
Blue Banana: resilience to avatar mobility in distributed MMOGs

Sergey Legtchenko Sébastien Monnet Gaël Thomas

LIP6/UPMC/CNRS/INRIA
104 av. du Président Kennedy, 75016 Paris - France

Firstname.Name@lip6.fr

Abstract

Massively Multiplayer Online Games (MMOGs) re-
cently emerged as a popular class of applications with mil-
lions of users. To offer acceptable gaming experience, such
applications need to render the virtual world surrounding
the player with a very low latency. However, current state-
of-the-art MMOGs based on peer-to-peer overlays fail to
satisfy these requirements. This happens because avatar
mobility implies many data exchanges through the overlay.
As state-of-the-art overlays do not anticipate this mobil-
ity, the needed data is not delivered on time, which leads
to transient failures at the application level. To solve this
problem, we propose Blue Banana, a mechanism that mod-
els and predicts avatar movement, allowing the overlay to
adapt itself by anticipation to the MMOG needs. Our eval-
uation is based on large-scale traces derived from Second
life. It shows that our anticipation mechanism decreases by
20% the number of transient failures with only a network
overhead of 2%.

1. Introduction

The past few years witnessed the emergence of a new
class of distributed, highly collaborative applications called
Massively Multiplayer Online Games (MMOGs). The main
aim of an MMOG application is basically to provide a large
virtual universe, or NVE for Networked Virtual Environ-
ment. In NVEs, users represented by their avatars can
freely move and interact with each other [29]. NVE ap-
plications involve millions of active participants all over the
world and generate substantial financial revenue [2]. Such
applications need to be highly scalable to support the colos-
sal number of players and to be reactive with almost real-
time constraints to provide a satisfying gaming experience.

Current popular NVEs are based on the client-server
paradigm [35,36]. This necessarily implies poor scalability
for NVE applications and expensive financial cost for the

NVE provider [2, 16]. To face these limitations, a new gen-
eration of decentralized NVEs based on peer-to-peer over-
lays has emerged [3, 4, 11, 12, 15]. In these NVEs, the load
and the applicative data is fairly divided between all the
nodes of the overlay. Therefore, each node stores a local
knowledge of the NVE: a set of data-blocks describing some
objects of the virtual world. In order to correctly render the
virtual world surrounding its avatar, a node must acquire the
set of data-blocks representing the area in the NVE where
its avatar is located. We define these set of data-blocks as
the playing area of the node. To build a playing area, a node
must find other nodes that have the required data-blocks in
their local knowledge. We define these other nodes as the
elders of the playing area.

One of the main problems that a distributed NVE must
face is the construction and the update of an avatar’s play-
ing area when it moves. Indeed, the playing area of a mov-
ing avatar changes and its node has to quickly retrieve the
data-blocks of the new playing area from new elders. Vir-
tual movement of an avatar thus involves real data exchange
through the underlying overlay network. Moreover, the
faster the avatar moves, the lesser time its node has to down-
load missing data-blocks. If a node is unable to retrieve
the data composing its current playing area in a reasonable
time, i.e, in a time that does not degrade the gaming expe-
rience, we say that the node transitory fails. The threshold
delay is typically of a few hundreds of milliseconds [5]. Ba-
sically, this notion of failure depends on the quantity of in-
formation needed to correctly render a playing area, which
is highly application-dependent.

State-of-the-art overlays for NVEs try to deal with the
problem by continuously adapting their logical graph in re-
action to virtual mobility. When an avatar moves across
the NVE, its node changes its neighbor set in order to re-
cover all needed data in a small number of hops in the over-
lay [3, 6, 15]. However, these overlays only react to move-
ment: a node changes its neighbor set after the movement
of its avatar. This lets only a few hundreds of milliseconds
to find the new elders and to retrieve the needed data from



them. If the movement is too fast, or if the amount of data
to download is too large, the overlay is unable to adapt itself
on time, causing transient failures. Moreover, the problem
is symmetric for non moving avatars: if a moving avatar en-
ters in the playing area of a non moving avatar too quickly,
the non moving avatar will not see the entering one in its
playing area.

To solve this problem, we propose a new mecha-
nism called Blue Banana1 that anticipates movement and
searches the elders of the forthcoming playing areas when
an avatar moves. Concretely, the algorithm tries to predict
avatar movement and, if it has a stable movement during
a sufficiently long period of time, its node prefetches el-
der nodes of the playing areas in the direction of its move-
ment with respect to the avatar speed. Our algorithm de-
creases the number of transient failures of a moving avatar:
the loading of the data composing the forthcoming playing
areas begins earlier, allowing the prompt construction of a
correct playing area image when the avatar effectively en-
ters inside it.

The key challenge to design our algorithm is an accu-
rate understanding of avatar mobility. Indeed, if our algo-
rithm fails to correctly predict avatar movement, it will load
useless data. The problem is particularly important if the
avatar has erratic movement: our algorithm must not try to
prefetch the forthcoming elders and the data of the forth-
coming areas at each direction shift. The load of this use-
less data would overload the node and therefore generate
new transient failures.

The contributions of this paper are thus: 1) an analysis
and a model of mobility to qualify and detect predictable
player movement; 2) the implementation of Blue Banana,
our anticipation mechanism in one of the state-of-the-art
peer-to-peer overlay networks: Solipsis; 3) a generator of
realistic movement traces to evaluate Blue Banana; and 4)
a complete evaluation of Blue Banana with our generated
movement traces in the PeerSim simulator [14]. We choose
to test our algorithm on top of Solipsis because it already
selects and updates its overlay neighbors based on avatar
virtual positions in the NVE. However, like other current
NVE overlays, Solipsis does not anticipate the movement
of the avatars: it fetches elders indifferently in all the direc-
tions and therefore fails to build playing areas in a reason-
able time when the movement increases.

The main lessons learned from our work are:

• Our model of mobility provides the ability to predict
avatar movement. By adding an anticipation mechanism
in Solipsis, the number of transient failures decreases by
20% while the network bandwidth is only increased by 2%.
Moreover, our mechanism does not decrease the robustness

1The Blue Banana is the pattern of one of the highest concentration of
population of the world and the relationship with our work is discussed in
Section 4.

of the original protocol: when movement is erratic, transient
failures do not increase. Blue Banana also increases the ro-
bustness of the NVE because in average, a node knows 7.5
times more elders in the direction of the avatar’s movement,
allowing a node to prefetch 20 times more data on time.
• The traces of movement generated from our model

are realistic and an evaluation shows that they clearly co-
incide with the real traces collected in Second Life [31].
They permit the construction of larger traces and therefore
the evaluation of our protocol.

The rest of this paper is organized as follows. First
Section 2 studies the mobility in real existing NVEs and
presents our mobility model that allows the overlay to pre-
dict movement. Section 3 presents the implementation of
Blue Banana on top of Solipsis. Section 4 describes our
trace generator, then Section 5 presents the evaluation en-
vironment and the evaluation results. Section 6 describes
related works before Section 7 concludes.

2. Mobility pattern and movement prediction

Avatars connected to NVEs usually have a total freedom
of movement. Resulting NVEs are then very dynamic: data
representing objects and avatars may not be uniformly dis-
tributed all over the universe. Recent studies of existing
popular NVEs like Second Life [35] and World of War-
craft [36] have shown that the distribution of avatars was
extremely disparate [17, 25]: most of the avatars are gath-
ered around a few hotspots of interest, while large parts of
the NVE are almost desert. In addition to that, the mo-
bility pattern of the avatars has been shown to be highly
non-uniform: avatars move slowly and chaotically within
the hotspots, whereas the movement between the hotspots
is straight and fast [19].

2.1. The state machine

These observations have a consequence on the design
of our anticipation algorithm: the anticipation mechanism
must discriminate chaotic from straight avatar movement.
Therefore, in order to ensure reasonable prediction accu-
racy, each node of the overlay handles a state machine that
describes its avatar mobility. According to the observed mo-
bility pattern, an avatar has two states: (T̃ )ravelling, the
avatar is rapidly moving on the map and its trajectory is
straight, (Ẽ)xploring, the avatar is exploring an area, its tra-
jectory is chaotic and its speed is low.

As the user is interacting with the NVE, its node locally
analyzes the state of the avatar. If it detects a behavioral
modification, it switches the state machine to the appropri-
ate state. The behavior of an avatar is defined by its speed.
If the speed of an avatar reaches a threshold, the state ma-
chine is switched to the state T̃ , otherwise, it is switched to



the state Ẽ. This simple model is a first attempt to describe
avatar movement and can be refined: it could take into ac-
count the acceleration of the avatar, or try to predict player
behavior by analyzing its movement history. However, this
simple model already provides a sufficient prediction accu-
racy to decrease the number of transient failures.

If the state machine is in the state T̃ (the avatar is trav-
eling), its trajectory is highly predictable. Therefore, our
algorithm tries to prefetch the forthcoming elders, i.e, the
nodes that have data of the forthcoming playing area in their
local knowledge.

If the avatar is exploring a zone (state Ẽ) its trajectory is
chaotic and its speed is low. In this case, its path is difficult
to predict, therefore the Blue Banana module does not an-
ticipate the loading of the forthcoming elders. Notice that
because of the slow speed, the native algorithm of an NVE
is likely to adapt itself on time anyway.

2.2. Movement anticipation

To maximize the prediction accuracy, we make two as-
sumptions: (i) only short term prediction is accurate, (ii)
the faster an avatar is moving, the more it is likely to con-
tinue on its current trajectory. The first assumption implies
that future probable positions calculated from the avatar’s
present location and movement vector form a cone. Indeed,
the more a position prediction is far in the future, the more
it is likely to diverge from the real path. The second met-
ric implies that the prediction accuracy increases with the
avatar speed: the sharpness of the cone is proportional to
the speed.

If all elders of the playing area located inside the cone
are prefetched on time and if the avatar stays in the cone,
the node of the moving avatar will then instantly adapt to
the mobility.

3. Implementation of Blue Banana on top of
Solipsis

We have implemented our Blue Banana prefetching al-
gorithm over Solipsis [15]. We chose Solipsis because it al-
ready takes into account avatar proximity to build the over-
lay.

3.1. Solipsis overview

Solipsis is an overlay designed to sustain a distributed
NVE. Each node of the Solipsis overlay is responsible for
one avatar. In Solipsis, the knowledge of a playing area is
distributed on the nodes that manage the avatars of this play-
ing area: the elders of a playing area are exactly the nodes
which avatars are in this playing area. Solipsis maintains a

set of direct neighbors for each node. Nodes communicate
by message passing through the overlay: the more the dis-
tance in the overlay in number of hops increases, the more
the latency increases. To enhance the responsiveness, Solip-
sis tries to maintain the elders of the current playing area of
a node in its neighborhood to communicate efficiently. If
two avatars A and B are neighbors in the NVE, the Solip-
sis overlay adapts itself so that B will eventually be in A’s
neighborhood and vice versa. In order to ensure that behav-
ior, Solipsis is based on two fundamental rules:

1. Local awareness rule. An avatar a has a circular play-
ing area ωa centered on the avatar. If another avatar b is
inside ωa, the nodes of a and b must be neighbors in the
overlay. The size of ωa is adjusted to ensure that a has a
number of neighbors contained between a minimum and a
maximum bound.

2. Global connectivity rule. Let Ne be the neighbor set
of a node e in the overlay. The avatar of e must be located
inside the convex hull of the set formed by avatars of Ne.
This property aims that an avatar will not “turn its back” to
a portion of the NVE, causing inconsistent views or possibly
partitioning the Solipsis overlay graph.

To ensure these rules, Solipsis implements a mechanism
called spontaneous collaboration. At each moment, thanks
to periodic updates, a node is aware of the coordinates and
the awareness area sizes of all nodes in its neighbor set. As
it locally detects that one of its neighbors enters the aware-
ness area of another of its neighbors, it sends a message to
both entities to warn them that the local awareness rule is
about to be broken. As they receive that message, the two
entities become neighbors. Our simulations showed that
this technique is very efficient: most of the time, a node
receives a warning message and does not have to initiate a
costly new-neighbor query. The global connectivity rule en-
sures that a node is always surrounded by its neighbor set,
making spontaneous collaboration more efficient.

To sum up, if the local awareness rule is violated for a
node n, it means that an avatar has arrived into the playing
area of n and is not yet included to the local knowledge of
n, causing a transient failure. If the global connectivity rule
is violated for a node n, it means that n is not surrounded by
its neighbor set. It will then not receive spontaneous data
updates for a part of its playing area, which will mandatorily
lead to transient failures.

An avatar keeps breaking fundamental rules as long as
it moves because the spontaneous collaboration mechanism
is not always able to react on time. For that reason, a more
efficient anticipation mechanism is required.



3.2. Implementation of the anticipation
mechanism

Blue Banana, our anticipation mechanism, is built on top
of Solipsis. However, it could be implemented on top of
any overlay that adapts itself in reaction to avatar move-
ment. Blue Banana’s main aim is to provide each node
with a prefetched node set (the size of the set is user de-
fined). For this purpose, it finds nodes in the direction of
the avatar’s movement. Once the moving avatar approaches
a prefetched node, the prefetched node is added in the regu-
lar neighbor set managed by Solipsis. Hence, Blue Banana
substantially helps Solipsis native algorithms to restore the
fundamental rules, minimizing resulting transient failures.

Important properties of the algorithm. The first im-
portant quality of the algorithm is the consideration of
avatar movement during message transfer time. Indeed,
during a message transfer, the NVE changes, and so do in-
teresting prefetched neighbors. For example, if A and B are
2 meters apart and if A runs toward B, B is probably an in-
teresting prefetched neighbor. But if the network latency is
around 200ms and if A runs at 36km/h (10m/s), the time to
transfer a message from A to B is exactly the time to reach B
for A in the NVE: the communication time between A and
B makes B an uninteresting prefetched neighbor. To take
into account message transfer time, each node estimates a
low and a high bound of the network latency by using the
last observed round trip times with its neighbors. When
a prefetching message arrives, the algorithm uses these la-
tency bounds to roughly estimate the new avatar-position of
the node that emitted the message. Even if this estimation
is clearly rough, it permits to send more accurate responses.

The second important quality of the algorithm is the
number of messages generated to prefetch the neighbors:
a node receiving a prefetching request answers for all its
neighbors whose avatars are in the probability cone (see
Section 2). As a consequence, each candidate does not have
to answer to the request.

Figure 1. Propagation algorithm: the request is transmit-
ted to nodes ahead of the movement.

Algorithm description. Technically, if the algorithm
observes that the avatar of a node B (for Blue Banana) is
in the state T̃ (i.e, it reaches the speed threshold) and if the
prefetched neighbor set is not full, B starts searching for
new prefetched neighbors: it sends a message to its neigh-
bor which is closest to its movement vector as illustrated by
Figure 1. The message contains the number of prefetched
neighbors that B is willing to retrieve (called the TTL) and
the description of the probability cone (the apex of the cone,
the direction of the movement and the speed).

Algorithm 1: Upon reception of a prefetching request
Result: gathering of prefetching candidates and prefetching request

propagation.
emitterPosition = estimateCurrentEmitterPosition (msg);1
ttl = msg.getTTL ();2
if (emitterPosition, myPosition) ≥ minDist then3

trajectoryClosestNodes = chooseClosest (neighborSet, msg);4
size = trajectoryClosestNodes.getSize ()−1;5
if size > ttl then6

size = ttl;7
trajectoryClosestNodes = trajectoryClosestNodes [1 .. size ];8

end9
if size > 0 then10

ttl = ttl− size+1;11
response.addSet (trajectoryClosestNodes);12
send (response, msg.emitter ());13

end14
end15
if ttl > 0 then16

msg.setTTL (ttl −1);17
send (msg, findNextNodeInTrajectory (msg));18

end19

Upon the reception of a prefetching request on a node
R (for Receptor), R first estimates the current position of B
by using the estimated network latency, the initial position
and the speed of the avatar (line 1 of Algorithm 1). Then,
Algorithm 1 checks if B is not too close from R (line 3): if
B overpasses R during the message exchange, R is located
behind of B when the response is received by B, making
the prefetched information useless. Then, if R is located
far enough (lines 3 to 13), R analyzes its neighbor set and
selects nodes located inside the new estimated prefetching
cone of B (line 4) to send them to B (lines 11 to 13). If
the size of this set of candidates exceeds the TTL, only the
first TTLs are selected (line 5 to 9) and if R does not have
interesting neighbors, R does not send its response to B (line
10). While the TTL has not expired, R forwards the request
to its neighbor that is closest to the movement vector of B
(lines 16 to 19). At the end, if no message have been lost
and if messages arrive on time, B retrieves TTL prefetched
neighbors located inside its probability cone.

Network overhead. Blue Banana does not interfere with
the maintenance protocol of Solipsis: the prefetched neigh-
bors are not placed in the regular Solipsis neighbor set, but
in a separated one. Therefore, Solipsis does not use net-
work resources to maintain links with prefetched neighbors.



We prefer not to spend network resources to maintain a link
with a node which is useless in the present since it is not yet
in the playing area.

As a consequence, once inserted in the prefetched neigh-
bor set, the position of a node’s avatar is not updated, while
it can move outside the probability cone. Blue Banana au-
tomatically removes useless prefetched neighbors (i) when
they have been overtaken by the moving avatar, (ii) when
the avatar changes its direction or (iii) when it changes its
state. It is possible to consider another policy by periodi-
cally updating the state of the prefetched neighbors. How-
ever, the risk is to spend network resources to update possi-
bly useless nodes. The comparison of these two policies is
part of a future work.

In order to compensate the small network overhead, Blue
Banana nodes take advantage of the high predictability of
the avatar movement in desert zones. In Solipsis, a node
periodically propagates the coordinates of its avatar to all
the members of its neighbor set, so the neighbor-nodes can
update their view of the NVE. Blue Banana doubles the pe-
riod of such updates for nodes when the state machine is
in state T̃ . The neighbors of that node simply predict the
position of the avatar between two updates by using its ini-
tial position and its speed. This technique is a simple form
of dead reckoning2, but it could easily be enhanced with
more sophisticated mechanisms widely used in online gam-
ing [7, 23, 24].

4. Realistic movement trace generation

The evaluation of Blue Banana requires realistic traces of
avatar movements. However, all existing commercial NVE
projects are based on a client-server architecture which
usually implies poor scalability: constraints are generally
added to artificially limit the scale, hiding this defect [16].
For instance, the Second Life world [35] is partitioned into
separate regions called “islands”, each of them being lim-
ited in number of simultaneous users and the World of War-
craft game [36] is split into separated realms. Therefore,
because of these scaling limitations, each trace simultane-
ously involves at most a few hundreds of avatars. Moreover,
the number of available real traces is small because they are
difficult to obtain [17]. Therefore current real traces are
not sufficiently numerous and not sufficiently large-scaled
to measure the efficiency and scalability of Blue Banana.

To evaluate Blue Banana, we therefore need to accu-
rately model avatar movements in order to generate realistic
large-scale traces. This section presents our model of mo-
bility.

Because all current existing popular NVEs are central-
ized and thus limited in scale, we believe that our trace gen-

2Dead reckoning is the process of estimating one’s current position
based upon a previously determined position.

erator can also be reused to evaluate other NVEs.
As presented in section 2, most of the avatars are gath-

ered inside a few density hotspots. Most of the time,
hotspots are towns or interesting locations of the NVE. This
kind of distribution with hotspots also corresponds to real
density distribution of human populations such as the Euro-
pean blue banana [8] that covers one of the world highest
concentrations of population around the cities of London,
Brussels, Amsterdam, Cologne, Frankfurt and Milan with
approximately 20% of the European population.

Moreover, as presented in Section 2, movements of
avatars are chaotic in hotspots and straight between
hotspots. Regarding the player mobility in NVEs, studies
have shown that it is quite similar to human mobility in the
real world [17,26]. This mobility pattern is most of the time
modeled with Lévy flights [17, 26], however, we propose
our own model because Lévy flights do not take into ac-
count the specific density of hotspots. Indeed, Lévy flights
are particular sort of random walks in which the increments
are distributed according to a "heavy-tailed" probability dis-
tribution [9] with short and chaotic movements and some-
times long and straight ones. Therefore, Lévy flights nat-
urally differentiate the two observed behaviors of avatars:
periods of travel and periods of exploration with chaotic
movements. But Lévy flights do no help to model hotspots
because they do not ensure that avatars stay grouped around
hotspots and that density around hotspots remains the same
despite avatar mobility.

Instead, we choose to model the density and the move-
ments of avatars in NVEs with a model based on an automa-
ton to discriminate the periods of exploration from the pe-
riods of travel. We define hotspots, i.e, high density zones,
and by opposition, the desert. The trace generation is de-
composed in two phases. During the first one, all the avatars
are placed on their initial positions on the map. The gen-
erator ensures that most of the avatars are grouped in the
hotspots. During the second phase, step by step, the gener-
ator computes new maps from the previous ones by moving
avatars. The model of movements ensures that avatars re-
main principally grouped in hotspots during time.

To generate movements, at each step, each avatar is in
one of the following states: (H)alted, the avatar does not
move at this step; (E)xploring, the avatar is exploring the
map; (T )raveling, the avatar is moving to a new location on
the map. Each state has its own maximal speed value Smax.
Once Smax is reached, the acceleration drops. Otherwise, we
consider that an avatar has a constant application-defined
acceleration during the movement (states E and T ). The
acceleration value is a parameter of the model generator. As
an avatar moves from a position to another, at each step, its
speed increases. When an avatar reaches its final position,
it suddenly stops and its state machine enters the H state.

The trace generator is configurable and takes the follow-



ing parameters: 1) the number of avatars; 2) the size of
the map; 3) the number of hotspots and the radius of each
hotspot; 4) the proportion of avatars inside hotspots; 5) the
maximal speeds for states E and T ; 6) the acceleration; 7)
the probabilities associated to transitions between the dif-
ferent states.

Generation of the initial map. During the first phase,
the trace generator randomly chooses the positions of the
hotspots. Then, for each avatar, the generator decides if it
should be placed in a hotspot accordingly to the proportion
of avatars inside hotspots. If this is not the case, the avatar
is randomly placed on the map using a uniform probabil-
ity law (it can therefore be placed in a hotspot or in the
desert). Otherwise, the generator randomly chooses one of
the hotspots using a uniform law and computes the polar
coordinates of the avatar from the center of the hotspot: the
angle is chosen using a uniform law and the distance to the
hotspot center with a Zipf’s law [34]. The Zipf’s law en-
sures a very high density in the center of the hotspot, com-
parable to the ones observed in both NVEs and real life.
Initially, all avatars are in the state H.

Figure 2. State machine and transition probabilities.

Generation of movements. During the second phase,
the trace generator moves the avatars step by step. The fig-
ure 2 presents the automaton used for state transition with
the associated state transition probabilities. At each step,
the generator reevaluates the state of all the avatars thanks
to the state transition probabilities:

State H: If an avatar enters or stays in the state H (tran-
sitions TtoH, EtoH and HtoH), the avatar does not move
at this step.

State E: If the avatar takes one of the transitions HtoE,
TtoE or EtoE2, the avatar picks a new position on the map.
To ensure that the density remains globally the same during
the trace, if the avatar is in a hotspot its new position is cho-
sen inside the same hotspot with the Zipf’s law, otherwise,
its position is chosen randomly on the map. If the avatar is
in the state E and takes the transition EtoE1 it continues its
movement to its new position. We differentiate the two tran-
sitions EtoE1 and EtoE2 to ensure that an avatar regularly

changes its direction and therefore has a chaotic movement.
State T : If the avatar enters in state T (HtoT or EtoT ),

the avatar picks a new position on the map by using the
initial placement function to ensure that the density remains
roughly the same. It also begins its movement to its new po-
sition. If it takes the transition TtoT , it continues its move-
ment to its new position.

Evaluation of generated traces. Due to lack of space,
the evaluation of the trace generator is presented in [18]. It
compares generated traces to real traces collected by La and
Michiardi [17] from Second Life. These real traces have
been collected by crawling two Second Life islands called
“Dance” and “Isle Of View” which were chosen to be rep-
resentative of the Second Life players’ behavior. The eval-
uation uses metrics that do not depend neither on the size of
the map nor of the avatars’ number.

The results show that the traces generated from this
model are similar to the real ones.

5. Evaluation

This section presents a detailed evaluation of Blue Ba-
nana. The evaluation compares Solipsis with and without
Blue Banana to measure the performance of the anticipa-
tion mechanism. Both Solipsis and Blue Banana are imple-
mented on top of the PeerSim discrete event simulator [14].

5.1. Description of the simulations

The PeerSim simulator is a widespread platform for test-
ing distributed applications [1,10,13]. It has been designed
for scalability and is simple to use. It is composed of two
simulation engines, a simplified (cycle-based) one and an
event driven one. The simulation is realized with the event
driven engine which performs more accurate simulations.

At the beginning of the simulation, the initial map of the
trace (described in Section 4) is injected in the simulator.
The simulator, based on this map, initializes the Solipsis
overlay and then waits until every node respects the two
Solipsis rules (see Section 3.1). After the convergence, mo-
bility of avatars is simulated by injecting the rest of the
trace. Evaluating Blue Banana with the real traces is irrele-
vant because the benefits are not significant with small-scale
NVEs.

The parameters of the simulations are: 1) 1000 avatars,
2) A surface equivalent to 9 Second Life maps, 3) 3 high
density hotspots, 4) Hotspot density: 9549 avatars per
square kilometer (24720 avatars per sq. mile), which is,
for example, just below the density of New York City, 5)
The constant acceleration of avatars during movement is 5
m.s−2, 6) Nodes have an ADSL connection with a 10Mbit
download and 1Mbit upload bandwidth, 7) The network la-
tency between nodes is randomly set between 80 and 120



ms with an uniform distribution. Notice that with the con-
stant acceleration, the maximum speed of avatars between
hotspots can reach the speed of a helicopter (100 m.s−1).
This speed may seem exaggerated, but MMOG partici-
pants need to be provided with a fast mean of transporta-
tion3. Moreover, the constant acceleration is 5 m.s−2, so
the avatars do not instantly reach the maximal speed. In fact
this speed is only reached in the worst case: when an avatar
moves from a hotspot in a corner of the map to a hotspot
in the opposite corner. The actual speed of most avatars is
much lower: Figure 3.a shows that 99% of overall move-
ments have a length inferior to 40m, which means that the
speed of 99% of the avatars does not exceed 20 m.s−1.

5.2. Evaluation metrics

To highlight the qualities and the drawbacks of Blue Ba-
nana, each experiment depends on the mobility rate of the
NVE: the proportion of avatars that have a straight and high
speed movement, i.e, that are in the state (T )raveling of
the mobility state machine (see Section 4). Indeed, these
avatars are the ones that need to quickly download data
to maintain their continuously and rapidly changing play-
ing areas. The higher the NVE mobility rate is, the faster
the underlying overlay has to adapt, which means that high
mobility rates are likely to cause a lot of transient fail-
ures. The mobility model, tweaked to be close to Second
Life traces (see Section 4), has a mobility rate of approx-
imatively 55‰ (which means that the average number of
avatars simultaneously in the state T is around 55 per thou-
sand at each moment of the simulation). Therefore, we vary
the mobility rate between 5‰ and 110‰ during the eval-
uation. To achieve that, we vary the probabilities of the
transitions that lead to the T state of the trace generator.

The following metrics are used to evaluate mobility re-
silience of Blue Banana:

• Violation of Solipsis fundamental rules. The failure
of the global connectivity rule or the local awareness rule
leads to transient failures (see the description of Solipsis in
Section 3.1).
• Knowledge of nodes ahead of the movement. This

metric measures, for fast-moving avatars (in state T̃ of the
Blue Banana state machine), the average knowledge time
of elders: for how long time, in average, a node knows an-
other node ahead of its movement. The number of nodes
known ahead of the movement is also measured. These
measures are important because the NVE application con-
stantly needs to download new information about the play-
ing area of a moving avatar. These measures therefore give
an indication of the quantity of information an avatar can
retrieve about its future playing area before reaching it.

3For example, Second Life players are able to fly.

• Exchanged messages count. This metric measures the
impact of Blue Banana on the network. The measures only
count the number of messages because Blue Banana mes-
sages and Solipsis maintainance messages are small: they
only contain the coordinates of the prefetched/maintained
nodes (a Solipsis identifier, geographic coordinates of its
avatar and the IP address of the node).

The evaluation of the second metric only takes in ac-
count the subset of avatars in state T̃ of the Blue Banana
state machine. This specificity is due to the fact that Blue
Banana sends prefetching requests only when an avatar is
in this state. Yet, the proportion of that subset of avatars
is extremely small: at maximal mobility rate, there are si-
multaneously only about 110 avatars in the state T̃ for 1000
avatars. The avatars that are not moving do not often change
their playing area, thus knowing their elders for a long time.
If they were all considered for that metric, the mean values
would have been skewed, and the benefits of Blue Banana
would have been difficult to evaluate.

5.3. Result analysis

Figure 3 presents the evaluation for the three metrics for
Blue Banana (solid lines) compared with Solipsis (dashed
lines). The most interesting results for a realistic mobil-
ity rate of 55‰ shows that Blue Banana (i) decreases the
number of transient failures by 20%, (ii) increases the av-
erage knowledge time of forthcoming elders by 270% and
(iii) generates a network overhead of only 2%. This positive
results are analyzed in detail in the rest of this section.

Violation of Solipsis rules. The first metric evalua-
tion presented in Figure 3.a shows that the Blue Banana
prefetching technique helps the Solipsis overlay to adapt
itself on time, significantly reducing the number of viola-
tions of the Solipsis fundamental rules. With a mobility rate
lower than 80‰, Blue Banana decreases the number of tran-
sient failures. For the mobility rate observed in real traces
(55‰), the Blue Banana algorithm decreases the number
of transient failures by 20%. For low mobility rates, Blue
Banana helps avoiding approximatively half of the rule-
violations. As the mobility rate increases, the efficiency of
Blue Banana decreases. This is due to the fact that when
the mobility rate increases, the avatars of the prefetched
nodes are more likely to move fast and thus to become use-
less when the avatar reaches their supposed position. For
very dynamic NVEs (mobility rate greater than 80‰), Blue
Banana stops helping the overlay. Most of the prefetched
neighbors are also moving and when they are injected in
the regular neighbor set of Solipsis they are useless, forcing
Solipsis to find new interesting neighbors. However, this
kind of dynamicity is far above the mobility rates observed
in real Second Life traces (mobility rate equals 55‰). To



(a) (b) (c)

Figure 3. Dashed lines: Solipsis, Solid lines: Blue Banana. (a) Average number of overlay transient failures per second (lower is
better), (b) Average knowledge time of nodes ahead of movement (higher is better), (c) Average number of messages sent per node
per second (lower is better).

summarize, this first experiment shows that Blue Banana
decreases the number of transient failures and suggests that
the mobility of prefetched nodes should be taken into ac-
count when responding to a prefetching request.

Knowledge time of forthcoming elders. The second
metric evaluation presented in Figure 3.b shows that, for
fast moving avatars, the knowledge of nodes ahead of the
movement is far greater with Blue Banana than with the ba-
sic Solipsis overlay: a node knows every neighbor ahead
of its movement between 2 and 3 times longer than with
Solipsis (2.7 times longer for a real-trace-like mobility rate
of 55‰). Moreover, subsidiary measures show that with
Blue Banana, the node of an avatar in state T is in average
aware of 7.5 nodes located ahead of its movement. On the
other hand, a basic Solipsis node is in average only aware of
one node ahead of its movement. These two results permit
the evaluation of the average quantity of information that
a fast-moving avatar can download ahead of its movement.
By using Blue Banana with the Second-Life-like mobility
rate of 55‰, a node has time to download up to about 430
KBytes of information (with a 10down/1up ADSL connec-
tion) about its playing area, versus only 20 KBytes without
prefetching. This means that the NVE application can dis-
play substantially more information (about 20 times more)
about the playing area on time, thus clearly limiting applica-
tive transient failures.

Network overhead. The last important result of the ex-
perimental evaluation is the low network overhead induced
by Blue Banana. Figure 3.c shows that this overhead is
around five messages per node per second, which is almost
negligible compared to the number of messages generated
by the Solipsis overlay. Indeed, a basic Solipsis node sends,
depending on the mobility of its neighbors, between 130
and 230 maintenance messages per second, thus the net-
work overhead of Blue Banana is approximatively between
1 and 3%. Moreover, these are maintenance messages, with
a small, constant size (see the Exchanged messages count

metric description). This overhead is low thanks to the fact
that the prediction technique of Blue Banana is sufficiently
accurate. In most of the cases, the prefetching requests pro-
vide information about nodes that will be requested in the
near future: as these nodes are actually needed, the overlay
simply takes them in the prefetched set, without emitting
additional messages (see Section 3.2). The little overhead
comes then from the wrongly prefetched nodes that are not
reused by the overlay. In addition to that, the update interval
for rapidly moving avatars is doubled (see also Section 3.2),
which also lowers the overhead. This optimization explains
that beyond a mobility rate of 80‰, the basic Solipsis over-
lay generates more messages than Blue Banana: as the mo-
bility rate grows, the proportion of rapidly moving avatars
increases. Therefore, the number of economized messages
due to the relaxed updating proportionally grows.

6. Related work

Un-adaptable overlays. Considerable research effort
has been conducted in the last decade in the field of peer-
to-peer overlay networks. However, most of existing over-
lays do not take specific application needs into account at
all [20, 22, 27, 28]. Therefore, building a distributed NVE
on top of such an overlay is a hard task: the nodes sharing
a same playing area (or a part of a playing area) have no
reason to be close in the overlay, and yet they need to com-
municate a lot because they share a consequent common
knowledge. The main reason for this is historical: these
overlays have been designed for one specific target appli-
cation: large-scale read-only file-sharing. Therefore, they
are supposed to build a graph that connects all the nodes to-
gether and permits efficient search operations. Blue Banana
anticipation algorithm is not compatible with these over-
lays.

Overlays reacting to application needs. Recent works
have focused on dynamically adapting the overlay to better



satisfy the application needs. For instance, semantic over-
lays [32] build links between semantically close peers. This
allows semantically close peers to be close in the overlay,
which is a good point because they are likely to interact,
for instance to exchange data. Few recent overlays are able
to gracefully adapt themselves to the applications [21, 33]:
they react to the application evolution, generally by detect-
ing communication between nodes. Solipsis [15] is part of
this class of overlays. However, if the application is too dy-
namic, the reaction of the overlay may come too late which
may lead to inconsistencies or at least inefficiencies at the
application level. These works differ from ours because
the overlay adapts itself by reacting to the detected applica-
tion needs, while we propose to predict and anticipate those
needs by adapting the overlay in advance. Nevertheless, our
work can easily be implemented on top of any of these over-
lays.

Overlays for distributed MMOGs. Last years, some
research efforts have focused on building overlays tailored
for NVEs, but without anticipating application needs. The
constraints imposed by the NVE applications are extremely
hard to sustain. In particular, the overlay has to be very re-
sponsive in order to ensure mobility resilience. Varvello
et al. implemented an NVE over a distributed hash ta-
ble [31]. The authors show that the responsiveness of the
DHT is acceptable with light virtual mobility but not if vir-
tual mobility increases. In this case, implementing a re-
verse binary trie on top of a DHT could help to lower the
latency [30]. Colyseus [6], a decentralized architecture to
support MMOGs with tight latency constraints (First Per-
son Shooters) is also based on a DHT for virtual object
discovery. At storage level, Colyseus prefetches objects.
However, this prefetching mechanism is built on top of the
DHT’s overlay. The overlay itself does not adapt to bring
closer the elders from which the object prefetching is done.
Blue Banana’s main goal is precisely to help an adaptive
overlay to support such prefetching mechanisms. Donny-
brook, the sequel of Colyseus, takes advantage of elabo-
rated approximations and dead reckoning techniques to de-
crease the network load [7].

Another approach uses flexible peer-to-peer overlays. In
such systems, the logical neighborhood of a node in the
overlay is determined by the virtual neighborhood of its
avatar in the NVE: for each node, the overlay tries to keep
the elders of the playing area in the node’s neighbor set.
As that avatar moves in the virtual environment, the logical
neighborhood of its node evolves: the overlay adapts itself
in reaction to the application. Thanks to that, the logical
neighborhood of every node in the overlay will eventually
be adapted to the virtual neighborhood of its avatar: each
node will know the elders of its playing area. Several over-
lays of that kind have been designed in the past few years:
this is the case for Solipsis [15] on which we have exper-

imented Blue Banana, and of Voronoi tessellations-based
overlays like VoroNet/RayNet or VON [3, 4, 12].

However, to our knowledge, none of these overlays an-
ticipate the application needs. There again, our algorithm
can be implemented on top of any of these overlays to allow
them to anticipate application needs and adapt in advance.

7. Conclusions and perspectives

This paper presents a study of avatar mobility in exist-
ing NVEs and proposes a model that provides the ability to
generate arbitrary-scale traces. We then show that even if
the overlay tries to remain adapted to the application by re-
acting to avatar movement, the NVE suffers many transient
failures due to the lateness of the overlay adaptation. Thus,
we propose Blue Banana: a mechanism that predicts avatar
movement and anticipates it by adapting the overlay in ad-
vance. We show that our anticipation mechanism cuts down
by more than 20% the number of transient failures affect-
ing the state-of-the-art Solipsis overlay without degrading
its network performance. Moreover, we show that our an-
ticipation mechanism permits to load 20 times more data
about playing areas in case of mobility. We believe that our
study can be used in the design of future MMOG overlays.

As a perspective, we plan to study more accurate antic-
ipation mechanisms, and particularly to explore the possi-
bility to anticipate the relative movement between avatars,
independently from their position. This study should lower
the number of transient failures, even in case of high mobil-
ity rates.

References

[1] M. Agosti, F. Zanichelli, M. Amoretti, and G. Conte.
P2pam: a framework for peer-to-peer architectural model-
ing based on peersim. In S. Molnár, J. Heath, O. Dalle, and
G. A. Wainer, editors, SimuTools, page 22. ICST, 2008.

[2] R. T. Alves and L. Roque. Because players pay: The busi-
ness model influence on mmog design. In B. Akira, editor,
Situated Play: Proc. of the 2007 Digital Games Research
Association Conference, pages 658–663, Tokyo, September
2007. The University of Tokyo.

[3] O. Beaumont, A.-M. Kermarrec, L. Marchal, and E. Riviere.
Voronet: A scalable object network based on voronoi tessel-
lations. In 21th International Parallel and Distributed Proc.
Symposium (IPDPS 2007), Long Beach, USA, pages 26–30.
IEEE, March 2007.

[4] O. Beaumont, A.-M. Kermarrec, and E. Riviere. Peer to
peer multidimensional overlays: Approximating complex
structures. In E. Tovar, P. Tsigas, and H. Fouchal, editors,
OPODIS, volume 4878 of LNCS, pages 315–328. Springer,
2007.

[5] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,
and M. Claypool. The effects of loss and latency on user



performance in unreal tournament 2003. In W. chang Feng,
editor, NETGAMES, pages 144–151. ACM, 2004.

[6] A. Bharambe, J. Pang, and S. Seshan. Colyseus: a dis-
tributed architecture for online multiplayer games. In
NSDI’06: Proceedings of the 3rd conference on Networked
Systems Design & Implementation, pages 12–12, Berkeley,
CA, USA, 2006. USENIX Association.

[7] A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang. Donnybrook: enabling
large-scale, high-speed, peer-to-peer games. In V. Bahl,
D. Wetherall, S. Savage, and I. Stoica, editors, SIGCOMM,
pages 389–400. ACM, 2008.

[8] R. Brunet. Lignes de force de l’espace Européen. Mappe-
monde, 66:14–19, 2002.

[9] A. Chechkin, V. Gonchar, J. Klafter, and R. Metzler. Fun-
damentals of lévy flight processes. Advances in Chemical
Physics, 133B:439–496, 2006.

[10] C. Comito, S. Patarin, and D. Talia. A semantic overlay net-
work for p2p schema-based data integration. In P. Bellav-
ista, C.-M. Chen, A. Corradi, and M. Daneshmand, editors,
ISCC, pages 88–94. IEEE Computer Society, 2006.

[11] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume,
and F. L. Fessant. Solipsis: A decentralized architecture for
virtual environments. In The Second International Work-
shop on Massively Multiuser Virtual Environments at IEEE
Virtual Reality (MMVE’ 09 ), Lafayette, USA, March 2008.

[12] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: A scalable peer-
to-peer network for virtual environments. IEEE Network,
20(4):22–31, Jully 2006.

[13] C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis, editors.
Artificial Immune Systems: 4th International Conference,
ICARIS 2005, Banff, Alberta, Canada, August 14-17, 2005,,
volume 3627 of LNCS. Springer, 2005.

[14] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris. The
Peersim simulator. http://peersim.sourceforge.net/.

[15] J. Keller and G. Simon. Solipsis: A massively multi-
participant virtual world. In H. R. Arabnia and Y. Mun,
editors, PDPTA, pages 262–268. CSREA Press, June 2003.

[16] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen,
P. Dubey, C. Bienia, and Y. Kim. Second life and the new
generation of virtual worlds. Computer, 41(9):46–53, 2008.

[17] C.-A. La and P. Michiardi. Characterizing user mobility in
Second Life. In SIGCOMM 2008, ACM Workshop on Online
Social Networks, August 18-22, 2008, Seattle, USA, August
2008.

[18] S. Legtchenko, S. Monnet, and G. Thomas. Blue Banana:
resilience to avatar mobility in distributed MMOGs. Tech-
nical Report 7149, INRIA, December 2009.

[19] H. Liang, I. Tay, M. F. Neo, W. T. Ooi, and
M. Motani. Avatar mobility in networked virtual environ-
ments: Measurements, analysis, and implications. CoRR,
abs/0807.2328, 2008.

[20] J. Liang, R. Kumar, and K. Ross. The kazaa overlay: A mea-
surement study. In Proc. of the 19th IEEE Annual Computer
Communications Workshop, 2004.

[21] S. Monnet, R. Morales, G. Antoniu, and I. Gupta. Move:
Design of an application-malleable overlay. In Symposium
on Reliable Distributed Systems 2006 (SRDS 2006), pages
355–364, Leeds, UK, October 2006.

[22] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies, chapter Gnutella, pages 94–122. O’Reilly,
May 2001.

[23] J. Pang, F. Uyeda, and J. R. Lorch. Scaling peer-to-peer
games in low-bandwidth environments. In IPTPS ’07: Proc.
of the 6th International Workshop on Peer-to-Peer Systems,
Feb. 2007.

[24] L. Pantel and L. C. Wolf. On the suitability of dead reckon-
ing schemes for games. In L. C. Wolf, editor, NETGAMES,
pages 79–84. ACM, 2002.

[25] D. Pittman and C. GauthierDickey. A measurement study of
virtual populations in massively multiplayer online games.
In NetGames ’07: Proc. of the 6th ACM SIGCOMM work-
shop on Network and system support for games, pages 25–
30, New York, NY, USA, 2007. ACM.

[26] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong. On the
levy-walk nature of human mobility. In INFOCOM, pages
924–932. IEEE, 2008.

[27] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms
(Middleware ’01), volume 2218 of LNCS, pages 329–250,
Heidelberg, Germany, November 2001. Springer.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service
for Internet applications. In Proceedings of the Sympo-
sium on Communications Architectures and Protocols (SIG-
COMM ’01), pages 149–160, San Diego, USA, August
2001.

[29] D. Thalmann, N. Magnenat-Thalmann, and I. S. Pandzic.
Avatars in Networked Virtual Environments. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[30] M. Varvello, C. Diot, and E. W. Biersack. A walkable
kademlia network for virtual worlds. In Infocom 2009, 28th
IEEE Conference on Computer Communications, April 19-
25, 2009, Rio de Janeiro, Brazil, 04 2009.

[31] M. Varvello, C. Diot, and E. W. Biersack. P2P Second Life:
experimental validation using Kad. In Infocom 2009, 28th
IEEE Conference on Computer Communications, pages 19–
25, Rio de Janeiro, Brazil, April 2009.

[32] S. Voulgaris, A. M. Kermarrec, L. Massoulie, and M. van
Steen. Exploiting semantic proximity in peer-to-peer con-
tent searching. In 10th International Workshop on Future
Trends in Distributed Computing Systems (FTDCS 2004),
Suzhou, China, May 2004.

[33] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van
Steen. Sub-2-sub: Self-organizing content-based publish
and subscribe for dynamic and large scale collborative net-
works. In Proceedings of the 5th International Workshop on
Peer-to-Peer Systems (IPTPS), Santa Barbara, USA, Febru-
ary 2006.

[34] G. K. Zipf. Human Behaviour and the Principle of Least-
Effort. Addison-Wesley, Cambridge MA, 1949.

[35] Second Life. http://secondlife.com/.
[36] World of Warcraft. http://www.worldofwarcraft.com/.


