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Abstract

The goal of information extraction is to extract database
records from text or semi-structured sources. Traditionally,
information extraction proceeds by first segmenting each can-
didate record separately, and then merging records that refer
to the same entities. While computationally efficient, thisap-
proach is suboptimal, because it ignores the fact that segment-
ing one candidate record can help to segment similar ones.
For example, resolving a well-segmented field with a less-
clear one can disambiguate the latter’s boundaries. In this
paper we propose a joint approach to information extraction,
where segmentation of all records and entity resolution are
performed together in a single integrated inference process.
While a number of previous authors have taken steps in this
direction (e.g., Pasulaet al. (2003), Wellneret al. (2004)), to
our knowledge this is the first fully joint approach. In exper-
iments on the CiteSeer and Cora citation matching datasets,
joint inference improved accuracy, and our approach outper-
formed previous ones. Further, by using Markov logic and
the existing algorithms for it, our solution consisted mainly of
writing the appropriate logical formulas, and required much
less engineering than previous ones.

Introduction
AI systems that process sensory input typically have a
pipeline architecture: the output of each stage is the input
of the next, and there is no feedback from later stages to ear-
lier ones. Although this makes the systems comparatively
easy to assemble, and helps to contain computational com-
plexity, it comes at a high price: errors accumulate as infor-
mation progresses through the pipeline, and an error once
made cannot be corrected. Examples of this can be found in
information extraction, natural language processing, speech
recognition, vision, robotics, etc. Compounding this, sys-
tems typically process one object at a time, which again has
the benefit of being simpler, but misses opportunities for in-
formation from one object to help in processing another.

Ideally, we would like to performjoint inferencefor all
relevant tasks simultaneously. Recent progress in probabilis-
tic inference and machine learning has begun to make this
possible. For example, the burgeoning field of statistical re-
lational learning is concerned with learning from data points
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that are not independent and identically distributed (Getoor
& Taskar 2007). In natural language processing, joint in-
ference has become a topic of keen interest (e.g., Suttonet
al. (2006), Punyakanoket al. (2005)). However, setting
up a joint inference model is usually very complex, and the
computational cost of running it can be prohibitive. Further,
joint inference can sometimes hurt accuracy, by increasing
the number of paths by which errors can propagate. As a
result, fully joint approaches are still rare, and even partly-
joint ones require much engineering.

In information extraction, the global input is free text or
semi-structured sources (e.g., Web pages, emails, or cita-
tion lists), and the global output is database records. Two
key stages in the pipeline aresegmentation, which locates
candidate fields, andentity resolution, which identifies du-
plicate records. Typically, each candidate record or field is
segmented separately, and the output of this process is then
passed to the entity resolution stage. To illustrate the short-
comings of this approach, consider the problem of extracting
database records from the following two citations in Cite-
Seer (Lawrenceet al. 1999):

Minton, S(1993 b). Integrating heuristics for constraint
satisfaction problems: A case study. In: Proceed-
ings AAAI.

S. Minton Integrating heuristics for constraint satisfac-
tion problems: A case study. In AAAI Proceedings,
1993.

In the first citation, author and title are clearly separatedby
a date and period, and extracting them is fairly straightfor-
ward. In the second one, there is no clear author-title bound-
ary, and correctly pinpointing it seems very difficult. Large
quantities of labeled training data and an extensive lexicon
could help, but they are expensive to obtain, and even then
are far from a guarantee of success. However, if we notice
that the two citations are coreferent and the title of the first
one begins with the substring “Integrating heuristics for,” we
can hypothesize that the title of the second one also begins
with this substring, allowing us to correctly segment it.

In this paper, we develop an approach to information ex-
traction that is capable of performing this type of inference,
and show that it does indeed improve extraction accuracy.
The approach is based on Markov logic, a representation
language that combines probabilistic graphical models and



first-order logic (Richardson & Domingos 2006). Markov
logic enables us to concisely specify very complex mod-
els, and is ideally suited for solving joint inference prob-
lems. Efficient learning and inference algorithms for it are
available in open-source software, and our solution exploits
them.

A number of previous authors have taken steps toward
joint inference in information extraction, but to our knowl-
edge no fully joint approach has been proposed. For ex-
ample, Bunescu & Mooney (2004) applied joint segmenta-
tion to protein name extraction, but did not do entity res-
olution. In citation matching, Pasulaet al. (2003) devel-
oped a “collective” model, but performed segmentation in
a pre-processing stage, allowing boundaries to occur only
at punctuation marks. Wellneret al. (2004) extended the
pipeline model by passing uncertainty from the segmen-
tation phase to the entity resolution phase (as opposed to
just passing the “best guess”), and by including a one-time
step from resolution to segmentation, but did not “close the
loop” by repeatedly propagating information in both direc-
tions. (Due to this, they explicitly refrained from calling
their model “joint.”) Both of these models required consid-
erable engineering. Pasulaet al. combined several models
with separately learned parameters, a number of hard-wired
components, and data from a variety of sources (including
a database of names from the 2000 US Census, manually-
segmented citations, and a large AI BibTex bibliography).
Wellneret al. assembled a number of different learning and
inference algorithms and performed extensive feature engi-
neering, including computing a variety of string edit dis-
tances, TF-IDF measures, global features of the citations,
and combinations thereof. As we will see, our approach is
considerably simpler, and outperforms both of these.

We begin by briefly reviewing the necessary background
in Markov logic. We then describe our MLN for joint cita-
tion matching and introduce two kinds of joint inference that
can help segmentation. Finally, we present our experiments
and results.

Markov Logic
Markov logic is a probabilistic extension of finite first-order
logic (Richardson & Domingos 2006). AMarkov logic net-
work (MLN)is a set of weighted first-order clauses. Together
with a set of constants, it defines a Markov network with one
node per ground atom and one feature per ground clause.
The weight of a feature is the weight of the first-order clause
that originated it. The probability of a statex in such a net-
work is given byP (x) = (1/Z) exp (

∑
i wifi(x)), where

Z is a normalization constant,wi is the weight of theith
clause,fi = 1 if the ith clause is true, andfi = 0 otherwise.

Markov logic makes it possible to compactly specify
probability distributions over complex relational domains.
We used the learning and inference algorithms provided in
the open-source Alchemy package (Koket al. 2006). In
particular, we performed inference using the MC-SAT algo-
rithm (Poon & Domingos 2006), and discriminative weight
learning using the voted perceptron algorithm (Singla &
Domingos 2005).

MC-SAT is a “slice sampling” Markov chain Monte Carlo
algorithm. It uses a combination of satisfiability testing and
simulated annealing to sample from the slice. The advantage
of using a satisfiability solver (WalkSAT) is that it efficiently
finds isolated modes in the distribution, and as a result
the Markov chain mixes very rapidly. The slice sampling
scheme ensures that detailed balance is (approximately) pre-
served. MC-SAT is orders of magnitude faster than previ-
ous MCMC algorithms like Gibbs sampling and simulated
tempering, and makes efficient joint inference possible on
a scale that was previously out of reach. In this paper, we
use it to perform inference over hundreds of thousands of
variables in tens of minutes.

The voted perceptron algorithm optimizes weights by do-
ing gradient descent on the conditional log-likelihood of the
query atoms given the evidence ones. The gradient with re-
spect to a weight is the difference between the number of
times the corresponding clause is true in the data and its ex-
pectation according to the MLN. The latter is approximated
by finding a mode of the distribution using a weighted sat-
isfiability solver (MaxWalkSAT) and counting true clause
groundings there. To combat overfitting, the weights re-
turned are averages over the learning run.

We modified this algorithm in two ways. First, we used
MC-SAT instead of MaxWalkSAT to compute expected
counts. Because the distribution can contain many modes,
MC-SAT tends to give more reliable results. Second, we
used a different learning rate for each weight, by dividing
the global learning rate by the number of true groundings of
the corresponding clause. This greatly speeds up learning.
Because the number of true groundings can vary widely, a
learning rate that is small enough to avoid divergence in
some weights is too small for fast convergence in others.
Having separate learning rates overcomes this problem. We
also modified Alchemy to save time and memory in ground-
ing the network.

An MLN for Joint Citation Matching
Citation matching is the problem of extracting bibliographic
records from citation lists in technical papers, and merging
records that represent the same publication. It has been a
major focus of information extraction research (e.g., Pasula
et al. (2003), Wellneret al. (2004)). We use citation match-
ing as a testbed for joint inference with Markov logic. In
particular, we focus on extracting titles, authors and venues
from citation strings. In this section we present an MLN for
this task.1 In the next section, we learn weights and per-
form inference with it. While the MLN is specific to citation
matching, we believe that the key ideas in it are also appli-
cable to other information extraction tasks (e.g., extraction
from Web pages, or from free text).

The main evidence predicate in the MLN is
Token(t, i, c), which is true iff tokent appears in theith
position of thecth citation. A token can be a word, date,
number, etc. Punctuation marks are not treated as separate
tokens; rather, the predicateHasPunc(c, i) is true iff a punc-
tuation mark appears immediately after theith position in

1Available at http://alchemy.cs.washington.edu/papers/poon07.



thecth citation. The query predicates areInField(i, f, c)
andSameCitation(c, c′). InField(i, f, c) is true iff the
ith position of thecth citation is part of fieldf, where
f ∈ {Title, Author, Venue}, and inferring it performs
segmentation. SameCitation(c, c′) is true iff citations
c and c′ represent the same publication, and inferring it
performs entity resolution.

Isolated Segmentation
We begin by describing our standalone segmentation model.
This will form part of the overall MLN for joint inference,
and also serve as a baseline for comparison. Our segmen-
tation model is essentially a hidden Markov model (HMM)
with enhanced ability to detect field boundaries. This com-
bines two key elements of the state of the art. The observa-
tion matrix of the HMM correlates tokens with fields, and is
represented by the simple rule

Token(+t, i, c) ⇒ InField(i, +f, c)

where all free variables are implicitly universally quantified.
The “+t, +f” notation signifies that the MLN contains an
instance of this rule for each(token, field)pair. If this rule
was learned in isolation, the weight of the(t, f)th instance
would belog(ptf/(1−ptf)), whereptf is the corresponding
entry in the HMM observation matrix.

In general, the transition matrix of the HMM is repre-
sented by a rule of the form

InField(i, +f, c) ⇒ InField(i+ 1, +f′, c)

However, we (and others, e.g., Grenageret al. (2005)) have
found that for segmentation it suffices to capture the basic
regularity that consecutive positions tend to be part of the
same field. Thus we replacef′ by f in the formula above.
We also impose the condition that a position in a citation
string can be part of at most one field; it may be part of
none.

The main shortcoming of this model is that it has diffi-
culty pinpointing field boundaries. Detecting these is key
for information extraction, and a number of approaches use
rules designed specifically for this purpose (e.g., Kushmer-
ick (2000)). In citation matching, boundaries are usually
marked by punctuation symbols. This can be incorporated
into the MLN by modifying the rule above to

InField(i, +f, c)∧ ¬HasPunc(c, i)
⇒ InField(i+ 1, +f, c)

The¬HasPunc(c, i) precondition prevents propagation of
fields across punctuation marks. Because propagation can
occur differentially to the left and right, the MLN also con-
tains the reverse form of the rule. In addition, to account for
commas being weaker separators than other punctuation, the
MLN includes versions of these rules withHasComma() in-
stead ofHasPunc().

Finally, the MLN contains the following rules: the first
two positions of a citation are usually in the author field,
and the middle one in the title; initials (e.g., “J.”) tend toap-
pear in either the author or the venue field; positions preced-
ing the last non-venue initial are usually not part of the title

or venue; and positions after the first venue keyword (e.g.,
“Proceedings”, “Journal”) are usually not part of the author
or title. Despite its simplicity, this model is quite accurate,
and forms a very competitive baseline for joint inference, as
we will see in the experimental section.

Entity Resolution
As our starting point for entity resolution, we took the
MLN of Singla & Domingos (2006), which assumes pre-
segmented citations. It contains rules of the form: if two
fields contain many common tokens, they are the same; if the
fields of two citations match, the citations also match, and
vice-versa; etc. Simply taking the outputInField() pred-
icates of the segmentation MLN as evidence to this MLN
would constitute a standard pipeline model. Merging the
two MLNs produces a joint model for segmentation and
entity resolution. We found, however, that this gives poor
results, because entity resolution often leads segmentation
astray. Since only a small fraction of citation pairs(c, c′)
match, in the absence of strong evidence to the contrary the
MLN will conclude thatSameCitation(c, c′) is false. If
SameCitation(c, c′) is the consequent of a rule (or rule
chain) withInField() in the antecedent, the MLN will (or
may) then infer thatInField() is false, even if segmenta-
tion alone would correctly predict it to be true. This is an
example of how joint inference can hurt accuracy.

Our solution to this problem is to define predicates
and rules specifically for passing information between the
stages, as opposed to just using the existingInField()
outputs. We want a “higher bandwidth” of communica-
tion between segmentation and entity resolution, without let-
ting excessive segmentation noise through. We accomplish
this by defining aSimilarTitle(c, i, j, c′, i′, j′) predi-
cate, which is true if citationsc andc′ contain similar title-
like strings at positionsi to j andi′ to j′, respectively. A
string is title-like if it does not contain punctuation and does
not match the “title exclusion” rules in the previous section.
Two such strings are considered similar if they start with the
same trigram and end with the same token. Most impor-
tantly, SimilarTitle() is true only if at least one of the
strings is immediately preceded by punctuation, and at least
one is immediately followed by punctuation. This greatly
reduces the number of potential matches, focusing them on
the cases that are most likely relevant for joint inference.In
sum,SimilarTitle() incorporates lower-level segmenta-
tion information into entity resolution.

If two citations have similar titles, they are usually the
same, unless they appear in different venues (in which case
they are usually different versions of the same paper). Hence
the basic rule we use to perform entity resolution is

SimilarTitle(c, i, j, c′, i′, j′) ∧ SimilarVenue(c, c′)
⇒ SameCitation(c, c′),

coupled with the unit clause¬SameCitation(c, c′), which
represents the default.SimilarVenue(c, c′) is true as
long asc and c′ do not contain conflicting venue key-
words (e.g., “Journal” in one and “Proceedings” in the
other). The rule above ignores whether the citations’ au-
thors are the same, which may seem unintuitive. How-



ever, the reason is simple. When two citations have the
same title and venue, they almost always have the same
author as well, and thus comparing authors contributes no
additional information. On the other hand, if the authors
are the same but are difficult to match, as is often the
case, includingSimilarAuthor(c, c′) as a precondition in
the rule above prevents drawing the correct conclusion that
the citations are the same. Thus, on balance, including
SimilarAuthor(c, c′) is detrimental.

As we will see in the experimental section, this simple
MLN suffices to outperform the state of the art in citation
matching.

Joint Segmentation
Segmenting a citation can help segment similar ones. For
example, if in one citation the title is clearly delimited
by punctuation, but in a similar one it is not, notic-
ing this similarity can help extract the more difficult ti-
tle. Incorporating this idea into the MLN described ear-
lier leads to joint segmentation, where citations are seg-
mented collectively, as opposed to in isolation. As be-
fore, we proceed by defining a predicate for this purpose.
JointInferenceCandidate(c, i, c′) is true if the trigram
starting at positioni in citationc also appears somewhere
in citationc′, the trigrams do not match the “title exclusion”
rules, and the trigram inc is not preceded by punctuation,
while in c′ it is. This rule thus identifies potential opportu-
nities for one title segmentation to help another. We then in-
corporate this into the segmentation model simply by adding
a precondition to the “field propagation” rules. For example:

InField(i, +f, c)∧ ¬HasPunc(c, i)
∧(¬∃c′ JointInferenceCandidate(c, i, c′))
⇒ InField(i+ 1, +f, c)

The effect of this precondition is to potentially introducea
field boundary inc immediately before a substring if a simi-
lar title-like substring is preceded by punctuation in another
citation. This may be quite effective when citation lists are
“sparse” (i.e., strings usually do not occur both at boundaries
and inside fields). However, if the citation lists are “dense,”
it may produce incorrect field boundaries. Consider the fol-
lowing two citations from the Cora dataset:

R. Schapire. On the strength of weak learnability. Pro-
ceedings of the 30th I.E.E.E. Symposium on the
Foundations of Computer Science, 1989, pp. 28-
33.

Robert E. Schapire. 5(2) The strength of weak learn-
ability. Machine Learning, 1990 197-227,

In the second citation, “The strength of” is immediately pre-
ceded by punctuation, which will cause a title boundary to
be incorrectly introduced between “On” and “the” in the first
citation. To combat this, we can in addition require that the
two citations in fact resolve to the same entity:

InField(i, +f, c)∧ ¬HasPunc(c, i)
∧(¬∃c′ JointInferenceCandidate(c, i, c′)
∧SameCitation(c, c′)) ⇒ InField(i+ 1, +f, c)

Table 1: CiteSeer entity resolution: cluster recall on each
section.

Approach Constr. Face Reason. Reinfor.
Fellegi-Sunter 84.3 81.4 71.3 50.6
Lawrence (1999) 89 94 86 79
Pasula (2003) 93 97 96 94
Wellner (2004) 95.1 96.9 93.7 94.7
Joint MLN 96.0 97.1 95.1 96.7

Table 2: Cora entity resolution: pairwise recall/precision
and cluster recall.

Approach Pairwise Rec./Prec. Cluster Recall
Fellegi-Sunter 78.0 / 97.7 62.7
Joint MLN 94.3 / 97.0 78.1

This is another instance of joint inference between segmen-
tation and entity resolution: in this case, entity resolution
helps perform segmentation. However, this rule may some-
times be too strict; consider the following citations from
CiteSeer:

H. Maruyama Constraint dependency grammar and
its weak generative capacity. Computer Software,
1990.

Maruyama, H 1990. Constraint dependency grammar.
Technical Report # RT 0044, IBM, Tokyo, Japan.

In this case, the first rule would correctly place a title bound-
ary before “Constraint”, while the second one would not.
Both approaches are generally applicable and, as shown in
the next section, significantly outperform isolated segmenta-
tion. The first one (which we will call Jnt-Seg) is better for
sparse datasets (like CiteSeer), and the second (Jnt-Seg-ER)
for dense ones (like Cora).

Experiments
Datasets
We experimented on CiteSeer and Cora, which are standard
datasets for citation matching. The CiteSeer dataset was cre-
ated by Lawrenceet al. (1999) and used in Pasulaet al.
(2003) and Wellneret al. (2004). The Cora dataset was cre-
ated by Andrew McCallum and later segmented by Bilenko
& Mooney (2003). We fixed a number of errors in the la-
bels.2

In citation matching, aclusteris a set of citations that re-
fer to the same paper, and anontrivial cluster contains more
than one citation. The CiteSeer dataset has 1563 citations
and 906 clusters. It consists of four sections, each on a dif-
ferent topic. Over two-thirds of the clusters are singletons,
and the largest contains 21 citations. The Cora dataset has
1295 citations and 134 clusters. Unlike in CiteSeer, almost

2Dataset available at http://alchemy.cs.washington.edu/papers/-
poon07.



Table 3: CiteSeer segmentation: F1 on each section.

All Total Author Title Venue
Isolated 94.4 94.6 92.8 95.3
Jnt-Seg 94.5 94.9 93.0 95.3
Jnt-Seg-ER 94.5 94.8 93.0 95.3
Nontrivial Total Author Title Venue
Isolated 94.4 94.5 92.5 95.5
Jnt-Seg 94.9 95.2 93.6 95.7
Jnt-Seg-ER 94.8 95.1 93.3 95.6
Potential Total Author Title Venue
Isolated 91.7 91.5 86.5 94.9
Jnt-Seg 94.3 94.5 92.4 95.3
Jnt-Seg-ER 93.9 94.4 92.0 94.9

Table 4: Cora segmentation: F1 on each section.

All Total Author Title Venue
Isolated 98.2 99.3 97.3 98.2
Jnt-Seg 98.4 99.5 97.5 98.3
Jnt-Seg-ER 98.4 99.5 97.6 98.3
Nontrivial Total Author Title Venue
Isolated 98.3 99.4 97.4 98.2
Jnt-Seg 98.5 99.5 97.7 98.3
Jnt-Seg-ER 98.5 99.5 97.7 98.3
Potential Total Author Title Venue
Isolated 97.6 97.9 95.2 98.8
Jnt-Seg 98.7 99.3 97.9 99.0
Jnt-Seg-ER 98.8 99.3 97.9 99.0

every citation in Cora belongs to a nontrivial cluster; the
largest cluster contains 54 citations.

Methodology

For CiteSeer, we followed Wellneret al. (2004) and used
the four sections for four-fold cross-validation. In Cora,we
randomly split citations into three subsets so that they were
distributed as evenly as possible and no cluster was bro-
ken apart (to avoid train-test contamination). We then used
these subsets for three-fold cross-validation. In CiteSeer, the
largest section yields 0.3 million query atoms and 0.4 mil-
lion ground clauses; in Cora, 0.26 million and 0.38 million,
respectively. For simplicity, we took the original author and
title fields and combined other fields such as booktitle, jour-
nal, pages, and publishers into venue.

In preprocessing, we carried out standard normalizations
like conversion to lower case, simple stemming, and hyphen
removal. For token matching, we used edit distance and con-
catenation. Two tokens match if their edit distance is at most
one, and a bigram matches the unigram formed by concate-
nating the two tokens.

In MLN weight learning, we used 30 iterations of gradient
descent, and in each iteration, for each fold, we ran MC-SAT
for 20 seconds. This proves to be effective and enables fast
learning; see Hinton (2002) for a theoretical justificationof
a similar method. However, it also introduces fluctuations

Table 5: Segmentation: wins and losses in F1.

CiteSeer JS-Isolated JSR-Isolated JSR-JS
All 8-2 4-2 1-7
Nontrivial 8-2 9-2 1-8
Potential 12-0 9-3 2-9
Cora JS-Isolated JSR-Isolated JSR-JS
All 5-1 6-1 3-1
Nontrivial 4-1 5-1 2-1
Potential 7-1 8-1 5-0

among the runs, and we obviate these by reporting averages
of ten runs. The total learning time per run ranged from 20
minutes to an hour. In inference, we used no burn-in and
let MC-SAT run for 30 minutes. MC-SAT returns marginal
probabilities of query atoms. We predict an atom is true if
its probability is at least 0.5; otherwise we predict false.

For entity resolution in CiteSeer, we measuredcluster re-
call for comparison with previously published results. Clus-
ter recall is the fraction of clusters that are correctly output
by the system after taking transitive closure from pairwise
decisions. For entity resolution in Cora, we measured both
cluster recall and pairwise recall/precision. In both datasets
we also compared with a “standard” Fellegi-Sunter model
(see Singla & Domingos (2006)), learned using logistic re-
gression, and with oracle segmentation as the input. For
segmentation, we measured F1 forInField, F1 being the
harmonic mean of recall and precision.

Results

Table 1 shows that our approach outperforms previous ones
on CiteSeer entity resolution. (Results for Lawrence (1999),
Pasula (2003) and Wellner (2004) are taken from the cor-
responding papers. The MLN results are for Jnt-Seg; the
results for Jnt-Seg-ER are identical, except for 95.5 instead
of 96.0 on Constr.) This is particularly notable given that the
models of Pasulaet al. (2003) and Wellneret al. (2004) in-
volved considerably more knowledge engineering than ours,
contained more learnable parameters, and used additional
training data.

Table 2 shows that our entity resolution approach easily
outperforms Fellegi-Sunter on Cora, and has very high pair-
wise recall/precision. (As before, the MLN results are for
Jnt-Seg; the results for Jnt-Seg-ER are identical, except for
75.2 instead of 78.1 on cluster recall. Note that in Cora clus-
ters are much more difficult to discriminate than in CiteSeer;
also, because Cora contains on average only 44 clusters per
fold, each less-than-perfect cluster degrades cluster recall by
over 2%.)

Table 3 and Table 4 compare isolated segmentation with
the two joint inference methods on CiteSeer and Cora. The
“Total” column aggregates results on allInField atoms,
and the remaining columns show results for each field type.
The “All” section shows results for all citations, “Nontrivial”
for non-singleton citations, and “Potential” for citations with
poor author-title boundary (and which therefore might bene-
fit from joint inference). Approximately 9% of citations fall



Table 6: Percentage of F1 error reduction in segmentation
obtained by joint inference.

CiteSeer Total Author Title Venue
All 2 6 3 0
Nontrivial 9 13 15 4
Potential 31 35 44 8
Cora Total Author Title Venue
All 11 24 7 6
Nontrivial 12 17 12 6
Potential 50 67 56 17

into the “Potential” category in CiteSeer, and 21% in Cora.
All total improvements are statistically significant at the1%
level using McNemar’s test. Table 5 summarizes the rela-
tive performance of the three methods in terms of number
of wins and losses. Each(field, subset)pair is one trial. In
CiteSeer, there are four subsets and twelve comparisons, and
thus 12-0 means that the first method outperformed the sec-
ond in all comparisons. In Cora, there are three subsets and
nine comparisons in total, so 5-0 means the first wins five
times and ties four times.

Joint inference consistently outperforms isolated infer-
ence. Table 6 shows error reduction from isolated inference
by the better-performing joint inference method (Jnt-Seg in
CiteSeer, Jnt-Seg-ER in Cora). Improvement among poten-
tial citations is substantial: in Cora, error is reduced by half
in total, 67% for authors, and 56% for titles; in CiteSeer, er-
ror is reduced by 31% in total, 35% for authors, and 44% for
titles. Overall in Cora, joint inference reduces error by 11%
in total and 24% for authors. The overall improvement in
CiteSeer is not as large, because the percentage of potential
citations is much smaller. The joint inference methods do
not impact performance on citations with good boundaries
(not shown separately in these tables).

In CiteSeer, Jnt-Seg outperforms Jnt-Seg-ER, while in
Cora the opposite is true. These results are consistent with
the different characteristics of the two datasets: Cora is
dense, while CiteSeer is sparse. In Cora, there is a lot of
word overlap among citations, and often the same trigram
occurs both within a field and at the boundary, making Jnt-
Seg more prone to misaligning boundaries. In CiteSeer,
however, this rarely happens and Jnt-Seg-ER, being con-
servative, can miss opportunities to improve segmentation.
There is no absolute advantage of one joint inference method
over the other; the best choice depends on the dataset.

Conclusion
Joint inference is currently an area of great interest in in-
formation extraction, natural language processing, statisti-
cal relational learning, and other fields. Despite its promise,
joint inference is often difficult to perform effectively, due
to its complexity, computational cost, and sometimes mixed
effect on accuracy. In this paper, we show how these prob-
lems can be addressed in a citation matching domain, using
Markov logic, the MC-SAT algorithm, and careful intercon-
nection of inference tasks. Experiments on standard datasets

show that our approach is efficient and consistently improves
accuracy over non-joint inference. It is also more accurate
and easier to set up than previous semi-joint approaches.

Directions for future work include identifying more joint
inference opportunities in citation matching, applying joint
inference to other problems, further improving the scalabil-
ity of the algorithms, and developing general principles for
solving joint inference tasks.
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