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Abstract—Targeted attacks are a significant problem for gov-
ernmental agencies and corporations. We propose a MinHash-
based, targeted attack detection system which analyzes aggre-
gated process creation events typically generated by human
keyboard input. We start with a set of malicious process creation
events, and their parameters, which are typically generated
by an attacker remotely controlling computers on a network.
The MinHash algorithm allows the system to efficiently process
hundreds of millions of events each day. We propose the weighted
squared match similarity score for targeted attack detection
which is more robust to mimicry and NOOP attacks than the
weighted Jaccard index. We demonstrate that the system can
detect several confirmed targeted attacks on both a small dataset
of 1,473 computers as well as a large network of over 230
thousand computers. In the first case, the proposed system detects
a similar, but separate attack while in the latter, intrusion activity
is detected at large-scale.

I. I NTRODUCTION

In this paper, we propose a new system to detect targeted
attacks, once an adversary has successfully compromised a
network, based on the similarity of aggregated process creation
events and their parameters to those from previously discov-
ered intrusions. The detection of targeted attacks [1] is one
of the most important problems facing the computer security
community today: the ramifications of a government, corpo-
rate, or non-governmental organization network intrusioncan
be catastrophic. We define targeted attacks as the broad class
of intrusions where an organization or government agency is
specifically targeted for the express purpose of exfiltrating
some type of data or information. This data may include
credit card or social security numbers for financial gain by
the attackers. Other types of targeted attacks carried out by
more sophisticated actors, including nation state sponsored
groups, may target and gain access to an organization or
government’s network for the purpose of extracting other
types of data such as classified documents, product or mil-
itary design documents, and email or patient records. These
threat actors often establish multiple redundant communication
channels allowing the attacker to remain on the network even
when analysts discover and disable compromised computers
and accounts. In the initial stages of a targeted campaign,
the attacker uses techniques such as spearphishing or social
engineering [2] to entice a targeted user into installing malware
containing a backdoor for communications and a keylogger to
harvest their credentials. The attack may involve previously
unseen zero days or exploits that target recently discovered, but
potentially un-patched vulnerabilities. Once the attacker opens

a beachhead on the network using the infected computer and
stolen credentials, he then uses lateral movement techniques
such as pass-the-hash [3] to move from one computer to the
next in order to explore the network and establish redundant
computer and user accounts for command and control.

While there are a number of possible ways to search for
targeted attacks, one key strategy is to detect suspicious
human activityon the network. Based on the observation
that targeted attackers sometimes reuse a common set of
techniques and tools to explore the network [4], we designed
MART, a weighted squaredmatch, targeted attack detection
system. MART monitors the process creation events, including
the parameters, that someone inputs to the computer from
an operating system command shell to inferhuman intent
instead of detecting the tools directly. In most cases, mali-
cious commands are input to the computer using a remote
connection, but the input could also be logged directly from
the keyboard in the case of an insider threat. MART monitors
this activity by logging the Windows 4688 Process Creation
Events which allows it to determine the parent process and the
individual processes and arguments launched from the parent
process. Typically, the parent process is a Windows command
shell or a Windows PowerShell. MART then constructs an
aggregatedProcessTracefrom these individual processes (i.e.
commands) started from the parent process and searches for
correlations of these process traces with those from confirmed
targeted attacks. An example of aProcessTracein shown
in Table I. Detection is based on correlation of the patterns
of shell commands used, the process names, and types and
actual parameters employed during the attacks. Starting from
a set of maliciousProcessTraces, MART then searches for
ProcessTracesfrom all computers on the network exhibiting
similar user behavior. Searching for similar files or web pages
based on a collection of malicious seeds was earlier proposed
in [5], [6], [7]. We demonstrate that this approach is also
effective for detecting targeted attacks.

For our system, we consider two types of similarity mea-
sures. The first finds similar human activity based on the
unweighted or weighted Jaccard index [5], [6], [7]. The
Jaccard index, however, is susceptible to mimicry and NOOP
attacks [8] where benign or useless commands are executed
to prevent detection. As a result we propose the weighted
squared match (WSM) similarity score, and its unweighted
equivalent, to make MART more robust to these attacks. We
also propose to use the MinHash algorithm [9], which is



C:\Windows\System32\ipconfig.exe /all
C:\Windows\System32\ping.exe -4 -n 1 <targeted hostname>
C:\Windows\System32\net.exe use <targeted hostname>

USER:<user name> <PW>
C:\Users\userA\malware7.exe param1 param2
C:\Windows\System32\ftp.exe -v <destination hostname>

TABLE I: ExampleProcessTrace.

detailed in Section II, to efficiently filterProcessTracceswhich
are not similar. In Section IV, we investigate eight alternative
systems which utilize either tokens or N-Grams as features,as
well as no feature weighting and feature weighting with term
frequency, inverse document frequency (TFIDF) weights [9].
MART’s feature representations are detailed in Section II.
Additional related work is provided in Section VI.

To demonstrate the practicality and effectiveness of MART,
we implement it on a large-scale MapReduce system and eval-
uate it using two datasets containingconfirmedtargeted attacks
collected from an anonymized organization. In some cases,
Microsoft customers provide their Windows security logs to
the Microsoft Threat Intelligence Center (MSTIC) as part of
a planned joint engagement in order to help manually identify
targeted attack activity on their network. The organization
gave permission for the researchers to study two collections
of their data logs, which are described in Section III, and
report the findings to the security community as long as the
organization’s name is anonymized.

MART is designed to identify similar activity from persis-
tent actors based on correlated human activity. In addition,
MART can also detect attacks from new actors who employ
similar techniques. Results in Section IV demonstrate that
by starting with four maliciousProcessTraces, MART can
identify additional instances of the first actor’s activityas
well as discover a trace from a second,unrelated attack.
Results also show that MART can detect targeted attack
activity at extremely large scale from a set of over 379
million ProcessTracescollected from over 230,000 computers.
A summary of the contributions of this work includes:

• A MinHash-based system is proposed to detect targeted
attacks via human activity from process creation logs.

• A new weighted, squared match similarity score is in-
troduced to minimize the effectiveness of mimicry and
NOOP attacks.

• The system is implemented on a MapReduce framework
to handle large-scale data.

• An analysis of two datasets containing three confirmed
targeted attacks is performed to evaluate the proposed
system.

• Results indicate that the system can help identify similar
activity from the same targeted attacker. In addition,
MART is also able to discover an unrelated, but similar
attack.

II. MART SYSTEM OVERVIEW

In this section, we describe the proposed MART targeted
attack detection system which is designed to automatically

detect similar attacks and allow local system administrators to
search for new attacks not identified by their other defensive
systems. The MART system is depicted at a high-level in
Figure 1. Windows security events 4688 corresponding to
process creation are first collected from a set of computers and
stored in log files. These events are then processed and aggre-
gated to form aProcessTracedataset containing process paths,
names and parameters being executed by each user. Identical
or known ProcessTracesare then filtered from the raw input
stream to reduce the computational and storage costs. After
an efficient MinHash-based algorithm is used to significantly
reduce the number of potential pairs ofProcessTracesthat
need to be considered, a similarity score is computed for
each of the remainingProcessTracesusing the newly proposed
weighted squared match score or the weighted Jaccard index.
If the similarity score is greater than a prescribed threshold,
network access is blocked and the user’s account is disabled
automatically. Optionally, an analyst manually investigates
the top scores to identify potential intrusions. If a new or
previously known intrusion with an unknownProcessTrace
is discovered, it is appended to the set of confirmed intrusion
ProcessTracesto improve future detections. We next discuss
details of some of these system components.

Feature Extraction: We consider two types of features in
this paper including tokens and N-grams which are designed
to handle the variations and intentional obfuscations employed
by the attacker.

Token Features:The goal of the token features is to create
a set of increasingly specific features which will hopefully
aid detection with TFIDF weighting. These features have
higher precision, but may result in lower recall. We also
want to evaluate token features as a baseline for the N-Gram
features described next. To construct the token features,
each ProcessTracestring is split on whitespaces, “\”, “/”
and “-”. The union of the result forms the initial set of
token features for theProcessTrace. Examples of token
features from the first two commands in Table I include
{C:, Windows, System32, ipconfig.exe, all, ping.exe, 4, n,
1, <targeted hostname>}. To address the problem where
files can be moved to different directories or hard or logical
drives, we construct an additional set of features for the
paths. This second feature set is formed by concatenating the
lowest level subdirectory in the path and the process name
to create another token feature, then adding the next lowest
subdirectory to this feature to create the next token feature,
and so on. The final token feature is the entire path including
the drive or network share. Again referring to the first two
commands in Table I, the additional path token features are
{System32\ipconfig.exe, Windows\System32\ipconfig.exe,
C:\Windows\System32\ipconfig.exe, System32\ping.exe,
Windows\System32\ping.exe, C:\Windows\System32\ping.exe}.
By forming features in this manner, we attempt to generate
increasingly precise features while still allowing for some
form of path obfuscation in case the higher level subdirectory
changes but the lower level subdirectory and process name
remain the same. These two groups of token features are then
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Fig. 1: MART System Overview.

combined to provide the final set of token features.
N-Gram Features:Similar to a rule-based targeted attack

detection system, a token feature for a malicious process which
exactly matches the entire path of a previous detection is
a strong indicator of compromise (IoC). However, attackers
may introduce small changes such as renaming the file (e.g.
malware7.exe to malware8.exe) which prevents the token-
based features from being triggered. To handle these types of
obfuscations, we also consider N-Gram features. In MART,
the N-Gram features are constructed by a moving window
sequence of lengthN characters for eachProcessTracestring
in the input collection. For example withN = 3, the first
four trigram features of C:\temp\malware7.exe are {C:\, :\t,
\te, tem}. Most of these trigram features in this example are
also shared with C:\temp\malware8.exe. The only ones which
differ from the first example are {re7, e7., and 7.e}. As a
result, the similarity score between C:\temp\malware7.exe and
C:\temp\malware8.exe will still be very high while allowing
for some amount of polymorphism by the attacker.

MinHash Filtering: A naive method to compute all simi-
larity scores is to take a cross product of these two collections
and compute the similarity score for each pair. This approach
is not feasible because it is orderO(UM) whereU andM are
the number of features inSUser and SMalicious, respectively.
Even after filtering,U can be on the order of tens or hundreds
of millions of ProcessTraceseach day, and over time,M can
range from thousands to tens of thousands depending on the
number of malicious seeds which are being tracked. A linear
scan which compares each pair of samples from both sets can
easily reach one trillion similarity computations. Instead, we
resort to probabilistic techniques to filter the candidate pairs
on which we compute our similarity score. In particular, we
utilize the MinHash algorithm [9] — an existing randomized
hashing technique — to significantly reduce the number of
pairs that need to be considered. Each feature in the set (e.g.
“net.exe” for tokens or “et.” for trigrams) is hashed using
a hashing function and the minimum hash value (called the
MinHash) is computed over the set. In our system, we use the
Jenkins hash, but alternate hashes such as the Murmur 3 can
also be used. This process is repeatedN times to form the
MinHash vector. The complexity of the MinHash algorithm
is approximately linear in terms of the number of elements

in both sets,O(N(U + M)) which is substantially less than
O(UM) for linear scan whenU and M are large. In order
to further increase the computational efficiency, consecutive
elements of the MinHash vector are typically grouped together
into bandswhere the number of elements in each band is
the band size. The values in the bands are then compared
instead of individual MinHash vector elements. After using
the MinHash algorithm described above to greatly reduce the
number of feasible pairs (SMalicious, SUser ), we then compute
the exact similarity score which is described next.

Similarity Computation: After feature extraction, the in-
coming datasetSUser consists of a collection ofProcessTraces
each having the extracted features as its members. Once a
ProcessTraceis determined to be malicious, it is added to the
collectionSMalicious. Our aim is to compute a similarity score
betweenSUser and SMalicious to identify ProcessTracesin
SUser which closely resemble detected targeted attack activity
in SMalicious. We consider four types of similarity scores,
including unweighted Jaccard Index (UJI), weighted Jaccard
Index (WJI), unweighted squared match (USM), and weighted
squared match (WSM).

Jaccard Index:We first consider both the unweighted and
weighted Jaccard index for computing the first type of simi-
larity score. The unweighted Jaccard index is:

ScoreUJI (PM, PU ) = |PM ∩ PU |/|PM ∪ PU | (1)

where PM is an individual, featurizedProcessTrace in
SMalicious and PU is a featurizedProcessTracein SUser .
Alternatively, the weighted Jaccard index is defined as:

ScoreWJI (PM, PU ) =

∑

i∈PM∩PU
min(wPM

[i],wPU
[i])

∑

i∈PM∪PU
max(wPM

[i],wPU
[i])
. (2)

In (2), wPM
[i] and wPU

[i] are the weights associated with
the i th element of the malicious and userProcessTraces,
respectively. As in [10], we employ term frequency, inverse
document frequency (TFIDF) weighting for the weighted
Jaccard index version of our system wherewP[i] =

NP[i] log (1.0/NC[i]), NC[i] represents the number of times
item i occurs in the corpus ofProcessTraces, and NP[i] is
the number of times itemi occurs inProcessTrace P. TFIDF
weighting is chosen because it emphasizes infrequent patterns
that may be associated with targeted attack malware paths,



process names and command line parameter patterns while
minimizing the contribution of very frequent patterns suchas
the trigram feature “C:\”.

Weighted, Squared Match:We next propose a newweighted
squared matchsimilarity score (ScoreWSM ) which is more
robust to the mimicry and NOOP evasion techniques proposed
by Wagner and Soto [8]. Two types of attacks against intru-
sion detection systems are for the attacker to insert benign
commands, to mimic normal activity, or effective NOOPs, to
alter the detection algorithm, into the stream of commands
entered into the shell. Both the unweighted and weighted
forms of the Jaccard Index are susceptible to these forms
of evasion because the denominator in (1) and (2) depends
upon the set of commands entered by userSUser . If the
attacker inserts a group of benign commands into the attack
sequence, the number of denominator terms increases which
lowers both the unweighted and weighted forms of the Jaccard
index. To prevent these additional commands from affecting
the similarity score, we only consider features in the user
ProcessTrace(PU) which are also included in a malicious seed
ProcessTrace(PM ). In other words, the insertion of additional
process creation events, subdirectories, or parameters into the
ProcessTracedoes not affect the weighted squared match sim-
ilarity score. To achieve this objective, the weighted squared
match similarity score is defined as:

ScoreWSM (PM, PU ) =
L−1
∑

l=0

I [l ](wM [l ]/NWSM )2 (3)

whereL is the number of features inPM , wM [l ] is the TFIDF
weight associated with thel th feature inPM , and

NWSM =

√

√

√

L−1
∑

l=0

w
2
M

[l ]. (4)

The indicator functionI [l ] is 1.0 if PU contains a feature
which matches thel th feature inPM , and 0 otherwise. For
example,I [l ] = 0 when PU does not contain thel th feature
in PM . NWSM is a normalization term which ensures the final
score ranges from 0.0 when no features match to 1.0 when
all features match. WithoutNWSM , MART cannot provide a
consistent threshold for automated detection and blocking.

Unweighted, Squared Match:We also propose the un-
weighted, square match (USM) similarity score, where the
wMalicious[l ] weights are set to 1.0 in (3) and (4) for alll .
The unweighted, squared match score reduces to:

ScoreUSM (PM, PU ) =
L−1
∑

l=0

I [l ]/L. (5)

Automatic Account and Network Disabling: MART is
primarily designed to work in an automated detection and
disabling mode. The thresholdTi,disable in Figure 1 can be
tuned to automaticallydisablenetwork access for the the com-
promised user account and the compromised computer in the
event that the similarity score exceeds this threshold for each
individual malicious seedi or a group of seeds. Alternatively,

the system administrator can tune a single thresholdTdisable

which is used by all seeds.
Discovery: For automatic account and network disabling,

the thresholdTi,disable must be set conservatively to avoid
too many false positives. MART can be further improved
by analysts discovering new, related attacks which have a
relatively high similarity score but do not exceedTi,disable.
There are several methods to aid the discovery process. The
first is to generate analert for analysts if the similarity score
exceeds a second tuned thresholdTi,alert for malicious seed
i . The second method is to return the top K nearest neighbor
(KNN) results [11] for eachProcessTracein the malicious set.
MART supports both methods. The first method is preferable
for operational deployment because it only notifies analysts of
a possible attack depending on the selectedalert threshold.
The second method can be used by analysts who want to
search for potential new attacks which are not highly similar to
currently known attacks. The system then takes the feedback
from the analysts to improve future detections. Any new
detections are added to the set of malicious seeds to detect
future intrusions by the same attacker or another attacker who
is using similar methods.

Malicious Seed Initialization: Since MART relies on
the similarity computation between the incoming userPro-
cessTracesand the set of maliciousProcessTraceseeds, the
malicious seed set must first be initialized. There are several
methods for accomplishing this task. Security companies rou-
tinely issue detailed reports on specific instances of targeted
attacks. One strategy is to initialize seeds based on the IoCs
provided in these reports. Another initialization method is
to employ maliciousProcessTracesgenerated by penetration
testers as the initial seed set. A third method is for security
experts to predict malicious activity related to targeted attacks
and data exfiltration and add these behaviors to the initial seed
set. Instead of creating their own seed set, an organization
might choose to use a cybersecurity service that implements
MART to utilize known attacks across a number of customers
in order to provide better protection for everyone.

Efficient MapReduce Implementation: To process ex-
tremely large datasets, we have implemented MART to run
entirely on COSMOS, Microsoft’s internal MapReduce plat-
form [12]. The individual components are implemented in a
combination of SCOPE [12] and C#. Similar to Hadoop’s
Hive, SCOPE provides a SQL-like language for efficiently
processing large amounts of data. When an operation cannot
be computed using SCOPE, we write a custom processor (i.e.
mapper) or reducer in C#.

III. D ATA SETS

In this section, we describe the labeled small- and large-
scale datasets used for our evaluation of MART.

Small-Scale Dataset1:The organization initially provided
researchers with a relatively small dataset including process
creation Windows event logs (i.e. Windows security event
4688) from 1,473 computers collected over a two month
period. During this time, 1,348 distinct users accessed the



computers and generated 7,849,832ProcessTraces. The com-
puters were selected for close monitoring by analysts for a
number of reasons including they were deemed to be high-
value assets, had been the target of a previous attack, or
had been infected by malware. Often, network analysts will
monitor a suspicious computer for an extended length of time
in order to understand the targeted attack activity, and the
logs included known attacks from two distinct threat actors.
All of these computers were equipped with operating systems
including Windows 8 or older versions. Thus these computers
were able to log the process command names and paths (e.g.
C:\Windows\System32\net.exe), but none had the capability of
logging process parameters.

Large-Scale Dataset2:The second dataset was provided to
the researchers because it also included a known attack and
consists of process creation Windows event logs collected from
231,175 computers running on the same network as Dataset1.
This large-scale dataset was collected over a single day
approximately six months after Dataset1 was collected. For
this dataset, 322,539 unique users accessed these computers
during the 24-hour period, and the number ofProcessTraces
that were input to MART was 379,070,572. Some computers
on the network were running Windows 8.1 which supports
process parameter logging. Thus in addition to the larger scale,
the second dataset differs from the first because many of
the ProcessTracesinclude the command line parameters in
addition to the path and process name.

Targeted Attack Labeled Traces: The labeled targeted
threat activity was provided by the organization’s network
analysts, and the two datasets contained three separate attacks.
All of the attacks were detected by specific IoCs associated
with known targeted threat actors including connections to
their command and control networks as well as other specific
patterns employed by these threat actors. Additional indica-
tions that the attacks were targeted included the targeting
of high value accounts and assets. Once the initial infected
computers were identified, individual maliciousProcessTraces
were then determined by manual inspection.

Data Security and Privacy: This study was approved by
our institutional review board. Several steps were taken to
protect the security and privacy of the datasets. The access
to the raw data was restricted to the researchers. A separate,
isolated MapReduce cluster was used to analyze the data and
perform the experiments conducted in this study.

IV. D ETECTION OFCONFIRMED TARGETED ATTACKS

In this section, we evaluate the MART algorithm on the
two datasets described in Section III. For all experiments,we
set the MinHash vector length to 10 and the band size to 1
as discussed in Section II, and we also chooseN = 3 for
the N-Gram (i.e. trigram) features. We calculate the k-nearest
neighbors to the dataset’s maliciousProcessTraceswith k =
25. For items which are included in two or more lists, we retain
only the instance which is the closest (i.e. has the highest
similarity score) to one of the seeds and filter the duplicate
entries.

Small-Scale Study: In the first experiment we conduct
a hindsight study on the small Dataset1. Beginning with 4
known maliciousProcessTraceslisted in Table II that are
initially identified as the attack, we evaluate all eight algo-
rithms, formed by the combinations of tokens versus N-Grams,
squared match versus Jaccard index, and unweighted versus
weighted, on the two months of data to search for activity from
the same targeted attack as well asProcessTracesfrom other
targeted attacks. The “Comp” column specifies the computer
identifier and indicates that the attacker visited three computers
in this particular attack. The “Month”, “Day” and “Time”
columns correspond to the relative date and local time where
the computers are located. TheProcessTraceis aggregated
from the attack data. Individual malware files are denoted as
IOCx,y wherex is the ID of the threat actor andy indicates
the malware executable file employed by the actor.

We compare theProcessTracesimilarity scores of the 25 K
nearest neighbors for the WSM and WJI models with N-Gram
features in Figure 2. The weighted squared match similarity
model offers a larger value for the highest ranked attack trace
allowing easier threshold detection. It also provides a slightly
higher spread between the top ranked malicious and benign
items compared to the weighted Jaccard index model. Based
on these features and its robustness to mimicry attacks, the
WSM model outperforms the WJI model on this dataset.
The top ranked items in all eight models include the seven
ProcessTracesfrom Targeted Attack 1 listed in Table III. The
weighted squared match similarity score in the table (column
“WSM Sim”) is computed using the TFIDF weighted squared
match model using N-Gram features.

The MART system is designed to detect similar, but new
attacks based on the malicious seeds. From the results in
Figure 2, we see that the system performs as expected in
that one malicious trace from a second, unrelated threat actor
(Targeted Attack 2) is also ranked in the top 6 most suspicious
traces. TheProcessTracefor this unrelated attack is listed
in Table IV and has a WSM Similarity Score = 0.4740. In
addition to actual attacks, the system also detects activity from
penetration testers labeled as “Red Team”. We also include
“Security Analyst” items in the figure which demonstrates that
their activity is often similar to that of the attackers.

Large-Scale Study: After being able to discover highly
ranked attacks in the small-scale dataset, the organization next
provided the researchers access to the much larger Dataset2
for analysis. The details of theProcessTracesused in the
attack are provided in Table VI. For the training set, we used
nine maliciousProcessTraces, seven from Targeted Attack 1
from DataSet1 and two from the attack in this dataset which
are highlighted in bold in Table VI. The test set contains
the remaining 379 millionProcessTracesin the dataset. The
parent process of the firstProcessTraceis Powershell, and the
parent processes of all of the remaining entries are Windows
command shells. A C# file stored in the infected users’
AppData local temp directory is first run. We cannot confirm
that this was part of the attack, but the C# file was stored in
the same subdirectory as the malware that is later run by the



Comp Month Day Time ProcessTrace

1 2 19 6:22 AM C:\Windows\SysWOW64\IOC1,1;C:\Windows\SysWOW64\PING.EXE;C:\Windows\Temp\<IOC1,2>;
C:\Windows\SysWOW64\net.exe;C:\Windows\SysWOW64\qwinsta.exe;C:\Windows\SysWOW64\nslookup.exe;
C:\Windows\Temp\<IOC1,3>;C:\Windows\Temp\<IOC1,4>;C:\Windows\SysWOW64\tasklist.exe;
C:\Windows\SysWOW64\HOSTNAME.EXE;

2 2 19 9:19 AM C:\Windows\SysWOW64\ipconfig.exe;C:\Windows\SysWOW64\qwinsta.exe;
C:\Windows\SysWOW64\tasklist.exe; C:\Windows\SysWOW64\nslookup.exe;
C:\Windows\Temp\<IOC1,3>;C:\Windows\Temp\<IOC1,4>;

2 2 19 9:32 AM C:\Windows\SysWOW64\HOSTNAME.EXE;C:\Windows\SysWOW64\qwinsta.exe;C:\Windows\Temp\<IOC1,5>;
C:\Windows\SysWOW64\IOC1,1;C:\Windows\SysWOW64\ipconfig.exe;C:\Windows\SysWOW64\net.exe;
C:\Windows\SysWOW64\systeminfo.exe;C:\Windows\SysWOW64\PING.EXE;C:\Windows\Temp\<IOC1,2>;
C:\Windows\Temp\<IOC1,3>;

3 2 19 10:20 AM C:\Windows\Temp\<IOC1,6>;C:\Windows\SysWOW64\IOC1,1;C:\Windows\SysWOW64\<IOC1,5>;
C:\Windows\SysWOW64\ipconfig.exe;C:\Windows\SysWOW64\net.exe;C:\Windows\SysWOW64\tasklist.exe;
C:\Windows\SysWOW64\NETSTAT.EXE;C:\Windows\SysWOW64\systeminfo.exe;
C:\Windows\SysWOW64\PING.EXE;C:\Windows\Temp\<IOC1,4>;

TABLE II: Initial four seeds used to discover other malicious ProcessTracesin the Dataset1.

Comp Month Day Time WSM ProcessTrace
Sim

4 1 1 1:58 AM 0.4731 c:\windows\syswow64\qwinsta.exe;c:\windows\syswow64\ping.exe;
4 1 1 2:03 AM 0.86807 c:\windows\syswow64\nslookup.exe;c:\windows\syswow64\ping.exe;c:\windows\syswow64\arp.exe;

c:\windows\syswow64\net.exe;c:\windows\syswow64\wbem\IOC1,7;c:\windows\syswow64\cmd.exe;
c:\windows\syswow64\IOC1,1;c:\windows\temp\<IOC1,2>;c:\windows\temp\<IOC1,4>;
c:\windows\temp\IOC1,8;

1 1 1 2:57 AM 0.8360 c:\windows\syswow64\<IOC1,9>;c:\windows\syswow64\find.exe;c:\windows\syswow64\IOC1,1;
c:\windows\syswow64\IOC1,8;c:\windows\temp\<IOC1,3>;c:\windows\syswow64\ipconfig.exe;
c:\windows\syswow64\net.exe;c:\windows\syswow64\systeminfo.exe;c:\windows\temp\<IOC1,5>;
c:\windows\temp\<IOC1,10>;

1 1 9 5:41 AM 0.5026 c:\windows\syswow64\ping.exe;c:\windows\syswow64\tasklist.exe;
1 1 9 5:44 AM 0.5138 c:\windows\syswow64\ipconfig.exe;c:\windows\syswow64\ping.exe;

c:\windows\syswow64\<IOC1,7>;
4 2 20 12:13 PM 0.5030 c:\windows\syswow64\tasklist.exe;c:\windows\syswow64\qwinsta.exe;

c:\windows\syswow64\systeminfo.exe;
4 2 20 1:02 PM 0.4537 c:\windows\syswow64\qwinsta.exe;c:\windows\syswow64\tasklist.exe;

TABLE III: Malicious ProcessTracesdiscovered in Dataset1 corresponding to the first targeted attack.

c:\windows\syswow64\net.exe;c:\windows\syswow64\tasklist.exe;
c:\windows\syswow64\ping.exe; c:\IOC21Path\IOC21;
c:\windows\syswow64\hostname.exe;c:\windows\syswow64\sc.exe;
c:\windows\syswow64\ipconfig.exe;c:\windows\syswow64\schtasks.exe;

TABLE IV: A ProcessTracefrom the second targeted attack
discovered in Dataset1.

attacker. The actor executes a “net use” and then enters a series
of commands running locally stored malware targeting first a
computer specified by an IP address and then another computer
specified by its hostname. The attacker deletes the remote
connections for both target computers, and then immediately
appears to repeat the process.

We can make several observations from this attack log.
The attack was highly targeted — the log indicates that this
session was a return visit by the attacker to this particular
computer. The attacker knew the specific IP address of the
first destination computer as well as the hostname of the
second targeted computer. The attack occurred at night when
the majority of the system administrators were sleeping. The
second entry indicates that the attack was conducted, in part,
by a human, and not a script, given that “use” is misspelled as
“ue” and then corrected on the next entry. Finally, the attack
is fairly concise with the majority of the activity spanninga
period of 46 minutes.

Using this large-scale dataset, we can now evaluate how
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Fig. 2: Comparison of similarity scores for the WSM model
(ScoreWSM ) (top) and WSI model (ScoreWJI ) (bottom) for
the Dataset1 N-Gram features.

MART performs based on using the two maliciousPro-
cessTraceseeds in the table denoted in bold type plus the seven
seeds used from Dataset1. Although the attack was quickly
detected and the computer disconnected from the network,
these results indicate how well the system might perform if this



Model Targeted Attack 1

USM Tokens 3
UJI Tokens 3

WSM Tokens 9
WJI Tokens 4

USM N-Grams 3
UJI N-Grams 3

WSM N-Grams 3
WJI N-Grams 5

TABLE V: Model statistics for Dataset2.

particular attacker managed to regain entry on a subsequent
day and entered these commands. The weighted squared match
similarity score in the “WSM Similarity” column is indicated
for items returned in the k-nearest neighbors withk = 25.
The items with a blank weighted squared match score are not
included in the ranked list. We include the seed with “ping.exe
-4 -n 1” which is trying to ping a computer using IPV4 using
only a single attempt. This parameter combination appears
to be unique where the number of network connections is
minimized.

The summary of the number of true positive detections is
given in Table V, including the unweighted models. These
results indicate that the token features can lead to more
detections than N-Gram features at large scale assuming the
attacker re-used the same commands in subsequent attacks. For
example, the TFIDF WSM token-based model detects 6 more
attack traces than the WSM N-Gram version. In Figure 3, we
compare the KNN results for the WSM and WJI models for
the N-Gram features. In general, the WSM similarity score is
much closer to 1.0 for the highest ranked attack traces leading
to an easier task of tuning a detection threshold. No security
analyst activity is detected by any method presumably because
the computer was taken off-line so quickly.
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Fig. 3: Comparison of similarity scores for the WSM model
(ScoreWSM ) (top) and WSI model (ScoreWJI ) (bottom) for
the Dataset2 N-Gram features.

At large-scale, using TFIDF weighting is important for de-
tecting targeted attacks. The TFIDF weighted systems mostly
outperform the unweighted variants in the large-scale analysis
in Table V. Two main factors contribute to this result. First
the large-scale experiment includes almost 50 times more
ProcessTracesallowing the rare attack features to have signifi-
cantly higher weights compared to the small-scale experiment
where the attack traces arerelatively more common. Second
the small-scale experiment does not contain any parameters
in the process creation logs which significantly reduces the
effectiveness of the weighting. Without including the param-
eters, the only features that are assigned higher weights are
malware executable names which are not frequently used in
the attacks.

In general, the token features outperform the N-Gram
features in the large-scale experiment. This result is to be
expected because these particular attackers did not include
polymorphism in their activity. As noted previously, the token
features yield higher precision. If the attacker re-uses a set
of commands or parameters exactly or re-visits a previously
infected computer, the token features can produce higher
similarity scores. However, we believe that it is more important
to be robust to polymorphic behavior. In experiments not
presented in this paper, we found that N-Gram features can
be used instead of token features without sacrificing too much
precision. Therefore we recommend using N-Gram features
instead of token features.

Finally the study indicates that the performances of the
weighted squared match systems are comparable to their
weighted Jaccard index counterparts but offer additional ro-
bustness to mimicry and NOOP attacks. The best performing
system in Table V is the TFIDF weighted squared match token
variant. This system discovers almost twice the number of
maliciousProcessTracesas the next best system.

Finally, running MART on a MapReduce system is very
efficient. For example, executing a highly optimized scriptfor
the UJI Token system on Dataset2 requires 1 hour 25 minutes
to complete.

V. EVASION

A number of papers have investigated evasion techniques of
intrusion detection systems (IDSs) [13], [8]. We next consider
possible evasion methods identified by these research efforts
related to the proposed MART system.

MART relies on analyzing process command line event
logs. If the threat actor is able to employ tactics which avoid
generating process creation events, MART will not be able to
detect this attack.

Attackers can also attempt to evade detection by reordering
the sequence of commands as well as the input parameters
for each command they type into the remote shell. One
important characteristic of MART is that, depending upon
the features, the algorithm is eithercompletelyinvariant or
mostlyinvariant to command and parameter reordering. During
the first stage of MART, the MinHash algorithm computes
the minimum hash value of all token or N-Gram features



Day Time WSM ProcessTrace
Similarity

1 11:43 PM C:\Windows\Microsoft.NET\Framework64\v4.0.30319\csc.exe /noconfig /fullpaths ?
““C:\Users\<infected user>\AppData\Local\Temp\<csharpFile>””;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:50 AM C:\Windows\SysWOW64\net.exe ue;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:51 AM C:\Windows\SysWOW64\net.exe use;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:54 AM 1.0 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <IP Addr>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:54 AM 1.0 C:\Windows\SysWOW64\ping.exe -4 -n 1 <HostName>;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:55 AM 0.9472 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <IP Addr>–password <PW>–ens;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:56 AM 1.0 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <IP Addr>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:56 AM 0.8601 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <HostName>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:58 AM 0.8601 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <HostName>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 3:58 AM 0.8073 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <HostName>–password <PW>–ens;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:00 AM C:\Windows\SysWOW64\net.exe use \\<HostName>\<share1>/user:“”;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:01 AM 0.8601 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <HostName>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:01 AM C:\Windows\SysWOW64\net.exe use;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:02 AM C:\Windows\SysWOW64\net.exe use \\<IP Addr>\<share1>/delete;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:02 AM C:\Windows\SysWOW64\net.exe use \\<HostName>\<share1>/delete;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:03 AM C:\Windows\SysWOW64\net.exe use \\<IP Addr>\<share1>;
C:\Windows\SysWOW64\net.exe use \\<HostName>\<share1>;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:04 AM 1.0 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <IP Addr>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:04 AM 0.5674 C:\Users\<infected user>\AppData\Local\Temp\Low\<IOC31>
–host <HostName>–password <PW>–cmd info;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:05 AM C:\Windows\SysWOW64\net.exe use \\<IP Addr>\<share1>/delete;
C:\Windows\SysWOW64\net.exe use \\<HostName>\<share1>/delete;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:36 AM C:\Windows\SysWOW64\net.exe user <Expired User Account>/domain;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

2 4:36 AM C:\Windows\SysWOW64\net.exe user <Current User Account>/domain;
C:\WINDOWS\system32\conhost.exe 0xffffffff;

TABLE VI: Attack details for Dataset2. The twoProcessTracesdenoted inbold type were included as targeted attack seeds,
along with the four malicious seeds in Dataset1 experiment,for this analysis. Items with a blank Jaccard index were not
returned in the k-nearest neighbor results withk = 25.

which have been extracted from theProcessTrace. For token
features, the computation does not depend on the order of the
features, and therefore, is not affected by an attacker reordering
the commands or parameters. On the other hand, N-Grams
produce a slightly different set of features depending on the
parameter ordering. Consider the example in Table VII. There
are two different trigrams for each of these two sequences:
“ 2 ” and “2 -” for the first and “e1 ” and “1 -” for the
second. It is possible that these trigrams may be responsible
for the minimum hash value for that particular instance of
the hash computation. However since we use a band size of
1, it is extremely unlikely that another hash computation will
not include the userProcessTracein the filtered set. In the

Malicious Seed New Attack Trace UJI USM

ping -n 2 -4 machine1 ping -4 machine1 -n 2 0.810 0.895
ping -n 2 -4 machine1 ping -4 machine1 -n 2 0.405 0.895

dir c:\windows\system32

TABLE VII: ProcesTraceparameter reordering for N-Gram
features.

second stage, the similarity score is also calculated basedon
the set of features. For token features, the WSM or Jaccard
index computed for these two commands is 1.0. For N-Gram
features, the similarity score changes by a small amount.



For example, the unweighted Jaccard index drops slightly to
0.810 and the unweighted squared match score drops even
less to 0.895 for trigrams, although these values will most
likely ensure that the unknownProcessTraceremains highly
ranked and detectable using either method. MART can be
extended to compute the N-Gram features in isolation for each
parameter given the command. Doing so would yield an N-
Gram-based system which is completely invariant to parameter
reordering at the expense of increased complexity. In the case
of operating system process command usage, the attacker can
also try to vary parameter and process execution orders to
avoid detection. However in this case, the MinHash sequence
and process parameter invariance described above will help
minimize missed detections.

A mimicry attack [8] has been proposed as a method for
evading detection by intrusion detections systems. In trojan
malware, the attacker embeds malicious code in a benign
program. Since execution of the program results in a mostly
normal set of system calls, an IDS may fail to detect the
execution of the malicious code. In a mimicry attack [8], the
malicious code simply generates a set of normal system calls
directly instead of embedding malicious code into a benign
program. A similar attack proposed by Wagner and Soto [8]
is the NOOP attack where additional system calls are inserted
into the file in order to hide the malicious calls in the “noise”
of the useless benign system calls. The WSM similarity score
is designed to be robust against mimicry and NOOP attacks be-
cause it only considers features which are contained withinthe
attack; inserting additional benign system calls has no effect
on the score. Embedding benign commands into the Jaccard
index system can reduce the Jaccard index below the threshold
allowing the attacker to avoid detection. For example, if the
attacker adds the NOOP commanddir c:\windows\system32to
the desired attack in Table VII, the new unweighted Jaccard
index drops significantly from 0.895 to 0.405. However, the
unweighted squared match score remains unchanged at 0.895.
The attacker could attempt to cause false positive detections by
entering commands which are highly similar to the malicious
seeds without actually performing the true malicious activity.
This attack is, however, a dangerous game and will likely not
be pursued. An advanced attacker will most likely not want to
draw any attention from network analysts to computers which
have been successfully infected.

Threat actors can also attempt to use different malware
names and locations to avoid detection, but patterns in the
operating system command usage can still aid in detection
of targeted attacks. The system relies on two broad types of
correlation between previously detected attacks and similar
attacks occurring in incoming data streams including a) oper-
ating system command and parameter usage and b) malicious
file names, paths, and parameter usage. For malware executed
during a targeted attack, the correlation is reflected in thepath,
filename, and parameters. For the operating system calls in-
volved in the attacks (e.g. net use), the correlation comes from
the command names and parameter usage exhibited during the
other attacks. We see from the attack detailed in Table VI, both

types of correlations help to provide a high WSM similarity
score. In other words, if the attacker changes the malware
location and parameters, the maliciousProcessTracemay still
be detected by the operating system usage as demonstrated by
the results on Dataset1. It is important to note that MART is
designed to operate in part by analyzing log files. Even if an
attacker does change the malware names but still follows some
pattern, MART can be run in a hindsight mode to detect past
intrusions if the organization has saved their logs for some
period of time — the attackers cannot undo their past activity
assuming they cannot overwrite the older log files.

VI. RELATED WORK

Very few papers have been published on the analysis and
detection of targeted attack activity. Balduzzi et al. [1] propose
a system to cluster the hostnames and requests from URLs
and individual computers based on telemetry from Trend Mi-
crosystem’s anti-virus engine. Next, they further group these
two types of URL clusters and machines for client machines
in related industries such as oil and gas or banking. By
evaluating these URL clusters and machines within a particular
group, they are able to detect potential targeted attack activity.
Mandiant published a white paper detailing cyber esponiage
activity by a group they call APT1 [14].

An early survey of intrusion detection systems was written
by Brown et al. [15]. Anand [16] provides a more recent
overview on intrusion detection. The most popular network
intrusion detection systems include Bro [17] and Snort [18].
Two important early papers on applying the RIPPER rule-
learning algorithm to intrusion detection include Lee et al. [19]
and Lee et al. [20]. Two highly cited intrusion detection
systems for unix systems include stide [21] and pH [22].
Portnoy et al. [23] investigated clustering in the context of
intrusion detection. A well known paper on event correlation
for intrusion detection is by Debar and Wespi [24].

MART falls into the general category of misuse host intru-
sion detection systems. Our system is most closely related to
that of Liao and Vermuri [10] which uses K-nearest neighbor
clustering and TFIDF weighting for host intrusion detection.
However, their system uses simple linear scan and does not
utilize the MinHash algorithm for fast computation. It also
analyzes system calls from applications instead of processcalls
as we do in MART. In addition, MART uses the new weighted,
squared match similarity score. They analyze the 1998 DARPA
Basic Security Model (BSM) dataset withsimulatedattacks
which is known to not be representative of real-world attacks.
Our system analyzes data with actual targeted intrusion activity
on a large-scale organizational network. Furthermore, they
look for similarity among all normal programs while MART
detects similarity to known attacks. Finally, their systemonly
records the name of the system calls and does not include paths
or parameters. In addition to the process names, our small-
scale dataset includes the paths and both paths and parameters
were logged in many cases in our large-scale dataset.

The unweighted Jaccard index was previously used to
cluster malware files in [5], [7]. Brode first introduced the



MinHash algorithm in 1997 [25] and considered it in more
depth in [26]. A good overview of the MinHash algorithm is
provided by Rajaraman and Ullman [9]. A weighted MinHash
algorithm has been proposed by Ioffe [27]. In the context of
security applications, the MinHash algorithm was previously
used to estimate the unweighted Jaccard index and investigate
account hijacking on twitter [28]. Chum et al. [29] investigate
the use of the MinHash algorithm and TFIDF weighting for
vision tasks.

VII. C ONCLUSIONS

Finding intrusions in large computer networks is a daunting
task in terms of the number of analysts needed to investigate
potential detections as well as the computational power re-
quired to correlate activity produced by a resilient attacker who
may leave many backdoors in the network. To help address
these important problems we have developed MART — a
distributed analysis tool that enables investigators to find ma-
licious human activity on a large computer network monitored
with event logging enabled on each host. The results on the
two targeted attack datasets are highly encouraging. Targeted
attack activity is included at the top of the ranked results
in both cases. The system is designed to discover additional
activity from the same actor as well as similar activity from
unrelated actors; the inclusion of the second targeted attack in
the results for Dataset1 provides some evidence that detecting
new threats is indeed possible. Although previous research
argues that detection of rare intrusion events is extremely
problematic [30], the Dataset2 results indicate that MART can
successfully operate at very large scale. The new weighted
squared match similarity score provides robustness to mimicry
and NOOP attacks. While not being the top performing system
for either dataset, we believe the weighted squared match
N-Gram version of MART offers the best combination of
performance and resiliency to evasion techniques. Ultimately,
we envision MART as another layer in an organization’s
defense in depth strategy.
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