifung,pedrod} @cs.washington.edu

Abstract

The key limiting factor in graphical model infer-
ence and learning is the complexity of the par-
tition function. We thus ask the question: what
are general conditions under which the partition
function is tractable? The answer leads to a new
kind of deep architecture, which we call sum-
product networks (SPNs). SPNs are directed
acyclic graphs with variables as leaves, sums
and products as internal nodes, and weighted
edges. We show that if an SPN is complete
and consistent it represents the partition func-
tion and all marginals of some graphical model,
and give semantics to its nodes. Essentially all
tractable graphical models can be cast as SPN,
but SPNs are also strictly more general. We then
propose learning algorithms for SPNs, based on
backpropagation and EM. Experiments show that
inference and learning with SPNs can be both
faster and more accurate than with standard deep
networks. For example, SPNs perform image
completion better than state-of-the-art deep net-
works for this task. SPNs also have intriguing
potential connections to the architecture of the
cortex.

1 INTRODUCTION

The goal of probabilistic modeling is to represent proba-
bility distributions compactly, compute their marginals and
modes efficiently, and learn them accurately. Graphical
models [22] represent distributions compactly as normal-
ized products of factors: P(X =) = + [, ¢(zk}),
where x € X is a d-dimensional vector, each potential ¢y,
is a function of a subset z(of the variables (its scope),
and Z = > [, ¢r(zqy) is the partition function.
Graphical models have a number of important limitations.
First, there are many distributions that admit a compact
representation, but not in the form above. (For example,

the uniform distribution over vectors with an even number
of 1’s.) Second, inference is still exponential in the worst
case. Third, the sample size required for accurate learning
is worst-case exponential in scope size. Fourth, because
learning requires inference as a subroutine, it can take ex-
ponential time even with fixed scopes (unless the partition
function is a known constant, which requires restricting the
potentials to be conditional probabilities).

The compactness of graphical models can often be greatly
increased by postulating the existence of hidden variables
y: P(X =) = 15, TI, éx((2.9)(5))- Deep archi-
tectures [2] can be viewed as graphical models with mul-
tiple layers of hidden variables, where each potential in-
volves only variables in consecutive layers, or variables in
the shallowest layer and x. Many distributions can only
be represented compactly by deep networks. However,
the combination of non-convex likelihood and intractable
inference makes learning deep networks extremely chal-
lenging. Classes of graphical models where inference is
tractable exist (e.g., mixture models [17], thin junction
trees [5]), but are quite limited in the distributions they can
represent compactly. This paper starts from the observation
that models with multiple layers of hidden variables allow
for efficient inference in a much larger class of distribu-
tions. Surprisingly, current deep architectures do not take
advantage of this, and typically solve a harder inference
problem than models with one or no hidden layers.

This can be seen as follows. The partition function Z is
intractable because it is the sum of an exponential number
of terms. All marginals are sums of subsets of these terms;
thus if Z can be computed efficiently, so can they. But Z
itself is a function that can potentially be compactly repre-
sented using a deep architecture. Z is computed using only
two types of operations: sums and products. It can be com-
puted efficiently if > _ o [], éx (2 (%)) can be reorganized
using the distributive law into a computation involving only
a polynomial number of sums and products. Given a graph-
ical model, the inference problem in a nutshell is to perform
this reorganization. But we can instead learn from the out-
set a model that is already in efficiently computable form,

viewing sums as implicit hidden variables. This leads nat-
urally to the question: what is the broadest class of models
that admit such an efficient form for Z?

We answer this question by providing conditions for
tractability of Z, and showing that they are more general
than previous tractable classes. We introduce sum-product
networks (SPNs), a representation that facilitates this treat-
ment and also has semantic value in its own right. SPNs
can be viewed as generalized directed acyclic graphs of
mixture models, with sum nodes corresponding to mixtures
over subsets of variables and product nodes correspond-
ing to features or mixture components. SPNs lend them-
selves naturally to efficient learning by backpropagation or
EM. Of course, many distributions cannot be represented
by polynomial-sized SPNs, and whether these are sufficient
for the real-world problems we need to solve is an empirical
question. Our experiments show they are quite promising.

2 SUM-PRODUCT NETWORKS

For simplicity, we focus first on Boolean variables. The
extension to multi-valued discrete variables and continuous
variables is discussed later in this section. The negation of
a Boolean variable X is represented by X;. The indicator
function [.] has value 1 when its argument is true, and 0
otherwise. Since it will be clear from context whether we
are referring to a variable or its indicator, we abbreviate
[X;] by z; and [X;] by Z;.

We build on the ideas of Darwiche [7], and in particular
the notion of nerwork polynomial. Let ®(z) > 0 be an
unnormalized probability distribution. The network poly-
nomial of ®(x) is > ®(x)II(x), where II(x) is the prod-
uct of the indicators that have value 1 in state x. For ex-
ample, the network polynomial for a Bernoulli distribu-
tion over variable X; with parameter p is pz; + (1 — p)Z;.
The network polynomial for the Bayesian network X; —
Xy 1S P(Il)P($2|CC1)1711‘2 + P(xl)P(fﬂxl)Q?ljz +
P(i’l)P($2|fl)i‘1$2 + P(Q_j'l)P(ﬂ_S'2|i’1)(fli’2.

The network polynomial is a multilinear function of the
indicator variables. The unnormalized probability of ev-
idence (partial instantiation of X) e is the value of the
network polynomial when all indicators compatible with
e are set to 1 and the remainder are set to 0. For example,
®(X; =1, X3=0) is the value of the network polynomial
when Z; and x3 are set to 0 and the remaining indicators
are set to 1 throughout. The partition function is the value
of the network polynomial when all indicators are set to 1.
For any evidence e, the cost of computing P(e) = ®(e)/Z
is linear in the size of the network polynomial. Of course,
the network polynomial has size exponential in the number
of variables, but we may be able to represent and evaluate it
in polynomial space and time using a sum-product network.

Definition 1 A sum-product network (SPN) over variables

Figure 1: Top: SPN implementing a naive Bayes mix-
ture model (three components, two variables). Bottom:
SPN implementing a junction tree (clusters (X7, X5) and
(X1, X3), separator X1).

Z1,...,Zq 1S a rooted directed acyclic graph whose leaves
are the indicators x1, . ..,xqand 1, . . ., xq and whose in-
ternal nodes are sums and products. Each edge (i,j) em-
anating from a sum node i has a non-negative weight w;.
The value of a product node is the product of the values of
its children. The value of a sum node is ZjeCh(i) w;V5,
where Ch(i) are the children of i and v; is the value of
node j. The value of an SPN is the value of its root.

Figure 1 shows examples of SPNs. In this paper we will
assume (without loss of generality) that sums and products
are arranged in alternating layers, i.e., all children of a sum
are products or leaves, and vice-versa.

We denote the sum-product network S as a function
of the indicator variables zi,...,zq4 and Zi,...,Z4 by
S(x1,...,%4,Z1,...,%q4). When the indicators specify a
complete state x (i.e., for each variable X, either x; = 1
and £; = O or x; = 0 and £; = 1), we abbreviate this
as S(x). When the indicators specify evidence e we ab-
breviate it as S(e). When all indicators are set to 1, we
abbreviate it as S(x). The subnetwork rooted at an arbi-
trary node n in the SPN is itself an SPN, which we denote
by Sn(.). The values of S(z) for all z € X define an
unnormalized probability distribution over X. The unnor-
malized probability of evidence e under this distribution is
Ps(e) = > c. S(x), where the sum is over states consis-
tent with e. The partition function of the distribution de-
fined by S(z) is Zs = >, » S(z). The scope of an SPN
S is the set of variables that appear in S. A variable X;
appears negated in S if Z; is a leaf of S and non-negated if
x; is a leaf of S.

For example, for the SPN in Figure 1, S(x1, x2, T1, T2) =
0.5(0.6z1 + 0.471)(0.3z5 + 0.725) + 0.2(0.6z; +

0.4%1)(0.229+0.8%2)+0.3(0.92140.1%1) (0.225+0.8Z3).
The network polynomial is (0.5 x 0.6 x 0.3+ 0.2 x 0.6 X
0.2+ 0.3 x 0.9 x 0.2)x122 + ... If a complete state x is
X1 = 1,X5 = 0, then S(z) = S(1,0,0,1). If the ev-
idence e is X; = 1, then S(e) = S(1,1,0,1). Finally,
S(x) =S(1,1,1,1).

Definition 2 A sum-product network S is valid iff S(e) =
Dgs(e) for all evidence e.

In other words, an SPN is valid if it always correctly com-
putes the probability of evidence. In particular, if an SPN
S is valid then S(x) = Zg. A valid SPN computes the
probability of evidence in time linear in its size. We would
like to learn only valid SPNs, but otherwise have as much
flexibility as possible. We thus start by establishing general
conditions for the validity of an SPN.

Definition 3 A sum-product network is complete iff all
children of the same sum node have the same scope.

Definition 4 A sum-product network is consistent iff no
variable appears negated in one child of a product node
and non-negated in another.

Theorem 1 A sum-product network is valid if it is com-
plete and consistent.

Proof. Every SPN S can be expressed as a polynomial
>k Sk 11x(-..), where [T, (...) is a monomial over the in-
dicator variables and s, > 0 is its coefficient. We call
this the expansion of the SPN; it is obtained by applying
the distributive law bottom-up to all product nodes in the
SPN, treating each x; leaf as 1z; + 0x; and each Z; leaf
as Oz; + 17;. An SPN is valid if its expansion is its net-
work polynomial, i.e., the monomials in the expansion and
the states x are in one-to-one correspondence: each mono-
mial is non-zero in exactly one state (condition 1), and each
state has exactly one monomial that is non-zero in it (con-
dition 2). From condition 2, S(z) is equal to the coeffi-
cient s, of the monomial that is non-zero in it, and there-
fore () = Y0, S(0) = Speese = g swmi(e),
where n(e) is the number of states x consistent with e
for which IIx(x) = 1. From condition 1, n; = 1 if
the state = for which Il (z) = 1 is consistent with the
evidence and ny, = 0 otherwise, and therefore ®g(e) =
2k Ty (e)=1 Sk = S(e) and the SPN is valid.

We prove by induction from the leaves to the root that, if
an SPN is complete and consistent, then its expansion is its
network polynomial. This is trivially true for a leaf. We
consider only internal nodes with two children; the exten-
sion to the general case is immediate. Let n° be an arbi-
trary internal node with children n' and n%. We denote the
scope of n® by V0, a state of V0 by 2, the expansion of the
subgraph rooted at n° by S, and the unnormalized proba-
bility of ¢ under Sy by ®°(2°); and similarly for n! and

n?. By the induction hypothesis, S* = Y~ _, ®!(z1)II(z!)
and 52 = 3", ®2(2)IL(z?).

If n® is a sum node, then S = wp; >, & (z!)(2t) +
wo2 Y2 P2 (2?)IL(2?). If V! # V2, then each state of V!
(or V2) corresponds to multiple states of V0 = V1 U V?2,
and therefore each monomial from V! (V2) is non-zero in
more than one state of V0, breaking the correspondence
between monomials of S° and states of V0. However, if
the SPN is complete then VY = V! = V2, and their states
are in one-to-one correspondence. Therefore by the induc-
tion hypothesis the monomials of V! and V2 are also in
one-to-one correspondence and S° = >, (wp1®*(2°) +
woa®?(2°))I1(2°); i.e., the expansion of S° is its network
polynomial.

If n° is a product node, then SS9 =
(X, @ (@HII(zh)) (3,2 P2 (=) (2?)). IFViNV, = 0,
it follows immediately that the expansion of Vj is its
network polynomial. In the more general case, let
Vie=VinV, Vi_ =Vi\ Voand Vo_ = V5 \ V; and let
2'2, 21~ and 22~ be the corresponding states. Since each
®!(z') is non-zero in exactly one state x! and similarly
for ®2(2?), each monomial in the product of S' and S?
is nonzero in at most one state of V° = V1 U V2, If the
SPN is not consistent, then at least one monomial in the
product contains both the positive and negative indicators
of a variable, z; and Z;. Since no monomial in the
network polynomial contains both x; and Z;, this means
the expansion of S? is not equal to its network polynomial.
To ensure that each monomial in S° is non-zero in at least
one state of Vp, for every II(z'~, 212), TI(x'?, 227) pair
there must exist a state #° = (x'~, 22, 22~) where both
(z'~,2'2) and II(2'2,227) are 1, and therefore the
indicators over z'2 in both monomials must be consis-
tent. Since by the induction hypothesis they completely
specify x'2, they must be the same in the two monomials.
Therefore all II(x'~,2z'2) and II(z'2,22~) monomials
must have the same z'2 indicators, i.e., the SPN must be
consistent.)

Completeness and consistency are not necessary for va-
lidity; for example, the network S(z1,z9,Z1,Z2) =
%xlxﬂ'g + %xl is incomplete and inconsistent, but satisfies
Pg(e) = > ,c. S(x) for all evidence e. However, com-
pleteness and consistency are necessary for the stronger
property that every subnetwork of S be valid. This can
be proved by refutation. The input nodes are valid by def-
inition. Let S be a node that violates either completeness
or consistency but all of its descendants satisfy both condi-
tions. We can show that S is not valid since it either under-
counts the summation (if it is incomplete) or overcounts it
(if it is inconsistent).

If an SPN S is complete but inconsistent, its expansion in-
cludes monomials that are not present in its network poly-
nomial, and S(e) > ®g(e). If S is consistent but in-

Figure 2: A sum node i can be viewed as the result of sum-
ming out a hidden variable Y; y;; represents the indicator
[Y; = j] and j ranges over the children of :.

complete, some of its monomials are missing indicators
relative to the monomials in its network polynomial, and
S(e) < ®g(e). Thus invalid SPNs may be useful for ap-
proximate inference. Exploring this is a direction for future
work.

Completeness and consistency allow us to design deep ar-
chitectures where inference is guaranteed to be efficient.
This in turn makes learning them much easier.

Definition 5 An unnormalized probability distribution
®(x) is representable by a sum-product network S iff
®(x) = S(x) for all states x and S is valid.

S then correctly computes all marginals of ®(z), including
its partition function.

Theorem 2 The partition function of a Markov network
®(x), where x is a d-dimensional vector, can be computed
in time polynomial in d if ®(x) is representable by a sum-
product network with a number of edges polynomial in d.

Proof. Follows immediately from the definitions of SPN
and representability. O

Definition 6 A sum-product network is decomposable iff
no variable appears in more than one child of a product
node.

Decomposability is more restricted than consistency (e.g.,
S(x1,Z1) = w1 is consistent but not decomposable.)
This makes SPNs more general than representations that
require decomposability, like arithmetic circuits [7], prob-
abilistic context-free grammars [6], mixture models [32],
junction trees [5], and others. (See also Section 3.)

SPNs can be extended to multi-valued discrete variables
simply by replacing the Boolean indicators [X; = 1],
[X; = 0] with indicators for the variable’s possible values
i [X; =2, .. [X; = 2], or z},...,z7 for short.
For example, the multinomial distribution over Xj; is repre-

sented by Z;"Zl plal, where p! = P(X;=17)).

3

If an SPN S is complete and consistent, and for every sum
node i, Y e oy Wij = 1, where Ch(i) are the children of
i, then Zg = 1. In this case, we can view each sum node
1 as the result of summing out an implicit hidden variable

Y; whose values correspond to its children Ch(i) (see Fig-
ure 2). This is because a variable is summed out by setting
all its indicators to 1, and children of product nodes whose
value is 1 can be omitted. Thus the SPN rooted at node
can be viewed as a mixture model, with its children being
the mixture components, which in turn are products of mix-
ture models. If ¢ has no parent (i.e., it is the root), its chil-
dren’s weights are ;s prior distribution: w;; = P(Y; =7).
Otherwise w;; = P(Y; = j|m;), where ; is the condition
that, on at least one path from Y; to the root, all of Y;’s an-
cestors have the values that lead to Y; (the ancestors being
the hidden variables corresponding to the sum nodes on the
path). If the network is also decomposable, the subnetwork
rooted at the jth child then represents the distribution of the
variables in it conditioned on Y; = j. Thus an SPN can be
viewed as a compact way to specify a mixture model with
exponentially many mixture components, where subcom-
ponents are composed and reused in larger ones. From this
perspective, we can naturally derive an EM algorithm for
SPN learning. (See Section 4.)

SPNs can be generalized to continuous variables by view-
ing these as multinomial variables with an infinite num-
ber of values. The multinomial’s weighted sum of indica-
tors 37", pj] then becomes the integral [p(x)dx, where
p(x) is the p.d.f. of X. For example, p(x) can be a univari-
ate Gaussian. Thus SPNs over continuous variables have
integral nodes instead of sum nodes with indicator children
(or instead of indicators, since these can be viewed as de-
generate sum nodes where one weight is 1 and the others
are 0). We can then form sums and products of these nodes,
as before, leading to a rich yet compact language for spec-
ifying high-dimensional continuous distributions. During
inference, if the evidence includes X = xz, the value of
an integral node n over x is p,(z); otherwise its value is
1. Computing the probability of evidence then proceeds as
before.

Given a valid SPN, the marginals of all variables (including
the implicit hidden variables Y) can be computed by differ-
entiation [7]. Let n; be an arbitrary node in SPN S, S;(x)
be its value on input instance x, and Pa,; be its parents. If
n; is a product node, its parents (by assumption) are sum
nodes, and 95 (x)/0Si(z) = 3 pcpa, Wki0S()/0Sk(w).
If n; is a sum node, its parents (by assump-
tion) are product nodes, and 0S(x)/0S;(x) =
> kepa; (05(2)/0Sk()) [Ticcn_, i) Si(@), where
Ch_;(k) are the children of the kth parent of n; excluding
n;. Thus we can evaluate \S;’s in an upward pass from input
to the root, with parents following their children, and then
compute 05(x)/0w;; and 0S(x)/0S;(x) in a downward
pass from the root to input, with children following parents.
The marginals for the nodes can be derived from these
partial derivatives [7]. In particular, if n; is a child of a sum
node ny, then P(Y;, = ile) x wy;05(e)/0Sk(e); if n; is
an indicator [X, = ¢], then P(X, = tle) o< 95(e)/IS;(e).

The continuous case is similar except that we have
marginal densities rather than marginal probabilities.

The MPE state arg maxy y P(X,Y|e) can be computed
by replacing sums by maximizations. In the upward pass,
a max node outputs the maximum weighted value among
its children instead of their weighted sum. The downward
pass then starts from the root and recursively selects the (or
a) highest-valued child of a max node, and all children of
a product node. Based on the results in Darwiche [7], we
can prove that this will find the MPE state if the SPN is de-
composable. Extension of the proof to consistent SPNs is
straightforward since by definition no conflicting input in-
dicators will be chosen. The continuous case is similar, and
straightforward as long as computing the max and argmax
of p(x) is easy (as is the case with Gaussians).

3 SUM-PRODUCT NETWORKS AND
OTHER MODELS

Let Ry (D) be the most compact representation of dis-
tribution D under moder class M, size(R) be the size of
representation R, ¢ > 0 be a constant, and exp(x) be
an exponential function. We say that model class M is
more general than model class M5 iff for all distributions
D size(Rpr, (D)) < ¢ - size(Rpr, (D)) and there exist dis-
tributions for which size(Ryz, (D)) > exp(size(Ryy, (D)).
In this sense, sum-product networks are more general than
both hierarchical mixture models [32] and thin junction
trees [5]. Clearly, both of these can be represented as
SPNs without loss of compactness (see Figure 1). SPNs
can be exponentially more compact than hierarchical mix-
ture models because they allow mixtures over subsets of
variables and their reuse. SPNs can be exponentially more
compact than junction trees when context-specific indepen-
dence and determinism are present, since they exploit these
and junction trees do not. This holds even when junction
trees are formed from Bayesian networks with context-
specific independence in the form of decision trees at the
nodes, because decision trees suffer from the replication
problem [21] and can be exponentially larger than a DAG
representation of the same function.

Figure 3 shows an SPN that implements a uniform distribu-
tion over states of five variables with an even number of 1°s,
as well as the corresponding mixture model. The distribu-
tion can also be non-uniform if the weights are not uniform.
In general, SPNs can represent such distributions in size
linear in the number of variables, by reusing intermediate
components. In contrast, a mixture model (hierarchical or
not) requires an exponential number of components, since
each component must correspond to a complete state, or
else it will assign non-zero probability to some state with
an odd number of 1’s.

Graphical models with junction tree clique potentials that

Figure 3: Top: SPN representing the uniform distribution
over states of five variables containing an even number of
I’s. Bottom: mixture model for the same distribution. For
simplicity, we omit the uniform weights.

cannot be simplified to polynomial size cannot be rep-
resented compactly as SPNs. More interestingly, as the
previous example shows, SPNs can compactly represent
some classes of distributions in which no conditional inde-
pendences hold. Multi-linear representations (MLRs) also
have this property [24]. Since MLRs are essentially ex-
panded SPNs, an SPN can be exponentially more compact
than the corresponding MLR.

SPNs are closely related to data structures for efficient in-
ference like arithmetic circuits [7] and AND/OR graphs [8].
However, to date these have been viewed purely as compi-
lation targets for Bayesian network inference and related
tasks, and have no semantics as models in their own right.
As a result, the problem of learning them has not generally
been considered. The two exceptions we are aware of are
Lowd and Domingos [18] and Gogate et al. [12]. Lowd
and Domingos’s algorithm is a standard Bayesian network
structure learner with the complexity of the resulting circuit
as the regularizer, and does not have the flexibility of SPN
learning. Gogate et al.’s algorithm learns Markov networks
representable by compact circuits, but does not reuse sub-
circuits. Case-factor diagrams [19] are another compact
representation, similar to decomposable SPNs. No algo-
rithms for learning them or for computing the probability
of evidence in them have been proposed to date.

We can view the product nodes in an SPN as forming a
feature hierarchy, with the sum nodes representing distri-
butions over them; in contrast, standard deep architectures

Algorithm 1 LearnSPN
Input: Set D of instances over variables X .
Output: An SPN with learned structure and parameters.
S« GenerateDenseSPN(X)
InitializeWeights(.5)
repeat
foralld € D do
UpdateWeights(.S, Inference(.S, d))
end for
until convergence
S« PruneZeroWeights(.S)
return S

explicitly represent only the features, and require the sums
to be inefficiently computed by Gibbs sampling or oth-
erwise approximated. Convolutional networks [15] alter-
nate feature layers with pooling layers, where the pool-
ing operation is typically max or average, and the fea-
tures in each layer are over a subset of the input variables.
Convolutional networks are not probabilistic, and are usu-
ally viewed as a vision-specific architecture. SPNs can be
viewed as probabilistic, general-purpose convolutional net-
works, with average-pooling corresponding to marginal in-
ference and max-pooling corresponding to MPE inference.
Lee at al. [16] have proposed a probabilistic version of
max-pooling, but in their architecture there is no corre-
spondence between pooling and the sum or max operations
in probabilistic inference, as a result of which inference is
generally intractable. SPNs can also be viewed as a prob-
abilistic version of competitive learning [27] and sigma-pi
networks [25]. Like deep belief networks, SPNs can be
used for nonlinear dimensionality reduction [14], and al-
low objects to be reconstructed from the reduced represen-
tation (in the case of SPNs, a choice of mixture component
at each sum node).

Probabilistic context-free grammars and statistical parsing
[6] can be straightforwardly implemented as decomposable
SPNs, with non-terminal nodes corresponding to sums (or
maxes) and productions corresponding to products (logi-
cal conjunctions for standard PCFGs, and general products
for head-driven PCFGs). Learning an SPN then amounts
to directly learning a chart parser of bounded size. How-
ever, SPNs are more general, and can represent unrestricted
probabilistic grammars with bounded recursion. SPNs are
also well suited to implementing and learning grammatical
vision models (e.g., [10, 33]).

4 LEARNING SUM-PRODUCT
NETWORKS

The structure and parameters of an SPN can be learned
together by starting with a densely connected architecture
and learning the weights, as in multilayer perceptrons. Al-
gorithm 1 shows a general learning scheme with online
learning; batch learning is similar.

First, the SPN is initialized with a generic architecture.
The only requirement on this architecture is that it be valid
(complete and consistent). Then each example is processed
in turn by running inference on it and updating the weights.
This is repeated until convergence. The final SPN is ob-
tained by pruning edges with zero weight and recursively
removing non-root parentless nodes. Note that a weighted
edge must emanate from a sum node and pruning such
edges will not violate the validity of the SPN. Therefore,
the learned SPN is guaranteed to be valid.

Completeness and consistency are general conditions that
leave room for a very flexible choice of architectures. Here,
we propose a general scheme for producing the initial ar-
chitecture: 1. Select a set of subsets of the variables. 2. For
each subset R, create k£ sum nodes Sf%, oS ,}f, and select
a set of ways to decompose R into other selected subsets
Ry, ..., R;. 3. For each of these decompositions, and for
all 1 < iq,...,9 < k, create a product node with par-
ents .S JR and children Sﬁ oo, Si]f’. We require that only a
polynomial number of subsets is selected and for each sub-
set only a polynomial number of decompositions is cho-
sen. This ensures that the initial SPN is of polynomial size
and guarantees efficient inference during learning and for
the final SPN. For domains with inherent local structure,
there are usually intuitive choices for subsets and decom-
positions; we give an example in Section 5 for image data.
Alternatively, subsets and decompositions can be selected
randomly, as in random forests [4]. Domain knowledge
(e.g., affine invariances or symmetries) can also be incor-
porated into the architecture, although we do not pursue
this in this paper.

Weight updating in Algorithm 1 can be done by gradient
descent or EM. We consider each of these in turn.

SPNs lend themselves naturally to efficient computation
of the likelihood gradient by backpropagation [26]. Let
n; be a child of sum node n,. Then 0S(x)/0w;; =
(0S(x)/0S;(x))S;(x) and can be computed along with
05(x)/0S;(x) using the marginal inference algorithm de-
scribed in Section 2. The weights can then be updated by
a gradient step. (Also, if batch learning is used instead,
quasi-Newton and conjugate gradient methods can be ap-
plied without the difficulties introduced by approximate in-
ference.) We ensure that S(x) = 1 throughout by renormal-
izing the weights at each step, i.e., projecting the gradient
onto the S(*) = 1 constraint surface. Alternatively, we can
let Z = S(x) vary and optimize S(X)/S(x).

SPNs can also be learned using EM [20] by viewing each
sum node ¢ as the result of summing out a correspond-
ing hidden variable Y;, as described in Section 2. Now
the inference in Algorithm 1 is the E step, computing the
marginals of the Y;’s, and the weight update is the M step,
adding each Y;’s marginal to its sum from the previous it-
erations and renormalizing to obtain the new weights.

In either case, MAP learning can be done by placing a prior
on the weights. In particular, we can use a sparse prior,
leading to a smaller SPN after pruning zero weights and
thus to faster inference, as well as combatting overfitting.

Unfortunately, both gradient descent and EM as described
above give poor results when learning deep SPNs. Gradi-
ent descent falls prey to the gradient diffusion problem: as
more layers are added, the gradient signal rapidly dwindles
to zero. This is the key difficulty in deep learning. EM
also suffers from this problem, because its updates also be-
come smaller and smaller as we go deeper. We propose to
overcome this problem by using hard EM, i.e., replacing
marginal inference with MPE inference. Algorithm 1 now
maintains a count for each sum child, and the M step sim-
ply increments the count of the winning child; the weights
are obtained by normalizing the counts. This avoids the
gradient diffusion problem because all updates, from the
root to the inputs, are of unit size. In our experiments, this
made it possible to learn accurate deep SPNs, with tens of
layers instead of the few typically used in deep learning.

S EXPERIMENTS

We evaluated SPNs by applying them to the problem of
completing images. This is a good test for a deep archi-
tecture, because it is an extremely difficult task, where de-
tecting deep structure is key. Image completion has been
studied quite extensively in graphics and vision communi-
ties (e.g., [31, 3]), but the focus tends to be restoring small
occlusions (e.g., eyeglasses) to facilitate recognition tasks.
Some recent machine learning works also showed selected
image completion results [16, 1, 30], but they were limited
and often focused on small images. In contrast, we con-
ducted extensive evaluations where the half of each image
is occluded.

We conducted our main evaluation on Caltech-101 [9], a
well-known dataset containing images in 101 categories
such as faces, helicopters, and dolphins. For each cate-
gory, we set aside the last third (up to 50 images) for test
and trained an SPN using the rest. For each test image,
we covered half of the image and applied the learned SPN
to complete the occlusion. Additionally, we also ran ex-
periments on the Olivetti face dataset [28] containing 400
faces.

To initialize the SPN, we used an architecture that lever-
ages local structure in image data. Specifically, in Gener-
ateDenseSPN, all rectangular regions are selected, with the
smallest regions corresponding to pixels. For each rectan-
gular region, we consider all possible ways to decompose
it into two rectangular subregions.

SPNs can also adopt multiple resolution levels. For exam-
ple, for large regions we may only consider coarse region
decompositions. In preliminary experiments, we found that

this made learning much faster with little degradation in ac-
curacy. In particular, we adopted an architecture that uses
decompositions at a coarse resolution of m-by-m for large
regions, and finer decompositions only inside each m-by-
m block. We set m to 4 in our experiments.

The SPNs learned in our experiments were very deep, con-
taining 36 layers. In general, in our architecture there are
2(d—1) layers between the root and input for d x d images.
The numbers for SPNs with multiple resolution levels can
be computed similarly.

We used mini-batches in online hard EM; processing of in-
stances in a batch can be trivially parallelized. Running
soft EM after hard EM yielded no improvement. The best
results were obtained using sums on the upward pass and
maxes on the downward pass (i.e., the MPE value of each
hidden variable is computed conditioning on the MPE val-
ues of the hidden variables above it and summing out the
ones below). We initialized all weights to zero and used
add-one smoothing when evaluating nodes. We penalized
non-zero weights with an Lg prior with parameter 1.!

To handle gray-scale intensities, we normalized the inten-
sities of input images to have zero mean and unit variance,
and treated each pixel variable X; as a continuous sample
from a Gaussian mixture with k unit-variance components.
For each pixel, the intensities of training examples are di-
vided into k equal quantiles and the mean of each compo-
nent is set to that of the corresponding quantile. We used
four components in our experiments. (We also tried using
more components and learning the mixing parameters, but
it yielded no improvement in performance.)

We compared SPNs with deep belief networks (DBNs) [14]
and deep Boltzmann machines (DBMs) [29]. These are
state-of-the-art deep architectures and their codes are pub-
licly available. DBNs and DBMs both consist of several
layers of restricted Boltzmann machines (RBMs), but they
differ in the probabilistic model and training procedure.

We also compared SPNs with principal component analy-
sis (PCA) and nearest neighbor. PCA has been used ex-
tensively in previous image completion works [31]. We
used 100 principal components in our experiments. (Re-
sults with higher or lower numbers are similar.) Despite its
simplicity, nearest neighbor can give quite good results if
an image similar to the test one has been seen in the past
[13]. For each test image, we found the training image with
most similar right (top) half using Euclidean distance, and
returned its left (bottom) half.

We report mean square errors of the completed pixels of
test images for these five algorithms. Table 1 show the av-
erage result among all Caltech-101 categories, as well as

"Hard EM permits the use of an Lo prior, which can be in-
corporated in finding the MAP state. For gradient descent, an L
prior was used instead.

Table 1: Mean squared errors on completed image pixels in
the left or bottom half. NN is nearest neighbor.

LEFT SPN | DBM | DBN | PCA | NN
Caltech (ALL) | 3475 | 9043 | 4778 | 4234 | 4887
Face 1815 | 2998 | 4960 | 2851 | 2327
Helicopter 2749 | 5935 | 3353 | 4056 | 4265
Dolphin 3099 | 6898 | 4757 | 4232 | 4227
Olivetti 942 | 1866 | 2386 | 1076 | 1527
BOTTOM SPN | DBM | DBN | PCA | NN
Caltech (ALL) | 3538 | 9792 | 4492 | 4465 | 5505
Face 1924 | 2656 | 3447 | 1944 | 2575
Helicopter 3064 | 7325 | 4389 | 4432 | 7156
Dolphin 2767 | 7433 | 4514 | 4707 | 4673
Olivetti 918 | 2401 | 1931 | 1265 | 1793

the results for a few example categories and Olivetti.> Note
that the DBN results are not directly comparable with oth-
ers. Using the original images and without additional pre-
processing, the learned DBN gave very poor results, despite
our extensive effort to experiment using the code from Hin-
ton and Salakhutdinov [14]. Hinton and Salakhutdinov [14]
reported results for image reconstruction on Olivetti faces,
but they used reduced-scale images (25x25 compared to
the original size of 64 x64) and required a training set con-
taining over 120,000 images derived via transformations
like rotation, scaling, etc. By converting to the reduced
scale and initializing with their learned model, the results
improve significantly and so we report these results instead.
Note that reducing the scale artificially lowers the mean
square errors by reducing the overall variance. So although
DBN appears to have lower errors than DBM and nearest
neighbor, their completions are actually much worse (see
examples in Figure 5).

Overall, SPN outperforms all other methods by a wide mar-
gin. PCA performs surprisingly well in terms of mean
square errors compared to methods other than SPN, but
their completions are often quite blurred since they are a
linear combination of prototypical images. Nearest neigh-
bor can give good completions if there is a similar image
in training, but in general their completions can be quite
poor. Figure 4 shows the scatter plots comparing SPNs with
DBMs, PCA, and nearest neighbor, which confirms the ad-
vantage of SPN. The differences are statistically significant
by the binomial sign test at the p < 0.01 level.

Compared to state-of-the-art deep architectures [14, 16,
29], we found that SPNs have three significant advantages.

First, SPNs are considerably simpler, theoretically more
well-founded, and potentially more powerful. SPNs ad-

>The complete set of results and the SPN code will be avail-
able for download at http://alchemy.cs.washington.edu/spn.

Figure 4: Scatter plots comparing SPNs with DBMs, PCA,
and nearest neighbor in mean square errors on Caltech-101.
Each point represents an image category. The y axes have
the same scale as the = axes. Top: left completion. Bottom:
bottom completion.

Tt 5 o
L Lo+ Y a W37
+ 5 St
= B < %ﬁ}r . o 2 L
(ol I @1+ Al z T
[a) + f Lt -m +
+ ! - g e
+ . z +++
2000 5000 8000 2000 5000 8000 2000 5000 8000
SPN SPN SPN
F T + . T
ﬁt}; + 2 + fir {ﬁ
e 7 S| et
s + g) T Tho+
pas < g 4 zZ B+
2. | Al 7
5% s b AR5 %
. B |
T + Z

2000 5000 8000 2000 5000 8000 2000 5000 8000
SPN SPN SPN

mit efficient exact inference, while DBNs and DBMs re-
quire approximate inference. The problem of gradient dif-
fusion limits most learned DBNs and DBMs to a few lay-
ers, whereas with online hard EM, very deep accurate SPNs
were learned in our experiments. In practice, DBNs and
DBMs also tend to require substantially more engineering.
For example, we set the hyperparameters for SPNs in pre-
liminary experiments and found that these values worked
well for all datasets. We also used the same architecture
throughout and let learning adapt the SPN to the details of
each dataset. In contrast, DBNs and DBMs typically re-
quire a careful choice of parameters and architectures for
each dataset. (For example, the default learning rate of
0.1 leads to massive divergence in learning Caltech im-
ages with DBNs.) SPN learning terminates when the av-
erage log-likelihood does not improve beyond a threshold
(we used 0.1, which typically converges in around 10 itera-
tions; 0.01 yielded no improvement in initial experiments).
For DBNs/DBMs, however, the number of iterations has to
be determined empirically using a large development set.
Further, successful DBN/DBM training often requires ex-
tensive preprocessing of the examples, while we used es-
sentially none for SPNs.

Second, SPNs are at least an order of magnitude faster in
both learning and inference. For example, learning Cal-
tech faces takes about 6 minutes with 20 CPUs, or about
2 hours with one CPU. In contrast, depending on the num-
ber of learning iterations and whether a much larger trans-
formed dataset is used (as in [14, 29]), learning time for
DBNs/DBMs ranges from 30 hours to over a week. For
inference, SPNs took less than a second to find the MPE
completion of an image, to compute the likelihood of such
a completion, or to compute the marginal probability of a
variable, and all these results are exact. In contrast, esti-

Figure 5: Sample face completions. Top to bottom: orig-
inal, SPN, DBM, DBN, PCA, nearest neighbor. The first
three images are from Caltech-101, the rest from Olivetti.

mating likelihood in DBNs or DBMs is a very challenging
problem [30]; estimating marginals requires many Gibbs
sampling steps that may take minutes or even hours, and
the results are approximate without guarantee on the qual-

1ty.

Third, SPNs appear to learn much more effectively. For
example, Lee et al. [16] show five faces with comple-
tion results in Figure 6 of their paper. Their network was
only able to complete a small portion of the faces, leav-
ing the rest blank (starting with images where the visible
side already contained more than half the face).® The com-
pletions generated by DBMs look plausible in isolation,
but they are often at odds with the observed portion and
the same completions are often reused in different images.
The mean square error results in Table 1 confirmed that
the DBM completions are often not very good. Among
all categories, DBMs performed relatively well in Caltech
and Olivetti faces. So we contrast example completions in
Figure 5, which shows the results for completing the left
halves of previously unseen faces. The DBM completions
often seem to derive from the nearest neighbor according
to its learned model, which suggests that they might not
have learned very deep regularities. In comparison, the
SPN successfully completed most faces by hypothesizing
the correct locations and types of various parts like hair,
eye, mouth, and face shape and color. On the other hand,
the SPN also has some weaknesses. For example, the com-
pletions often look blocky.

We also conducted preliminary experiments to evaluate the
3We were unable to obtain their code for head-to-head com-

parison. We should note that the main purpose of their figure is to
illustrate the importance of top-down inference.

Table 2: Comparison of the area under the precision-recall
curve for three classification problems (one class vs. the
other two).

Architecture Faces | Motorbikes | Cars
SPN 0.99 0.99 | 0.98
CDBN (top layer) | 0.95 0.81 | 0.87

potential of SPNs for object recognition. Lee et al. [16] re-
ported results for convolutional DBNs (CDBNs) by train-
ing a CDBN for each of the three Caltech-101 categories
faces, motorbikes, and cars, and then computed area under
precision-recall curve (AUC) by comparing the probabili-
ties for positive and negative examples in each classifica-
tion problem (one class vs. others). We followed their ex-
perimental setting and conducted experiments using SPNs.
Table 2 compares the results with those obtained using top
layer features in convolutional DBNs (CDBNs) (see Figure
4 1in [16]). SPNs obtained almost perfect results in all three
categories whereas CDBN5s’ results are substantially lower,
particularly in motorbikes and cars.*

6 SUM-PRODUCT NETWORKS AND
THE CORTEX

The cortex is composed of two main types of cells: pyrami-
dal neurons and stellate neurons. Pyramidal neurons excite
the neurons they connect to; most stellate neurons inhibit
them. There is an interesting analogy between these two
types of neurons and the nodes in SPNs, particularly when
MAP inference is used. In this case the network is com-
posed of max nodes and sum nodes (logs of products). (Cf.
Riesenhuber and Poggio [23], which also uses max and
sum nodes, but is not a probabilistic model.) Max nodes
are analogous to inhibitory neurons in that they select the
highest input for further propagation. Sum nodes are anal-
ogous to excitatory neurons in that they compute a sum of
their inputs. In SPNs the weights are at the inputs of max
nodes, while the analogy with the cortex suggests having
them at the inputs of sum (log product) nodes. One can be
mapped to the other if we let max nodes ignore their chil-
dren’s weights and consider only their values. Possible jus-
tifications for this include: (a) it potentially reduces com-
putational cost by allowing max nodes to be merged; (b)
ignoring priors may improve discriminative performance
[11]; (c) priors may be approximately encoded by the num-
ber of units representing the same pattern, and this may fa-
cilitate online hard EM learning. Unlike SPNs, the cortex
has no single root node, but it is straighforward to extend
SPNs to have multiple roots, corresponding to simultane-
ously computing multiple distributions with shared struc-
ture. Of course, SPNs are still biologically unrealistic in

“We should note that the main point of their results is to show
that features in higher layers are more class-specific.

many ways, but they may nevertheless provide an interest-
ing addition to the computational neuroscience toolKkit.

7 CONCLUSION

Sum-product networks (SPNs) are DAGs of sums and
products that efficiently compute partition functions and
marginals of high-dimensional distributions, and can be
learned by backpropagation and EM. SPNs can be viewed
as a deep combination of mixture models and feature hier-
archies. Inference in SPNs is faster and more accurate than
in previous deep architectures. This in turn makes learning
faster and more accurate. Our experiments indicate that,
because of their robustness, SPNs require much less man-
ual engineering than other deep architectures. Much re-
mains to be explored, including other learning methods for
SPNs, design principles for SPN architectures, extension to
sequential domains, and further applications.

Acknowledgements We thank Ruslan Salakhutdinov for help
in experiments with DBNs. This research was partly funded
by ARO grant W911NF-08-1-0242, AFRL contract FA8750-09-
C-0181, NSF grant 1IS-0803481, and ONR grant N0O0014-08-1-
0670. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
ARO, AFRL, NSF, ONR, or the United States Government.

References
[1] R. Adams, H. Wallach and Z. Ghahramani. Learning
the structure of deep sparse graphical models. In Proc.

AISTATS-10, 2010.

[2] Y. Bengio. Learning deep architectures for Al. Foundations
and Trends in Machine Learning, 2009.

[3] M. Bertalmio, G. Sapiro, V. Caselles and C. Ballester. Image
inpainting. In Proc. SIGGRAPH-00, 2000.

[4] L. Breiman. Random forests. Machine Learning, 2001.
[5

—

A. Chechetka and C. Guestrin. Efficient principled learning
of thin junction trees. In Proc. NIPS-08, 2008.

[6] M. Collins. Head-driven statistical models for natural lan-
guage parsing. Computational Linguistics, 2003.

[71 A. Darwiche. A differential approach to inference in
Bayesian networks. Journal of the ACM, 2003.

[8] R. Dechter and R. Mateescu. AND/OR search spaces for
graphical models. Artificial Intelligence, 2006.

[9

—

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative
visual models from few training examples. In Proc. CVPR
Wkshp. on Generative Model-Based Vision, 2004.

[10] P. Felzenszwalb and D. McAllester. Object detection gram-

mars. Tech. Rept., Dept. CS, Univ. Chicago, 2010.

[11] J. H. Friedman. On bias, variance, 0/1 loss, and the curse
of dimensionality. Data Mining and Knowledge Discovery,

1997.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

V. Gogate, W. Webb and P. Domingos. Learning efficient
Markov networks. In Proc. NIPS-10, 2010.

J. Hays and A. Efros. Scene completion using millions of
photographs. In Proc. SSIGGRAPH-07, 2007.

G. Hinton and R. Salakhutdinov. Reducing the dimension-
ality of data with neural networks. Science, 2006.

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard,
W. Hubbard, and L. Jackel. Backpropagation applied to
handwritten zip code recognition. Neural Computation,
1989.

H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional
deep belief networks for scalable unsupervised learning of
hierarchical representations. In Proc. ICML-09, 2009.

D. Lowd and P. Domingos. Naive Bayes models for proba-
bility estimation. In Proc. ICML-05, 2005.

D. Lowd and P. Domingos. Learning arithmetic circuits. In
Proc. UAI-08, 2008.

D. McAllester, M. Collins, and F. Pereira. Case-factor dia-
grams for structured probabilistic modeling. In Proc. UAI-
04, 2004.

R. Neal and G. Hinton. A view of the EM algorithm that jus-
tifies incremental, sparse, and other variants. In M. Jordan,
editor, Learning in Graphical Models, Kluwer, 1998.

G. Pagallo. Learning DNF by decision trees. In Proc. IJCAI-
89, 1989.

J. Pearl. Probabilistic Reasoning in Intelligent Systems.
Morgan Kaufmann, 1988.

M. Riesenhuber and T. Poggio. Hierarchical models of ob-
ject recognition in cortex. Nature Neuroscience, 1999.

D. Roth and R. Samdani. Learning multi-linear representa-
tions of distributions for efficient inference. Machine Learn-
ing, 2009.

D. Rumelhart, G. Hinton, and J. McClelland. A general
framework for parallel distributed processing. In D. Rumel-
hart and J. McClelland, editors, Parallel Distributed Pro-
cessing, vol. 1. MIT Press, 1986.

D. Rumelhart, G. Hinton, and R. Williams. Learning inter-
nal representations by error propagation. In D. Rumelhart
and J. McClelland, editors, Parallel Distributed Processing,
vol. 1. MIT Press, 1986.

D. Rumelhart and D. Zipser. Feature discovery by competi-
tive learning. In D. E. Rumelhart and J. McClelland, editors,
Parallel Distributed Processing, vol. 1. MIT Press, 1986.

F. Samaria and A. Harter. Parameterisation of a stochastic
model for human face identification. In Proc. 2nd IEEE Wk-
shp. on Applications of Computer Vision, 1994.

R. Salakhutdinov and G. Hinton.
chines. In Proc. AISTATS-09, 2009.

R. Salakhutdinov and G. Hinton. An efficient learning pro-
cedure for deep Boltzmann machines. Tech. Rept., MIT
CSAIL, 2010.

M. Turk and A. Pentland. Eigenfaces for recognition. J.
Cognitive Neuroscience, 1991.

Deep Boltzmann Ma-

N. Zhang. Hierarchical latent class models for cluster anal-
ysis. JMLR, 2004.

L. Zhu, Y. Chen, and A. Yuille. Unsupervised learning of
probabilistic grammar-Markov models for object categories.
IEEE Trans. PAMI, 2009.

