
Refining Interprocedural Change-Impact Analysis using
Equivalence Relations

Alex Gyori
University of Illinois, USA

gyori@illinois.edu

Shuvendu K. Lahiri
Microsoft Research, USA

shuvendu@microsoft.com

Nimrod Partush
Technion, Israel

nimi@cs.technion.ac.il

ABSTRACT

Change-impact analysis (CIA) is the task of determining the set
of program elements impacted by a program change. Precise CIA
has great potential to avoid expensive testing and code reviews
for (parts of) changes that are refactorings (semantics-preserving).
However most statement-level CIA techniques su�er from impreci-
sion as they do not incorporate the semantics of the change.

We formalize change impact in terms of the trace semantics
of two program versions. We show how to leverage equivalence
relations to make data�ow-based CIA aware of the change seman-
tics, thereby improving precision in the presence of semantics-
preserving changes. We propose an anytime algorithm that applies
costly equivalence-relation inference incrementally to re�ne the
set of impacted statements. We implemented a prototype and eval-
uated it on 322 real-world changes from open-source projects and
benchmark programs used by prior research. The evaluation re-
sults show an average 35% improvement in the number of impacted
statements compared to prior data�ow-based techniques.

CCS CONCEPTS

•Software and its engineering →Automated static analysis;

Software veri�cation;

KEYWORDS

Impact Analysis, Software Maintenance, Equivalence

ACM Reference format:

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. 2017. Re�ning In-
terprocedural Change-Impact Analysis using Equivalence Relations. In
Proceedings of 26th International Symposium on Software Testing and Analy-

sis , Santa Barbara, CA, USA, July 2017 (ISSTA’17), 11 pages.
DOI: 10.1145/3092703.3092719

1 INTRODUCTION

Software constantly evolves to add and improve features, eliminate
bugs, improve design, etc. As software evolves faster than ever, it
requires rigorous techniques to ensure that changes do not modify
existing behavior in unintended ways. Some of the emerging ap-
proaches to ensure the quality of a change are code reviews [35],
regression testing [19, 44], test-suite augmentation [34, 39, 40], code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3092719

contracts [5, 25], regression veri�cation [20, 38] and veri�cation
modulo versions [33]; all bene�t from change-impact analysis (CIA).

Change-Impact Analysis determines the set of program elements
that may be impacted by a syntactic change. Traditional approaches
are coarse-grained and operate at the level of types and classes [1, 2],
or �les [19] to retain soundness. Fine-grained techniques that aim
to work at the level of statements are typically based on performing
data�ow analysis [43] on one program to propagate the change
along data and control �ow edges [3, 10, 32]. Such techniques fail
to take the semantics of the change into account; therefore, they
cannot distinguish between changes that a user expects to have
only local impact on existing code (e.g., a code refactoring) from
ones that have substantial impact on existing code (e.g., changing
the functionality or �xing a bug). The ability to distinguish changes
whose impact is local (limited to the changed procedure or a few
callers or callees within one or two levels) can help with code review
and regression-testing e�orts. Changes with substantial impact can
be prioritized for more rigorous code reviews and more testing.

In this paper, we aim to improve the precision of CIA by lever-
aging equivalence relations between the variables of two programs
across a change. At a high level, these equivalences help prune the
�ow of a change along the data or control �ow edges of the changed
program. To integrate such equivalences, we �rst formalize the
notion of change impact precisely in terms of the trace semantics of
two programs. Next, we show how to make CIA change-semantics
aware by incorporating various equivalence relations into an in-
terprocedural data�ow analysis. Since computing equivalence re-
lations is expensive, we propose an anytime algorithm [46, 48] to
incrementally compute equivalence relations.

1.1 Overview

Figure 1 shows a running example in C. The example is inspired by
real commits to Coreutils, in �les paste.c [13] and sort.c [14].
The program has three changes. Two are semantics-preserving:
(i) extracting the literal ’\n’ into the variable line_delim in the
procedure print_product_info (lines 1, 4, 5) and (ii) replacing
the conditional operator with a double negation in locale_ok
(lines 22, 23)1. The third change is not semantics-preserving: it
sets the line_delim variable to ’\0’ (a di�erent value than in the
old version) in the procedure print_product_info (lines 12, 13,
14), which impacts statements in print_minor_vers. We claim
the only (syntactically unchanged) line that is impacted by the

changes is the highlighted line 41 (assume for this example that
all executions start from the procedure print_product_info); a
statement is impacted, intuitively, if the sequence of values it reads
can di�er when executing the two versions of the program in the
same environment. For brevity, we omit the de�nitions of the
1Negation in C coerces the values to 0 or 1.

318

ISSTA’17, July 2017, Santa Barbara, CA, USA Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

1 +static unsigned char line_delim='\n';

2 int print_product_info(int name, int version) {

3 int locale, prin=0;

4 - print_header('\n');

5 + print_header(line_delim); // spurious impact

6 locale=locale_ok(); // spurious impact

7 if (name) {

8 prin=print_name(locale);

9 }

10 if (version && prin) {

11 prin=print_major_vers(locale));

12 - prin=print_minor_vers(locale,'\n');

13 + line_delim='\0';

14 + prin=print_minor_vers(locale,line_delim));

15 }

16 return prin;

17 }

18 void print_header(char delim) {

19 printf("%s%c",HEADER,delim);

20 }

21 int locale_ok() {

22 - return setlocale (LC_ALL,"") ? 1 : 0 ;

23 + return !! setlocale (LC_ALL,"");

24 }

25 int print_name(int locale) {

26 if (locale) {

27 printf("%s",locale_format("Coreutils"));

28 return 1;

29 }

30 return 0;

31 }

32 int print_major_vers(int locale) {

33 if (locale) {

34 printf("%s",locale_format("8"));

35 return 1;

36 }

37 return 0;

38 }

39 int print_minor_vers(int locale, char delim) {

40 if (locale) {

41 printf("%s%c",locale_format(".12"),delim);

42 return 1;

43 }

44 return 0;

45 }

Figure 1: Example program change. The lines with − and +

represent deleted and added lines, respectively.

setlocale and locale_format procedures and the LC_ALL and
HEADER constants as they are not relevant. We will now analyze the
change through the lens of a standard data�ow analysis [43] and
traditional equivalence checking [20, 28] and sketch our technique.
Data�ow: A data�ow analysis technique starts at the sources
of change and propagates them through data and control edges
(typically in the changed program). Data�ow techniques are not
aware of the change semantics, and thus cannot exploit semantics-
preserving changes. Initially, the call to print_header on line 5

has a change to its argument that marks all the statements in the
procedure as impacted because they all depend on the changed ar-
gument. Next, the call to locale_ok on line 6 impacts the locale
variable because of the change to the body of locale_ok and the
data dependency of the return value on the change. This in turn will
mark the input of print_name as impacted at line 8, which in turn
�ows to its output because the return value is control dependent
on the input variable marked as impacted (a context-insensitive
analysis will impact the return at all call sites to print_name).
This impact through the return value will propagate to the call to
print_major_vers and print_minor_vers because of the con-
trol dependency on prin and will impact all the statements in these
procedures as well as all the returns at both call sites. Finally, the
call to print_minor_vers will impact all of the callee statements.
A context-sensitive analysis does not help either because the body
of locale_ok changes, which implies that the return value may
change across the two versions. This is sound but imprecise since the
analysis is unable to determine that the statements in print_name
and print_major_vers are not impacted.
Equivalence: A traditional interprocedural equivalence check-
ing [20, 28] (checking if two procedures have identical input-output
behavior) will �nd that locale_ok, print_name, print_header,
print_major_vers, and print_minor_vers have identical sum-
maries. This is unsound for the question of impact analysis, as the
statement of print_minor_vers is impacted due to the change
of print delimiter. This illustrates the di�erence between CIA and
(traditional) equivalence checking: two procedures can be equiva-
lent, but still impacted, because they may get called under di�erent
contexts and exhibit di�erent behaviors.
Our approach: Our change-semantics aware CIA works as follows:
it infers equivalence relations over variables and determines that the
arguments at all call sites to print_name and print_major_vers
are equal in both versions and stops propagating impacts through
their arguments. Further, locale_ok has an equivalent summary
in the two versions (by using equivalence checking)—this ensures
that two call sites with equal arguments return equal results. From
these two facts, the technique infers (by simple data�ow analy-
sis) that arguments to print_name and print_major_vers are
not impacted and therefore the statements in both print_name
and print_major_vers are not impacted. Thus, our approach
precisely identi�es the only unchanged impacted line as line 41.

1.2 Contributions

In this work, we make the following contributions:

(1) We precisely formalize the set of statements impacted by a
change, in terms of the trace semantics of two versions of
a program (§ 3.1).

(2) We make a data�ow-based CIA change-semantics aware
by incorporating various equivalence relations (§ 4).

(3) We describe an anytime algorithm that allows incremen-
tally computing more equivalences to re�ne the analysis
at the expense of time (§ 4.1).

(4) We have implemented a prototype using SymDiff [28, 29],
and evaluated our technique on 322 real-world changes
collected from GitHub open-source projects and several
standard benchmark programs used in prior research [24].

319

Refining Interprocedural Change-Impact Analysis using Equivalence Relations ISSTA’17, July 2017, Santa Barbara, CA, USA

2 BACKGROUND

For the ease of presentation, we will formalize the problem and our
technique over a simple language. We can compile most features of
general-purpose imperative programming languages to our simple
language [4, 12, 18, 41]; we discuss this in § 2.2.

2.1 A Simple Language

A program consists of procedures represented as control-�ow graphs,
statements, and expressions.
Expressions: e ∈ Exprs in the language are built up from constants,
variables and operator applications:

e ∈ Exprs ::= c | x | y | . . . | op(e1, . . . ,ek)

Here c represents constant values of di�erent types such as {true, false}
for Booleans, {. . . ,−1,0,1, . . .} for integers, and x denotes vari-
ables in scope. An operator op is a function or predicate symbol
that can be uninterpreted or interpreted by some theories (e.g.,
{+,−,∗,≤,≥, . . .} by the theory of arithmetic). We represent a vec-
tor of variables and expressions using x and e , respectively.
Statements: st ∈ Stmts are comprised of assign, assume, skip and
procedure call statements.

st ∈ Stmts ::= x := e | assume e | skip |
call x1,x2, . . . ,xk := f (e1,e2, . . . ,em)

The argument to assume is a Boolean-valued expression, and a skip
is a no-op. A call statement can have multiple return values and
they are assigned to variables xi at the call site.
Procedures: A procedure f ∈ Procs is represented as a control-�ow
graph consisting of (N

f
,E

f
, In

f
,Out

f
,Vars

f
,ne

f
,nx

f
), where:

• N
f

is a set of control-�ow locations in f,
• E

f
⊆ N

f
×N

f
is a set of edges over N

f
denoting control-�ow,

• In
f

(respectively, Out
f
) is the vector of input (respectively,

output) formals of f. The output formals model return
values and out parameters.

• Vars
f

is the set of variables in the scope of f and includes
In
f
, Out

f
, and local variables of f,

• n
e
f
∈ N

f
(respectively, nx

f
∈ N

f
) is the unique entry (respec-

tively, exit) node of f.
Let N =

⋃
f∈Procs Nf

and Vars =
⋃

f∈Procs Varsf . Nodes and vari-
ables in a procedure f are often denoted by n

f
and x

f
respectively.

For any node n
f
∈ N

f
, we de�ne the readset RVars(n

f
) and write-

set WVars(n
f
) as the set of variables that are read and written to

respectively in the statement at n
f
.

A program Prog ∈ Programs is a tuple (Procs,main,StmtAt) where
(i) Procs is a set of procedures in the program, (ii) main ∈ Procs is
the entry procedure from which the program execution starts, and
(iii) StmtAt : N → Stmts maps a node n ∈ N in a procedure f to a
statement. For any f, we assume that both StmtAt(ne

f
) = skip and

StmtAt(nx
f
) = skip.

2.2 Expressiveness

We can compile most constructs in general-purpose imperative
programming languages to our simple language. This follows the
same principle as translators from languages such as C and Java to
the Boogie language [4, 12, 18, 41].

Control �ow: Loops can be automatically transformed into tail-
recursive procedures [20, 28, 29]. We use n1 : st; goto n2,n3; to
express that StmtAt(n1) = st and {(n1,n2) (n1,n3)} ⊆ E

f
. A condi-

tional statement if (e) st1 else st2 is modeled as:

n1 : x := e; goto n2,n3;
n2 : assume x; st1; goto n4; n3 : assume ¬x; st2; goto n4;

where a fresh Boolean variable x captures the value of the condition
e2. We assume that each node n ∈ N

f
has at most two successor

nodes in E
f

corresponding to conditional statements branches. The
only use of an assume statement is to model a conditional statement.
We refer to n1 as a branching node with two successors in E with
complementary expressions in assume statements.
Globals and heap: Richer data types such as arrays and maps can
be modeled, e.g., array read x[e] is modeled using sel(x,e) and a
write x[e1] := e2 is modeled using x := update(x,e1,e2) [6]. Arrays
are in turn used to model the heap in imperative programs and are
standard in most software veri�cation tools [12, 18, 41]. Additional
internal non-determinism (e.g. read from �le, network) is lifted
as reads from immutable input arrays of main, making programs
deterministic in our language [28]. We desugar the program’s
global variables (including the heap) as additional input and output
formal arguments to a procedure. We transform each procedure
into its Static Single Assignment (SSA) form [17], where a variable
is assigned at exactly one program node.

2.3 Semantics

LetV denote the set of values that variables and expressions can
evaluate to. Let θ ∈ Θ be a store mapping variables to values in
V . For x ∈ Vars, we de�ne x ∈ θ if x is a variable in the domain
of θ . For x ∈ θ , θ (x) denotes the value of variable x. The store
[x→ ν] represents a singleton store that maps x to ν . The store
θ |Vars1 restricts the domain of the store to variables in Vars1. For
stores θ1 and θ2, the store θ3 � θ1 ⊕ θ2 is de�ned as follows for any
variable x ∈ θ1 or x ∈ θ2:

θ3 (x) =



θ2 (x), if x ∈ θ2
θ1 (x), otherwise

The value of an expression e ∈ Exprs (θ (e)) is de�ned inductively
on the structure of e (we omit it for brevity as it is fairly standard).
Calls: Let cs ∈ (N × Vars∗ × Θ)∗ be a call stack that is a sequence
of tuples 〈(n0,r0,θ0), (n1,r1,θ1), . . .〉, where ni is the i-th call site
on the call stack (n0 is the most recent), ri and θi , respectively, are
the vector of return actuals and the valuation of the local variables
of the caller, at the corresponding call site. Let CS denote the set
of all such call stacks, ϵ denotes an empty stack, and (n,r,θ) :: cs
denotes the concatenation operator.
TransitionRelation:A state σ ∈ Σ is a tuple (n,θ ,cs) ∈ N×Θ×CS
that denotes a point in program execution where n is the current
node being executed in a procedure f, θ is the valuation of variables
in Vars

f
and cs is the current call stack.

A state transition denoted as (n
f
,θ1,cs1) { (n2,θ2,cs2) is a rela-

tion over Σ × Σ that holds only if:

2The introduction of x simpli�es determining if control �ow is impacted by only
inspecting the conditional node

320

ISSTA’17, July 2017, Santa Barbara, CA, USA Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

(1) StmtAt(n
f
) � x := e , n2 ∈ N

f
, θ2 = θ1 ⊕ [x→ θ1 (e)],

(n
f
,n2) ∈ Ef , and cs1 = cs2, or

(2) StmtAt(n
f
) � assume e , n2 ∈ N

f
, θ1 (e) = true, (n

f
,n2) ∈

E
f
, θ1 = θ2 and cs1 = cs2, or

(3) StmtAt(n
f
) � skip, n

f
, n

x
f

, n2 ∈ Nf
, (n

f
,n2) ∈ Ef , θ1 = θ2

and cs1 = cs2, or
(4) StmtAt(n

f
) � call r := g (e). Let n be the unique successor

of n
f

in f, and x be the vector of input formals for g in
n2 = n

e
g
, cs2 = (n,r,θ1) :: cs1 and θ2 = [x→ θ1 (e)], or

(5) StmtAt(n
f
) � skip, n

f
= n

x
f

, cs1 � (ng ,r,θ3) :: cs3. Let
y be the vector of output formals for f in n2 = ng , θ2 =
(θ3 ⊕ [r → θ1 (y)]) |Varsg , cs2 = cs3.

A transitive edge σ0 {∗ σn exists if σn ≡ σ0 or there exists a
sequence of transitions σ0 { σ1, . . . σn−1 { σn , where σi { σi+1,
for all i ∈ [0, . . . ,n). For a procedure f, we denote the input-output
transition relation Ω

f
� {(θ1,θ2) | (ne

f
,θ1,ϵ) {∗ (nx

f
,θ2,ϵ)}.

Execution Traces: An execution trace τ is a (possibly in�nite) se-
quence of states 〈σ0,σ1, . . .〉, where σi { σi+1, for any adjacent
pair of states in the sequence. For a trace τ and a node n ∈ N, τ |n
denotes the (maximal) subsequence of τ containing states of the
form (n,_,_). For such a trace τ of length at least i + 1, τ[i] denotes
the state at position i (namely σi). For any procedure f, let Γ

f
be

the set of maximal traces of f. That is, Γ
f

is the set of all traces τ
such that (i) τ[0] � (ne

f
,_,ϵ), and (ii) either (a) the �nal state σn

has no successors, or (b) the trace is non-terminating. Traces with
no successors can either terminate normally in a state (nx

f
,_,ϵ), or

could be blocked due to no successors in E or due to an unsatis-
�ed assume statement. For a store θ ∈ Θ, we denote τ

f
(θ) as the

maximal trace (due to determinism) of f that starts in a store θ .

3 PROBLEM STATEMENT

In this section, we formalize the problem of semantic change-impact

analysis and provide a simple solution based on data�ow-based
static analysis.

3.1 Representing Changes

We denote Prog
1,Prog2 ∈ Programs as two versions of a program.

Similarlyσ i ,θ i ,τ i ,Procsi ,main
i ,Ni ,StmtAt

i denote entities for Progi ,
without making Prog

i explicit.
To ease presentation we assume the two programs in a normal-

ized form, where (i) each procedure in Procs
1 has a corresponding

procedure in Procs
2 and vice versa, and (ii) for each f ∈ Procs

i ,
the vector of variables in Vars

f
, and the set of nodes N

f
(but not

necessarily E
f
) are identical with the ones in the corresponding

procedure. We preprocess the programs to obtain their normalized
form, by introducing additional procedures, variables (uninitialized)
and nodes (for any missing node n, we add an unreachable node in
N
f

with a skip statement and empty successor list).
Di�erencing: Given the two versions, a di�erencing algorithm
produces a mapping between nodes in the two programs. We
assume we are given a sound di� algorithm to label the sources of
change. A di� algorithm is sound if it produces a partial function
π : N1 7→ N

2 such that:

(1) π is a partial bijection3 and StmtAt(n
f
) = StmtAt(π (n

f
)).

(2) π will map entry nodes n
e
f

(and exit nodes n
x
f

) in one
procedure to entry nodes in the corresponding procedure
(and exit nodes respectively).

(3) For any two tracesτ 1 � τ 1
main

(θ) in Prog
1 andτ 2 � τ 2

main
(θ)

in Prog
2, τ 1 only executes statements in Dom(π) i� τ 2 only

executes statements in Im(π)
(4) For any two tracesτ 1 � τ 1

main
(θ) in Prog

1 andτ 2 � τ 2
main

(θ)

in Prog
2, where τ 1 only executes statements in Dom(π) or

τ 2 only executes statements in Im(π), then τ 1 = τ 2.
The mapped nodes mapped � Dom(π) ∪ Im(π) underapproxi-

mate the set of nodes that are syntactically unchanged. Intuitively,
if a program executes only statements in mapped then the pro-
gram behaves the same in both versions; statements that are not in
mapped are the sources of change.

We describe for illustrative purposes a simple di�erencing algo-
rithm which is sound. The algorithm proceeds to produce a map-
ping π as follows: Let Procs∆ ⊆ Procs be the set of procedures that
have some syntactic change. Any node not in f ∈ Procs∆ is trivially
mapped as the control-�ow graphs are identical in the two versions.
Any node in f ∈ Procs

∆ is conservatively treated as not mapped.
Our formulation is parameterized by a di� algorithm which can
either be based on text [47] or more sophisticated notions such as
abstract syntax trees [16] or program-dependency-graphs [27] as
long as they satisfy the soundness criteria.

3.2 Semantic Change Impact

We can now state the meaning of a node being impacted by a pro-
gram change, in terms of the trace semantics of the two programs
and the set mapped.

For a sequence of states σ and a variable x ∈ Vars, σcx ∈ (V ∪
{⊥})∗ denotes the sequence of values ν with same length as σ , and

νi =



θ (x), σi � (_,θ ,_) and x ∈ θ

⊥ otherwise

De�nition 3.1 (Impacted nodes). Given Prog
1,Prog2 and mapped,

a node n ∈ N1∪N2 is impacted if either Impacted(n,Prog1,Prog2,π)
or Impacted(π (n),Prog2,Prog1,π−1) holds, where π−1 is the inverse.
N
i is the corresponding N for Progi .
We de�ne Impacted(k,Proga ,Progb ,ϖ):

(1) k < Dom(ϖ), or
(2) there exists a store θ , pair of traces τa � τa

main
(θ) for Proga

and τb � τb
main

(θ) for Progb , and a variable x ∈ RVars(n)

such that (τa |k)cx , (τb |ϖ (k))cx.

We conservatively treat any unmapped node as impacted. A
mapped node n is not impacted if the sequence of values of vari-
ables in RVars(n) is identical for any two execution traces τa (in
Prog

a) and τb (in Prog
b) starting from a common input store θ

to main. For our low-level language, the RVars(n) of a statement
includes the state of the heap and address being written to. For ex-
ample, the C# statement x.length = y is translated to n : Length :=
update(Length,x,y), (Length is an array representing the state of
length �eld/attribute in all objects) with RVars(n) = {Length,x,y}.
3A partial bijection is a partial function that is injective when de�ned and (trivially)
surjective when restricted to its image [21].

321

Refining Interprocedural Change-Impact Analysis using Equivalence Relations ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Predicates used for data�ow analysis.

Predicate name De�nition

branchingNode(n) if n is a branching node
ControlDependent(n2, n1) if n2 is control-dependent on n1 [17]
Callsite(n, f, g) if StmtAt(n) is a call to f within

a caller g.
InFormal(x, i, f) if x is the i-th input formal of f
OutFormal(x, i, f) if x is the i-th output formal of f
InActual(e, i, f, n) if the expression e is the i-th

actual argument to a call to f

at a callsite n

OutActual(r, i, f, n) if the variable r receives the i-th
output formal to a call to f

at a callsite n

3.3 Data�ow-Based Change-Impact Analysis

In this section, we describe Data�ow-based Change-Impact Analysis

(DCIA), a change semantics unaware static analysis that provides
a conservative estimate of the set of impacted nodes. The static
analysis is an interprocedural data�ow analysis [43] that starts
with a program Prog

i (i ∈ 1,2) and a conservative estimate of the
syntactically-changed nodes, nodes not in mapped, and returns an
upper bound on the set of (a) impacted nodes, (b) impacted variables,
and (c) output variables whose summary may have changed.
Predicates: Table 1 de�nes some straightforward predicates used
in the inference rules. The OutActual(r,i, f,n) predicate holds
when the ith return value is assigned to variable r , at the call to f

from the node n (note that we allow multiple return values); we
call r the output actual to di�erentiate it from the ith output formal
inside the callee. For ControlDependent(n2,n1), a node n2 is
control-dependent on node n1 i� (i) there exists a path from n1 to
n2 s.t. every node in the path other than n1 and n2 is post-dominated

by n2, and (ii) n1 is not post-dominated by n2 [17].
Dependency: Figure 2 describes a set of inference rules to com-
pute two relations DependsOnVar and DependsOnNode. For
a pair of variables x,y ∈ Vars

f
such that y is either data- or

control-dependent on x, then DependsOnVar(y,x, f) holds. Sim-
ilarly, a node n ∈ N

f
and a variable x that is updated at n,

DependsOnNode(x,n, f) holds. Subsequently, any variable y such
that y is data or control dependent on such a variable x, then
DependsOnNode(y,n, f) holds. An inference rule (e.g. DEPENDS-
NODE) lists a set of antecedents (above the line) and the consequent
(below the line). Applying an inference rule results in adding a
tuple to the relation in the consequent (e.g. DependsOnNode). The
inference rules are applied repeatedly until a �x-point is reached.

Most of the inference rules are straightforward encoding of pro-
gram data- and control �ow. The rule CONTROL-DEPENDS ex-
presses that if n1 is a branching node, whose condition depends on
x and y is written in a control-dependent node n2, then y depends
on x. The rule SUMMARY-DEPENDS captures the dependency of
an actual return r on a variable w passed as an argument to f in a
caller g, where w indirectly �ows to r through a procedure call to f.
For this callsite, the i-th output formal y (which is assigned to the
output actual r) is dependent on the j-th input formal x, which in
turn is assigned the actual e at the callsite.

DEPENDS-ENTRY
x ∈ In

f

DependsOnVar(x, x, f)

DEPENDS-WRITE
x ∈ RVars(n) y ∈ WVars(n) n ∈ N

f

DependsOnVar(y, x, f)

DEPENDS-TRANSITIVE
DependsOnVar(y, x, f) DependsOnVar(x, z, f)

DependsOnVar(y, z, f)

CONTROL-DEPENDS
branchingNode(n1)

x ∈ RVars(n1) ControlDependent(n2, n1) y ∈ WVars(n2)

DependsOnVar(y, x, f)

SUMMARY-DEPENDS
Callsite(n, f, g)

OutActual(r, i, f, n) OutFormal(y, i, f) InFormal(x, j, f)
DependsOnVar(y, x, f) InActual(e, j, f, n) w ∈ RVars(e)

DependsOnVar(r, w, g)

DEPENDS-NODE
x ∈ WVars(n) n ∈ N

f

DependsOnNode(x, n, f)

DEPENDS-NODE-TRANSITIVE
DependsOnNode(x, n, f) DependsOnVar(y, x, f)

DependsOnNode(y, n, f)

Figure 2: Inference rules for computing DependsOnVar

and DependsOnNode. The input is a program Prog.

Impact Analysis: Figure 3 describes a set of inference rules to com-
pute the set of nodes that are impacted in either program. For now,
we ignore the highlighted antecedents (we use them in § 4 where
we describe how we incorporate change semantics). The rules
take as input a program (either Prog1 or Prog2), the set of mapped
nodes mapped, and precomputed relations DependsOnNode and
DependsOnVar for the particular program. They produce the re-
lations impactedNode, impactedVar, and ImpactedSumm that
are an upper bound on the set of impacted nodes, variables, and
variable summaries, respectively. Next we explain the rules using
our illustrative example.

The SYNT-CHANGED rule represents the source of any change
impact, stemming from syntactic changes to the program. The
next rules, pre�xed by VAR-2 and NODE-2, propagate impact from
variables to expressions or program nodes, and vice versa.

The next two rules propagate change impact for an output y of a
procedure f, expressed by the ImpactedSumm(y, f) predicate. For an
output formal y ∈ Out

f
, the summary (input-output dependency)

may change either when (i) y depends on a variable updated at
an unmapped node n ∈ N

f
(expressed by IMPACT-SUMMARY),

or (ii) y depends on the return of a procedure g with an impacted
summary (expressed by IMPACT-SUMMARY-PROP).

Next, the CALL-IMPACT rule says that an input formal x in f

can be impacted if the corresponding actual argument e at a callsite
is impacted, representing downward �owing impact where a caller
impacting a callee. Alternatively, the RETURN-IMPACT rule con-
siders the case when the variable summary for the corresponding
output formal y is impacted, representing upward �owing impact.

322

ISSTA’17, July 2017, Santa Barbara, CA, USA Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

SYNT-CHANGED
n < mapped

impactedNode(n)

NODE-2-VAR
impactedNode(n) x ∈ WVars(n)

impactedVar(x)

VAR-2-EXPR
impactedVar(x) x ∈ RVars(e)

ImpactedExpr(e)

VAR-2-NODE
impactedVar(x) x ∈ RVars(n)

impactedNode(n)

IMPACT-SUMMARY
OutFormal(y, i, f) DependsOnNode(y, n, f) n < mapped ¬SummaryEqiv(y, f)

ImpactedSumm(y, f)

IMPACT-SUMMARY-PROP
OutFormal(y, i, f)

Callsite(n, g, f) OutFormal(x, j, g) ImpactedSumm(x, g) OutActual(w, j, g, n) DependsOnVar(y, w, f) ¬SummaryEqiv(y, f)

ImpactedSumm(y, f)

CALL-IMPACT
Callsite(n, f, g) InActual(e, i, f, n) ImpactedExpr(e) InFormal(x, i, f) ¬PreEqiv(x, f)

impactedVar(x)

RETURN-IMPACT
Callsite(n, f, g) OutActual(r, i, f, n) OutFormal(y, i, f) ImpactedSumm(y, f)

impactedVar(r)

SUMMARY-IMPACT
Callsite(n, f, g) OutActual(r, i, f, n) OutFormal(y, i, f)

InFormal(x, j, f) DependsOnVar(y, x, f) InActual(e, j, f, n) ImpactedExpr(e) ¬(PreEqiv(x, f) ∧ SummaryEqiv(y, f))

impactedVar(r)

Figure 3: Inference rules for data�ow based change-impact analysis. The highlighted antecedents are relevant for change-

semantics aware analysis.

Finally, SUMMARY-IMPACT considers impact which propagates
through a callee. Here, g calls f with an impacted actual e for the
formal input x of f. Since the formal output y of f depends on
aforementioned impacted x, the impact �ows back outwards into
the output actual r in g.

Our analysis preserves context-sensitivity as it does not impact
a return value simply because the corresponding output formal is
impacted in some context.

The algorithm DCIA does the following:
(1) Takes as input Prog1,Prog2 and mapped.
(2) Applies the inference rules in Figure 3 on Prog

i to generate
impactedNodei , impactedVari , ImpactedSummi until a
�x-point is reached.

(3) Returns the tuple (
⋃
i impactedNodei ,

⋃
i impactedVari ,⋃

i ImpactedSummi).
The following theorem states the soundness of the data�ow

analysis DCIA.

Theorem 3.2 (Soundness). Given two programs Prog
1,Prog2 ∈

Programs and mapped ⊆ N, (a) DCIA terminates, and (b) for any

n < impactedNode, n is not an impacted node with respect to

mapped (according to De�nition 3.1).

Consider for example the changes in Figure 1 at line 22; the pro-
cedure locale_ok has an impacted summary because its return vari-
able depends on a node that is syntactically changed, i.e., is not in
mapped. This causes the line 6 and the variable locale to be marked
as impacted because of the rule IMPACT-SUMMARY. Impacts are
propagated interprocedurally by the rule CALL-IMPACT to all calls
that take locale as an argument, i.e., print_name, print_major_vers,
and print_minor_vers. Similarly, using the same rule, the body of
print_header is impacted by the changed argument ‘\n’ changed

to the variable line_delim on line 4. The propagation through calls
further impacts their entire body because of the data and control
dependency on the impacted argument (by the rules NODE-2-VAR
and VAR-2-NODE which propagate impact through both control-
and data-dependency relying on the predicate DependsOnVar).

4 INCORPORATING CHANGE SEMANTICS

In this section, we make the DCIA algorithm change-semantics aware.
In other words, the analysis takes into account also the exact seman-
tics of the change, in addition to the set of nodes mapped that may
have been syntactically changed. We inject the change-semantics
by leveraging equivalence relationships between variables and pro-
cedure summaries in the two programs Prog1 and Prog

2.
Let us de�ne the following semantic equivalences for a variable

over Prog1 and Prog
2.

De�nition 4.1 (PreEquiv). PreEqiv(x, f) holds for an input for-
mal x ∈ In

f
if for all stores θ , and for every pair of traces τ 1 �

τ 1
main

(θ) and τ 2 � τ 2
main

(θ), (τ 1 |
n
e
f

)cx = (τ 2 |π (ne
f
))cx.

Intuitively, PreEqiv(x, f) holds for an input formal x of f if any
two executions starting from main on the same input θ call f with
the same sequence of values of x. For the example in Figure 1 the
equivalences that hold are PreEqiv(delim,print_header),
PreEqiv(locale,print_name), PreEqiv(locale,print_major_vers),
and PreEqiv(locale,print_minor_vers). In contrast, the equiva-
lence PreEqiv(delim,print_minor_vers) does not hold, because
of di�erent values for delim ‘\n‘ and ‘\0‘ respectively, at the call-
site in print_product_in f o.

We de�ne Deps(y) as the set of variables x in either Prog
1 or

Prog
2 such that DependsOnVar(y,x, f). For two stores θ1 and θ2

323

Refining Interprocedural Change-Impact Analysis using Equivalence Relations ISSTA’17, July 2017, Santa Barbara, CA, USA

de�ned over same set of variables, we denote θ1 =Vars1 θ2 to mean
θ1 (x) = θ2 (x) for every x ∈ Vars1.

De�nition 4.2 (SummaryEquiv). SummaryEqiv(y, f) holds for
an output formal y ∈ Out

f
if (θ1,θ2) ∈ Ωf

in Prog
i and θ1 =Deps(y)

θ3, then (θ3,θ4) ∈ Ωf
is in Prog

j (j , i) and θ2 (y) = θ4 (y).

Intuitively, if the versions of f are executed from stores θ1 and
θ3 where θ1 =Deps(y) θ3, then either both procedures do not ter-
minate, or the value of y after executing f is identical on exit. In
Figure 1, all procedures are equivalent except print_product_info,
i.e., in this case SummaryEqiv(line_delim,print_product_in f o)
does not hold since in one version the value of line_delim at the
end of the execution is “\0” while in the other it is unde�ned.

Figure 3 with the highlighted parts provides a re�nement to the
data�ow analysis to incorporate change semantics. In addition to
the mapped, the algorithm now takes as input pre-computed rela-
tions PreEqiv and SummaryEqiv. In this section, we assume an
oracle that provides these relations; we provide one implementa-
tion later (§ 5.1). The highlighted facts strengthen the antecedent
of a rule and prevent it from being applicable in some contexts.
For example, the strengthened CALL-IMPACT prevents an input
formal x from being impacted if PreEqiv(x, f) holds. Similarly, the
strengthened IMPACT-SUMMARY prevents a summary for y from
impact if we know that SummaryEqiv(y, f) holds. The strength-
ened SUMMARY-IMPACT is now applicable only when either (i)
the formal x does not satisfy PreEqiv or (ii) the summary for y
does not satisfy SummaryEqiv.

We denote the new change-semantics aware algorithm as Se-
mantic Data�ow-based Changed Impact Analysis (SEM-DCIA).

Theorem 4.3 (Soundness). Given two programs Prog
1,Prog2 ∈

Programs, mapped, PreEquiv, and SummaryEquiv, (i) SEM-DCIA ter-
minates, and (ii) for any n < impactedNode, n is not an impacted

node with respect to mapped (from De�nition 3.1).

4.1 Anytime Algorithm

The SEM-DCIA algorithm assumes an oracle to compute the PreEqiv
and SummaryEqiv relations. Computing such equalities typically
require constructing the product of the two programs Prog1 and
Prog

2 and inferring equivalence relations over the product pro-
gram [29]. Such inference algorithms typically have high com-
plexity and therefore it is wise to apply them prudently. In this
section, we make a simple observation that allows us to interleave
SEM-DCIA and inference of PreEqiv and SummaryEqiv in a sin-
gle framework.

void main(int x) {

- f1(x);

+ f1(x+0);

}

void f1(int x) {

f2(x+1);

}

void f2(int x) {

f3(x+2);

}

...

void fn(int x) {

}

Figure 4: Motivating example for anytime algorithm.

To exploit the change semantics, it is often useful to apply equiv-
alence relation inference only in the vicinity of actual syntactic

changes. Consider the example in Figure 4 to make the intuition
clear. Applying DCIA will result in impacting all the nodes in the
program as follows. The modi�ed call node for f1 in main is not
in mapped, which impacts input formal x of f1. This in turn im-
pacts the call to f2 and so on. We can observe that PreEqiv and
SummaryEqiv hold for each of the procedures because the change
does not propagate outside the changed statement.

For Figure 4 it su�ces to infer the equivalences on main while
abstracting the rest of the procedures from the expensive equiva-
lence analysis. Considering f1 has all callsites inside main and that
it does not have an impacted summary by rule IMPACT-SUMMARY
after DCIA su�ces to determine that PreEqiv(x, f1) holds. This
information can be fed to SEM-DCIA which will prune the impact
for the input parameter of f1 which will prune the remaining im-
pacts when performing a pure data�ow analysis. Thus, we obtain
a precise change-impact analysis by applying the equivalence in-
ference only on a small subset of the procedures in the program.
Similarly, in Figure 1 it su�ces to analyze only the syntactically
changed procedures and abstract away the others to obtain the
most precise result; this is not the case in general because to infer
the PreEqiv we need all call sites to be in scope, not only the
syntactically changed procedures.

Algorithm 1: SEM-DCIA-ANYTIME

Input: Prog1,Prog2 ∈ Programs

Input: Procs∆ ⊆ Procs

Input: mapped ⊆ N

Output: impNds ⊆ N

1 begin

2 k ← 0;
3 EQ← (∅,∅);
4 (impNds, impVars, impSumms) ←

SEM-DCIA(Prog1,Prog2,mapped,EQ);
5 Procs

′ ← Procs
∆;

6 while Procs
′ ⊂ Procs do

7 prEQ← {(x, f) | x ∈ In
f

and x < impVars};
8 smEQ← {(x, f) | x ∈ Out

f
and (x, f) < impSumms};

9 EQ← EQ + (prEQ, smEQ);
10 Procs

′ ← ProcsWithin(Procs∆,Prog1,Prog2,k);
11 Prog

1
k ← AbstractProcs(Prog1,Procs \ Procs′);

12 Prog
2
k ← AbstractProcs(Prog2,Procs \ Procs′);

13 EQ← InferEquivs(Prog1k ,Prog
2
k ,EQ);

14 (impNds, impVars, impSumms) ←

SEM-DCIA(Prog1,Prog2,mapped,EQ);
15 k++ ;
16 return impNds;

Algorithm 1 (SEM-DCIA-ANYTIME) provides an anytime algo-
rithm that performs the integration. The algorithm takes as an
additional input Procs∆, the set of syntactically changed procedures.
It outputs a set of nodes impNds that overapproximates the set of
impacted nodes. We term the algorithm anytime [15, 46, 48] be-
cause the algorithm can be stopped at any time after the �rst call to
SEM-DCIA to obtain a conservative bound for the impacted nodes.

324

ISSTA’17, July 2017, Santa Barbara, CA, USA Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

The algorithm starts with invoking SEM-DCIA on the two pro-
grams with an empty set of equivalences in EQ (line 4); this is
identical to calling DCIA. The return values provide a conservative
measure on impacted variables, nodes and summaries respectively
(Theorem 3.2). The algorithm implements a loop (line 6) where it
increases the frontier of procedures Procs′ around Procs∆ that are an-
alyzed for inferring equivalences in InferEquivs (line 13). Lines 7
and 8 construct equivalences from the provably non-impacted vari-
ables and summaries. These equivalences are added to EQ in line 9.
ProcsWithin returns all procedures that can reach or be reached
from Procs

∆ within a call stack of depth k ; k is incremented with
each iteration of the loop. AbstractProcs abstracts all proce-
dures outside Procs

′; it only retains the knowledge of whether
any procedure f ∈ Procs

′ has additional call sites outside Procs
′

- this determines whether PreEqiv can be inferred for a proce-
dure. InferEquivs is invoked with a set of equivalences in EQ on
the smaller programs Progik . The �nal call to SEM-DCIA is used to
compute the more re�ned set of impacted variables, nodes and sum-
maries based on the equivalences discovered from InferEquivs.
The loop terminates when Procs

′ consists of the entire program; at
this point InferEquivs has already looked at the entire program
and no new equivalences will be discovered in line 13.

Let us denote SEM-DCIAk as an instantiation of the algorithm
SEM-DCIA-ANYTIME that terminated after the loop is executed ex-
actly k +1 times. We also denote SEM-DCIA∞ if the loop terminates
normally after Procs′ equals Procs.

Theorem 4.4 (Soundness). Given two programs Prog
1,Prog2 ∈

Programs, mapped, and Procs
∆
, if SEM-DCIAk terminates then for

any n < impNds, n is not an impacted node with respect to mapped

(according to De�nition 3.1).

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We presented and evaluated our SEM-DCIA() analysis for C pro-
grams, but our analysis is implemented over the intermediate veri-
�cation language Boogie [4]. We leverage SMACK [41] to convert
LLVM bytecode to Boogie programs.
Di�erencing: For our initial implementation, we leveraged diff
over C �les to produce the source of changes, i.e., nodes not in
mapped. However, diff does not satisfy the soundness criteria for
di� (see Section 3.1) because of changes in macros, data structures,
control-�ow changes, etc.; we therefore conservatively consider
all nodes in a changed procedure as sources of impacts. Note that
because we operate on Boogie, macros are already expanded so
changes in macros will be re�ected in the resulting Boogie code.
Although this can overapproximate the initial source of impact, the
use of equivalences in SEM-DCIA allows us to prune the spurious
impacts from escaping the syntactically-changed procedures; All
our code and scripts are available in the SymDiff repository at:
https://symdi�.codeplex.com/.
Inference: We used SymDiff to construct a product program and
infer valid PreEqiv and SummaryEqiv. Given Prog

1 and Prog
2,

SymDiff generates a product program Prog
1×2 that de�nes a pro-

cedure f
1×2 for every f and π (f) ∈ Procsi . For the product program

Prog
1×2, one can leverage any of the (single program) invariant gen-

eration techniques to infer preconditions, postconditions (including

Table 2: Summary of projects used as evaluation subjects

Project # Version SLOC LOC Changed
Name Pairs min max min max

�ingfd 2 142 146 2 14
histo 8 617 624 1 6
mdp 91 135 1616 1 402
theft 2 1672 1838 2 328
tinyvm 61 425 903 1 328
print_tokens 5 478 480 1 8
print_tokens2 10 397 402 1 6
replace 32 509 516 1 15
schedule 9 290 294 2 4
space 38 6180 6205 1 42
tcas 41 136 140 2 16
tot_info 23 346 347 2 3

two-state postconditions) on f
1×2. Such invariants are relational

in that they are over the state of two programs Prog
1 and Prog

2,
and include equivalences relations such as PreEqiv (precondi-
tions of f1×2) and SummaryEqiv (summary of f1×2). To ensure
our inferred equivalences are valid we require the programs to
be equi-terminating [23]; this is an area of future work – for now
we assume that changes do not introduce non-termination. We
modi�ed SymDiff to add candidates for inferring summaries and
take as input cheaply-inferred equalities from DCIA. More details
can be found in our extended report [22].

5.2 Evaluation

In this section we evaluate the e�ectiveness of our approach on
GitHub projects with real program changes and standard bench-
mark programs with arti�cial changes. We show that our semantic
based analysis, SEM-DCIA improves on DCIA by reducing the size of
the impacted set, a proxy metric for the e�ort necessary to perform
many software engineering tasks such as code review and testing.

We analyze 164 changes consisting of refactorings, feature ad-
ditions, buggy changes, and bug �xes from 5 GitHub projects. We
selected the projects based on popularity, size, active development,
and compatibility with SMACK. The projects, number of versions
used, their size in non-comment non-blank source lines of code
(SLOC), and corresponding change sizes (in number of C source
lines changed) are summarized in Table 2. Our subjects are C
implementations of a virtual machine program (tinyvm), a his-
togram creator (histo), a markdown presentation tool (mdp), a
�le-descriptor management library (�ingfd) and a test-generation
library (theft). We include 6 standard benchmarks widely used by
prior research [24]. These benchmarks consist of 158 manually
introduced changes representing non-trivial and hard to detect
bugs. Our projects are sized between 142 lines of source code and
6205 (SLOC). The changes in our projects vary in size between very
small changes, consisting of single line changes and larger ones,
consisting of over 400 lines (most of our changes are small).

For our experiments, we �rst compare SEM-DCIA against DCIA to
study the impact of adding change-semantics to the impact analysis
(§ 5.3). Next, we evaluate the cost-precision tradeo� of the anytime
algorithm SEM-DCIA-ANYTIME (§ 5.4). Finally, we present several
representative examples discovered while applying our tool (§ 5.5).

325

https://symdiff.codeplex.com/

Refining Interprocedural Change-Impact Analysis using Equivalence Relations ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 3: Analysis results for di�erent levels of precision. Time in seconds. (timeout = 1 hour)

Project DCIA SEM-DCIA0 SEM-DCIA1 SEM-DCIA∞
Name min max Time min max Red Time min max Red Time min max Red Time

�ingfd 64 84 0.94 39 83 20.1% 8.92 14 70 47.3% 9.85 14 70 47.3% 10.44
histo 0 86 2.14 0 75 11.5% 19.43 0 65 28.6% 20.59 0 65 28.6% 24.92
mdp 0 465 28.16 0 330 1.5% 77.71 0 324 3.4% 100.68 0 283 6.5% 173.08
tinyvm 0 344 68.96 0 308 18.5% 158.33 0 298 23.2% 160.35 0 283 43.6% 169.05
theft 184 261 4.48 11 186 61% 38.45 11 185 62% 57.48 11 107 77% 289.75
print_tokens 151 153 2.22 69 137 19.37% 24.02 34 128 28.67% 58.23 34 128 28.67% 102.40
print_tokens2 155 158 1.46 80 129 30.36% 16.08 59 101 44.65% 24.42 55 100 45.66% 97.98
replace 75 195 4.96 74 194 2.08% 35.72 70 194 2.89% 92.72 65 174 9.41% 236.77
schedule 79 115 1.37 7 104 26.35% 13.73 7 87 40.58% 24.15 7 68 70.85% 30.83
space 20 2851 59.45 14 2816 31.87% 798.96 14 2816 36.71% 895.14 n.a. n.a. n.a. timeout

tcas 1 49 0.66 0 49 9.24% 7.94 0 49 9.24% 8.63 0 49 9.24% 9.71
tot_info 103 104 6.39 31 102 18.65% 37.01 24 102 46.26% 74.99 12 77 56.50% 127.61

5.3 Change-Semantic Aware Analysis

Table 3 shows the results of running our SEM-DCIA analysis on
our subjects. For each change, we measure the number of lines
impacted by data�ow analysis (columns DCIA Impact) and also by
SEM-DCIA (columns SEM-DCIA∞). The columns SEM-DCIAi denote
various bounds for SEM-DCIA-ANYTIME and are discussed in § 5.4.
We report for each project the minimum and maximum number
of impacted lines (min, max), and for the SEM-DCIA() analysis we
report also the average reduction of the size of the impacted set.
Note that SEM-DCIA analysis always reports a subset of the set
reported by the non-semantic analysis. We also report the average
analysis time in seconds for all analyses.

Our evaluation shows that on average, the semantic-aware anal-
ysis reduces the size of the impacted set by 35%. The overhead of
performing full semantic analysis on the entire program is on me-
dian 19x, ranging between 3x and 67x. While the semantic analysis
results at∞ level represent the most precise analysis our technique
achieves, it is quite expensive. For example in the theft project the
reduction achieved by SEM-DCIA∞ is 77% but with a 64x overhead.
This motivates the need for an incremental analysis, whose results
are obtained faster.
Imprecision: Our manual inspection of results reveals three broad
classes for nodes classi�ed as impacted: (i) nodes in syntactically
changed procedures, (ii) SymDiff’s inability to match loops as it
relies on syntactic position in AST (this can be �xed by better
matching heuristics), (iii) SMACK represents all aliased addresses
accessing a �eld using a single map; writing to one location destroys
equivalences on the map variables (need more re�ned conditional
equivalences [26]).

5.4 Incremental Analysis

Table 3 shows the analysis results of varying the bound on k for the
SEM-DCIA-ANYTIME. The �rst iteration SEM-DCIA0 corresponds to
semantically analyzing only the syntactically-changed procedures;
the second iteration SEM-DCIA1 corresponds to analyzing the pro-
cedures at distance at most one from the syntactically changed pro-
cedures (callers and callees). The results show that even SEM-DCIA0
provides bene�ts, pruning the impacted set by 22% on average. The
overhead is reduced compared to the full analysis (9x). The results
show that the reduction in impact improves as the analysis scope

Table 4: Analysis results for space

Analysis Min Max Reduction Time
DCIA 20 2851 n.a. 59.45
SEM-DCIA0 14 2816 31.87% 798.96
SEM-DCIA1 14 2816 36.71% 895.14
SEM-DCIA2 14 2816 40.56% 1300.43
SEM-DCIA3 14 2808 43.96% 1900.03
SEM-DCIA∞ n.a. n.a. n.a. timeout

(k) increases. For example, in the case of theft the improvement is
from 61% (SEM-DCIA0) to 77% (SEM-DCIA∞), at the cost of overhead
increase from 8x to 64x.

We �nd that the anytime analysis is most bene�cial for cases
where it is prohibitive to run the full algorithm because of time
constraints. This is best illustrated for the case of space (we used a
timeout of one hour). Table 4 shows the �rst four levels for space
(two more iteration beyond the ones in Table 3); performing the
analysis incrementally is still valuable even upto k = 3; the �rst
iteration already provides big bene�ts on top of the non-semantic
analysis, while the following iterations display a smooth improve-
ment with each iteration. We believe this highlights the bene�ts
of our anytime algorithm, giving the user control over the tradeo�
between precision and analysis-time.

5.5 Representative Examples

Our inspection of the analysis results indicates that the improve-
ment in precision in SEM-DCIA() comes from two fronts. First, it
compensates for the price we paid for soundness by considering
entire procedures as source of impact. The semantic analysis re-
duces the impacts for callers and callees transitively. Second, the
reduction in impact happens from refactorings that a pure data�ow
analysis cannot consider. We next show a few interesting patterns
we discovered while applying the tool (for brevity we only describe
the change brie�y).
Variable Extraction: Figure 5 shows a refactoring to extract a
constant to a variable. A non-semantic technique will create impacts
in term_move_to through the �rst argument, since it will not be able
to �nd that the value �owing into the �rst argument is the same
in both versions and in all executions. Our SEM-DCIA technique
will successfully prove the mutual precondition necessary to show

326

ISSTA’17, July 2017, Santa Barbara, CA, USA Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

void draw_histogram(int data[], int len) {

...

+ int xbarw = 5;

...

while (y--) {

- term_move_to(x * 5 + xpad + 3,

+ term_move_to(x * xbarw + xpad + 3,

y - 1 + h + ypad);

...

}

}

Figure 5: Change illustrating an extract constant to variable

in histo commit c723a4

-while (*c) {

+for (;*c;c++) {

...

wprintw(window, "%c", *c);

- c++;

}

Figure 6: Change illustrating a loop conversion inmdp com-

mit 00c2ad

- if (!strend || !strbegin) goto pp_ret ;

+ if (!strend || !strbegin) return 0 ;

if (!pFile) {

...

- goto pp_ret ;

+ return 0 ;

}

...

- pp_ret: return 0;

+ return 0;

Figure 7: Change illustrating a goto-elimination refactoring

in tinyvm commit 378cc6

the equality in both versions, and hence cut impacts that would
propagate through the �rst argument.
Loop Refactoring: Figure 6 shows a change from a while loop
to a for loop. Remember that we extract loops as tail recursive
procedures. Input-output equivalence checking would not prevent
the impact of the argument c to the callee inside the loop–the body
of the loop–(nor would data�ow analysis).
Control-Flow Equivalence: Figure 7 shows a change to replace
a goto with return statements. This is a change in the project
tinyvm. The goto statements were all redirecting control-�ow to
a return statement, so the developer replaced the goto with the
target return statement. Our semantic technique successfully �nds
that the change does not produce impacts.

6 RELATEDWORK

Our work is closely related to work aiming to support develop-
ers in evolution tasks through change-impact analysis, regression
veri�cation, and symbolic analysis.

Change impact analysis: Change Impact Analysis has been widely
explored in static and dynamic program analysis context [10, 30, 32,
42, 45]. Most previous works perform the analysis at a coarse-grain
level (classes and types) to retain soundness of analysis [1, 2, 31, 36]
which can result in coarse results. JDi� [1] addresses some of the
challenges of performing both a di� and computing a mapping
between two programs in the context of Java object-oriented pro-
grams. Other techniques resort to dynamic information to recover
from the overly-conservative data�ow analysis [2, 36]. Our goal
is to improve the precision of CIA analysis by making it change-
semantics aware using statically computed equivalence relations
without sacri�cing soundness.
Regression veri�cation: Regression veri�cation [20, 39] and its
implementations [28] aim at proving summary equivalence inter-
procedurally, but does not help with the CIA directly as shown in
§ 1.1. The work by Bakes et al. [3] improves traditional equivalence
checking by �nding paths not impacted by changes through sym-
bolic execution. The approach is non-modular (does not summarize
callees), bounded (unrolls loops and recursion), and does not seek
to improve the underlying change-impact analysis. The technique
leverages CIA to avoid performing equivalence checking on non-
impacted procedures (computed by standard data�ow analysis).
These approaches are useful for equivalence-preserving changes;
when the changes are non-equivalent they do not provide meaning-
ful help for reducing code review or testing e�orts. Our approach,
on the other hand, re�nes the CIA and can be used in code review
and regression testing. Besides, our approach retains modularity
and is sound in the presence of loops and recursion. We leverage
the product construction in SymDiff [29] that has been used for
di�erential assertion checking (checking if an assertion fails more
often after a change); however this work is limited as it requires
the presence of assertions in the program. Our approach can also
use other product construction techniques and relational invariant
inference techniques as an o�-the-shelf solver [7, 8, 11].
Symbolic Analysis: Person et al. use change-directed symbolic
execution to generate regression tests [40]. Our technique can
be used to prune the space for which regression tests need to be
generated. In addition, there is research on relational veri�cation
using a product construction [7–9, 37], but most approaches are
not automated and do not consider changes across procedure calls.

7 CONCLUSIONS

In this work, we formalize and demonstrate how to leverage equiv-
alence relations to improve the precision of data�ow-based change-
impact analysis and provide a time-precision knob, which is crucial
for applying such analyses to large projects. Our work brings to-
gether program veri�cation techniques (namely relational-invariant
generation) to improve the precision of a core software engineering
task, and can go a long way in providing the bene�ts of semantic
reasoning to average developers.

ACKNOWLEDGMENTS

We thank Darko Marinov, Sasa Misailovic, August Shi, and the
anonymous reviewers for their comments. Alex performed parts
of this research while at Microsoft Research. He was also partially
supported by the NSF Grant Nos. CCF-1421503 and CNS-1646305.

327

Refining Interprocedural Change-Impact Analysis using Equivalence Relations ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES

[1] T. Apiwattanapong, A. Orso, and M. J. Harrold. A di�erencing algorithm for
object-oriented programs. In Proceedings of the 19th IEEE international conference

on Automated software engineering, pages 2–13. IEEE Computer Society, 2004.
[2] T. Apiwattanapong, A. Orso, and M. J. Harrold. E�cient and precise dynamic

impact analysis using execute-after sequences. In Proceedings of the 27th inter-

national conference on Software engineering, pages 432–441. ACM, 2005.
[3] J. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression veri�cation using

impact summaries. In Model Checking Software, pages 99–116. Springer, 2013.
[4] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A

modular reusable veri�er for object-oriented programs. In International Sym-

posium on Formal Methods for Components and Objects (FMCO), pages 364–387,
2006.

[5] M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system: An
overview. In Construction and analysis of safe, secure, and interoperable smart

devices, pages 49–69. Springer, 2004.
[6] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. In

International Workshop on Satis�ability Modulo Theories (SMT), 2010.
[7] G. Barthe, J. M. Crespo, and C. Kunz. Relational veri�cation using product

programs. In FM 2011: Formal Methods, pages 200–214. Springer, 2011.
[8] G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric product

programs for relational program veri�cation. In Logical Foundations of Computer

Science, pages 29–43. Springer, 2013.
[9] N. Benton. Simple relational correctness proofs for static analyses and program

transformations. In ACM SIGPLAN Notices, volume 39, pages 14–25. ACM, 2004.
[10] H. Cai and R. Santelices. A comprehensive study of the predictive accuracy of

dynamic change-impact analysis. Journal of Systems and Software, 103:248–265,
2015.

[11] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving acceptability prop-
erties of relaxed nondeterministic approximate programs. In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pages
169–180, 2012.

[12] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 302–314, 2009.
[13] Coreutils paste.c commit. https://github.com/coreutils/coreutils/commit/

8297568ec60103d95a56cf142d534f215086fe2b.
[14] Coreutils sort.c commit. https://github.com/coreutils/coreutils/commit/

611e7e02b�8898e622d6ad582a92f2de746b614.
[15] T. L. Dean and M. S. Boddy. An analysis of time-dependent planning. In AAAI,

volume 88, pages 49–54, 1988.
[16] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus. Fine-grained

and accurate source code di�erencing. In Proceedings of the 29th ACM/IEEE

international conference on Automated software engineering, pages 313–324. ACM,
2014.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

[18] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of the 2002 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), Berlin,

Germany, June 17-19, 2002, pages 234–245, 2002.
[19] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with

dynamic �le dependencies. In Proceedings of the 2015 International Symposium

on Software Testing and Analysis, pages 211–222. ACM, 2015.
[20] B. Godlin and O. Strichman. Regression veri�cation. In DAC, pages 466–471,

2009.
[21] P. A. Grillet. Semigroups: an introduction to the structure theory, volume 193.

CRC Press, 1995.
[22] A. Gyori, S. K. Lahiri, and N. Partush. Interprocedural semantic change-impact

analysis using equivalence relations. In Technical Report. http://arxiv.org/abs/
1609.08734, 2016.

[23] C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Towards modularly
comparing programs using automated theorem provers. In International Confer-

ence on Automated Deduction (CADE), pages 282–299. Springer, 2013.
[24] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the e�ective-

ness of data�ow-and control�ow-based test adequacy criteria. In Proceedings of

the 16th international conference on Software engineering, pages 191–200. IEEE
Computer Society Press, 1994.

[25] J.-M. Jezequel and B. Meyer. Design by contract: The lessons of ariane. Computer,
30(1):129–130, 1997.

[26] M. Kawaguchi, S. Lahiri, and H. Rebelo. Conditional equivalence. Technical
report, Microsoft Research, October 2010.

[27] J. Krinke. Identifying similar code with program dependence graphs. In Reverse

Engineering, 2001. Proceedings. Eighth Working Conference on, pages 301–309.
IEEE, 2001.

[28] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo. SymDi�: A language-
agnostic semantic di� tool for imperative programs. In International Conference

on Computer Aided Veri�cation (CAV), pages 712–717, 2012.
[29] S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Di�erential assertion

checking. In Joint Meeting of the European Software Engineering Conference and

ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 345–355, 2013.

[30] J. Law and G. Rothermel. Whole program path-based dynamic impact analysis.
In Software Engineering, 2003. Proceedings. 25th International Conference on, pages
308–318. IEEE, 2003.

[31] W. Le and S. D. Pattison. Patch veri�cation via multiversion interprocedural
control �ow graphs. In Proceedings of the 36th International Conference on Software

Engineering, pages 1047–1058. ACM, 2014.
[32] S. Lehnert. A review of software change impact analysis. Ilmenau University of

Technology, Tech. Rep, 2011.
[33] F. Logozzo, S. Lahiri, M. Fahndrich, and S. Blackshear. Veri�cation modulo

versions: Towards usable veri�cation. In Proceedings of the 35th conference on

Programming Languages, Design, and Implementation (PLDI 2014). ACM SIGPLAN,
June 2014.

[34] P. D. Marinescu and C. Cadar. make test-zesti: A symbolic execution solution for
improving regression testing. In Proceedings of the 34th International Conference

on Software Engineering, pages 716–726. IEEE Press, 2012.
[35] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review

coverage and code review participation on software quality: A case study of the
qt, vtk, and itk projects. In Proceedings of the 11th Working Conference on Mining

Software Repositories, pages 192–201. ACM, 2014.
[36] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging �eld data for impact

analysis and regression testing. In ACM SIGSOFT Software Engineering Notes,
volume 28, pages 128–137. ACM, 2003.

[37] N. Partush and E. Yahav. Abstract semantic di�erencing for numerical programs.
In Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,

June 20-22, 2013. Proceedings, pages 238–258, 2013.
[38] F. Pastore, L. Mariani, A. E. Hyvärinen, G. Fedyukovich, N. Sharygina, S. Sehest-

edt, and A. Muhammad. Veri�cation-aided regression testing. In Proceedings of

the 2014 International Symposium on Software Testing and Analysis, pages 37–48.
ACM, 2014.

[39] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Di�erential symbolic
execution. In Proceedings of the 16th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 226–237, New
York, NY, USA, 2008. ACM.

[40] S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic
execution. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’11, pages 504–515, New York, NY,
USA, 2011. ACM.

[41] Z. Rakamaric and M. Emmi. SMACK: decoupling source language details from
veri�er implementations. In Computer Aided Veri�cation - 26th International

Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,

Vienna, Austria, July 18-22, 2014. Proceedings, pages 106–113, 2014.
[42] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change

impact analysis of java programs. In ACM Sigplan Notices, volume 39, pages
432–448. ACM, 2004.

[43] T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural data�ow analysis via
graph reachability. In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, San Francisco, California,

USA, January 23-25, 1995, pages 49–61, 1995.
[44] G. Rothermel and M. J. Harrold. A safe, e�cient regression test selection tech-

nique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, Apr. 1997.
[45] B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In

Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis

for software tools and engineering, pages 46–53. ACM, 2001.
[46] Wikipedia. Anytime algorithm. https://en.wikipedia.org/wiki/Anytime_

algorithm.
[47] W. Yang. Identifying syntactic di�erences between two programs. Software:

Practice and Experience, 21(7):739–755, 1991.
[48] S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms.

Kluwer International Series in Engineering and Computer Science, pages 43–43,
1995.

328

https://github.com/coreutils/coreutils/commit/8297568ec60103d95a56cf142d534f215086fe2b
https://github.com/coreutils/coreutils/commit/8297568ec60103d95a56cf142d534f215086fe2b
https://github.com/coreutils/coreutils/commit/611e7e02bff8898e622d6ad582a92f2de746b614
https://github.com/coreutils/coreutils/commit/611e7e02bff8898e622d6ad582a92f2de746b614
http://arxiv.org/abs/1609.08734
http://arxiv.org/abs/1609.08734
https://en.wikipedia.org/wiki/Anytime_algorithm
https://en.wikipedia.org/wiki/Anytime_algorithm

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Contributions

	2 Background
	2.1 A Simple Language
	2.2 Expressiveness
	2.3 Semantics

	3 Problem Statement
	3.1 Representing Changes
	3.2 Semantic Change Impact
	3.3 Dataflow-Based Change-Impact Analysis

	4 Incorporating Change Semantics
	4.1 Anytime Algorithm

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation
	5.3 Change-Semantic Aware Analysis
	5.4 Incremental Analysis
	5.5 Representative Examples

	6 Related Work
	7 Conclusions
	References

