Asynchronous Data Aggregation for Training End to End
Visual Control Networks

Mathew Monfort
Massachusetts Institute of
Technology

mmonfort@mit.edu

Matthew Johnson
Microsoft Research Cambridge

matjoh@microsoft.com

Aude Oliva
Massachusetts Institute of
Technology

oliva@mit.edu

Katja Hofmann
Microsoft Research Cambridge
katja.hofmann@microsoft.com

ABSTRACT

Robust training of deep neural networks requires a large amount
of data. However gathering and labeling this data can be expen-
sive and determining which distribution of features are needed for
training is not a trivial problem. This is compounded when train-
ing neural networks for autonomous navigation in continuous non-
deterministic environments using only visual input. Increasing the
quantity of demonstrated data does not solve this problem as the
demonstrated sequences of actions are not guaranteed to produce
the same outcomes and slight changes in orientation generate dras-
tically different visual representations. This results in a training set
with a different distribution than what the agent will typically en-
counter in application. Here, we develop a method that can grow a
training set from the same distribution as the agent’s experiences
and capture useful features not found in demonstrated behavior.
Additionally, we show that our approach scales to efficiently han-
dle complex tasks that require a large amount of data (experiences)
for training. Concretely, we propose the deep asynchronous Dagger
framework, which combines the Dagger algorithm with an asyn-
chronous actor-learner architecture for parallel dataset aggregation
and network policy learning. We apply our method to the task of
navigating 3D mazes in Minecraft with randomly changing block
types and analyze our results.

Keywords

visual navigation, autonomous navigation, autonomous agent, deep
learning, reinforcement learning, active learning

1. INTRODUCTION

Training an agent to make decisions based solely on egocen-
tric visual input is difficult. The high-dimensionality and variance
in raw images coupled with the challenge of completing a task
with partial observability of the state of the world makes traditional
approaches to sequential learning intractable [|15]. Many of these
methods rely on the use of hand engineered features that describe
the current state and learn a policy (mapping from states to actions)

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 812, 2017, Sao Paulo, Brazil.

Copyright © 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

to complete a task. Choosing these features requires knowledge of
the problem being solved and is not trivial in complex domains [[15}
17]].

Recent work in deep reinforcement learning [17,|11]] addressed
this limitation by learning feature representations with neural net-
works, eliminating the need for hand engineered features while
learning a model free policy. These methods either rely on unsu-
pervised exploration requiring extensive computation [17]] or full
state observability to jointly train the network with a guiding pol-
icy [11].

Asynchronous methods have been proposed to improve the scal-
ability of deep reinforcement learning to complex problem domains
by performing parallel network training and agent (network) explo-
ration [18] |16} |24]]. However, the behavior learned by an unsuper-
vised agent may differ greatly from human behavior which is not
always desired for agents that will interact with humans [4] 2]]. Ad-
ditionally, full state knowledge cannot be guaranteed in all problem
settings.

The problem of deviating from human behavior can be alleviated
by learning from demonstrations. However, in a sequential decision
process, such as navigation, small approximation errors can com-
pound and lead an agent into a state not captured by the training
set [[19, |11} |20]. Recent approaches propose artificially augment-
ing the demonstrated data in order to ensure the agent is trained for
circumstances that may not appear in human demonstrations [2].
This artificial extension to the dataset may not be representative of
the distribution of experiences the agent will encounter in practice
[19,]20]] and deciding the scope and size of the augmented dataset
needed for efficiently training the network is not trivial [25]].

The Dagger algorithm [19]] for reinforcement learning addresses
the compounding error and differing distribution problems by us-
ing a weighted average of the agent policy and an expert policy to
collect the training data. After each iteration (task execution), the
sequence of states the agent explores are added to the training set
and used to update the agent policy. As learning progresses, the
agent policy is gradually given greater control in the decision pro-
cess. This allows for the collection of a training set that is derived
from the experiences of the agent. A limitation to this method is that
every explored state is added to the dataset. This large collection of
data can become prohibitive when considering high-dimensional
state representations such as images. Additionally, adding states
that the agent policy has adequately learned leads to an unneces-
sary increase in training complexity [20].

We propose efficiently growing a minimally optimal training set



for visual navigation from the same distribution as the agent’s ex-
periences by appending data when the network makes an incorrect
decision. The quality of the decision can be evaluated online using a
simple training policy, 7, that directs the agent to the nearest state
in a single demonstrated trajectory through the space using local
domain knowledge. Initially running the agent with 7, and itera-
tively giving the network more control allows for it to explore and
gather data when it makes mistakes. This is analogous to curricu-
lum learning [|1] where the network is slowly exposed to a more dif-
ficult task for training. We extend this method to the asynchronous
setting allowing it to scale to efficiently handle complex tasks that
require a large amount of varied data (experiences) for training and
apply it to the task of learning to navigate 3D mazes in Minecraft.

Figure 1: Example 3D Mazes in Minecraft.

Formally, we propose the deep asynchronous Dagger framework
which combines the Dagger algorithm [[19] with an asynchronous
actor-learner architecture [16|] for parallel dataset aggregation and
network policy learning. Multiple agents sample network parame-
ters from a learner node and explore environments in parallel, ap-
pending data from incorrect decisions to a central replay memory.
This memory can then be accessed by the learner node to continu-
ously update the network controller parameters.

The key contribution of this approach is the ability to grow a
data-efficient training set for visual navigation from single shot
(one example per task) demonstrated data. We apply our method
to the task of continuously navigating non-deterministic 3D mazes
in Minecrafﬂ with randomly changing block types (Figure and
analyze our results.

2. RELATED WORK

Recent work in deep Q learning (DQN) [17]] addressed the lim-
itations of using hand-engineered features for learning sequential
decision models by learning neural network parameters to estimate
the expected value of actions from a given state using raw visual
input and a variant of an unsupervised Q-learning algorithm [23]].
This eliminates the need for hand engineered features and learns
a model free policy. The network is trained using an experience
replay memory [14] where the state, action, reward and next state
observed by the agent are stored in a large pool of memory that can
be sampled for training the network. This method was used to train
an agent to play Atari video games.

This approach works well in practice and does not require any
knowledge of the problem space aside from a reward function,
but requires a large amount of computation as the use of epsilon
greedy Q learning [23]] results in the exploration of a large number
of sub-optimal states before an efficient policy can be learned. Ad-
ditionally, this method does not utilize demonstrated human behav-
ior which can greatly reduce the required state exploration while
learning a policy that more closely matches human decisions.

Guided policy search [12] is a method that has been applied to
training visual control networks to represent policies for robotic
arms [[11]. In this setting trajectory-centric reinforcement learning

1https ://Minecraft.net/

[[10, |13] is used to train a policy with full state information. This
policy is used to complete the task creating a set of guiding tra-
jectories that are used as training data. The network is then jointly
trained with the guiding policy in order to elicit similar behavior
in application from only visual input. A key limitation here is the
requirement of training a guiding policy with full domain knowl-
edge which is not possible in many complex tasks. Similar to deep
Q learning, guided policy search requires a large amount of explo-
ration in order to train a generalizable network [24].

Both of these methods have been extended to asynchronous frame-
works where multiple parallel agents run in different settings. This
allows for a greater amount of diverse data to be efficiently col-
lected for training [[18} |16l [24]. In the case of asynchronous deep Q
learning [16]], multiple agents (actors) are run in parallel (in sepa-
rate environments) each collecting data from their own experiences.
This data is then added to a central dataset that is used by a parallel
learner thread to update the network parameters. Each actor thread
intermittently receives a copy of the current network parameters
from the learner thread to update its policy. This allows for the net-
work to learn from a much larger distribution of experiences than
standard deep Q learning. However, this increase in the size of the
dataset can be problematic when considering high-dimensional im-
age states requiring a large amount of disk space and an increase in
network training complexity. Additionally, the efficiency of train-
ing the network may be reduced by repeatedly learning from redun-
dant experiences the network has already mastered [20].

A deep active learning method for autonomous visual navigation
[6] partially addresses the problem of increasingly large data ag-
gregation by applying a modified version of the Dagger algorithm
for training a convolutional network [9] to represent the agent pol-
icy for navigating a 3D environment. An agent explores a 3D space
using a learned network policy. When the agent is uncertain of its
next decision an expert policy is generated for the current state and
used to control the network. The state and the action chosen by
the expert are then added to an existing dataset for training. In this
case, only states where the network policy is uncertain are added
to the training set greatly reducing its size and reducing the cost of
querying an expert policy. However, in practice autonomous agents
frequently fall into states where they are very confident in taking
an incorrect action. These states would not be added to the training
set and the network would not learn from these mistakes preventing
the agent from becoming fully capable in navigating the space.

We address the limitations of these approaches by applying con-
cepts from active learning to the Dagger algorithm in an asyn-
chronous actor-learner framework. We grow a training set from
states where the agent makes mistakes relative to a training policy
with local domain knowledge. This data is then used to train a neu-
ral network for end to end autonomous visual navigation through
3D mazes in Minecrafﬂ In the next sections we describe the details
of the proposed method and analyze the results.

3. ASYNCHRONOUS DATA AGGREGATION

We begin by modifying the Dagger algorithm [|19] to only collect
data from states where the network disagrees with a training policy,
¢, that maps states to actions that move the agent to the closest
state observed in human behavior. Figure [J] shows an aerial view
of a discretized Minecraft maze with two walls each containing a
single doorway. The start position is indicated by the green cell
with the red cell signifying the goal. On the left, the yellow arrows
show a demonstrated path through the maze. On the right, for each
discrete state in the maze, 7; directs the agent to the nearest state
observed in the demonstrated path. When the agent is in a state
along the demonstrated path, the actions are set to match the human



behavior.

B

DD [|{|a|a

¥\ ¥ G

T

CEN DO |
T o
HEEER
I[E[a

OEE OO
OEE OOE
BEE OB
HEO B
B0 DB
oD  DEE
Nl  DEE
S  DEE

o »[»[9[0|¢[e[0[3[0]0
© »[>[»[c]«[c[c[5[o]T
REEIE DD EE E R

Figure 2: Example of a demonstrated (human) path through a
maze (left) and the resulting discrete training policy (right).

There is no constraint on the training policy being discrete or
continuous. This is an example of a simple discrete imitation policy
that only requires local knowledge of the agents position relative to
the nearest demonstrated state and nearby obstacles, however we
show in section [3] that this is sufficient for training visual control
networks for continuous agents from a single demonstrated path.

An important factor to note is that the policy in Figure |Z| only re-
quires local domain knowledge and a single demonstration for each
maze. Given a demonstrated trajectory, £, and the current agent
state, s, then training policy can be formally defined as,

(s) demonstrated action in §~ ats, se€ §~ ,
Tt\(S) = . . ~ .
optimal action towards &, else

This policy, combined with the following algorithm, allows us to
train robust network policies for navigating non-deterministic envi-
ronments solely from visual input.

Algorithm 1 MinDagger: Minimal Dataset Aggregation

Input: Training policy 7¢, network policy 7, , weighted control pa-
rameter «, environment £, and dataset D.
Output: Aggregate dataset D
1: Sample trajectory & in £ via policy am: + (1 — a)mp,.
2: Form dataset D,, of states in £ where 7 (s) # mn(s).
3: Label D,, with 7;
4: Aggregate datasets: D <— D U D,.

return D

We apply this training policy in Algorithm[T|where an agent runs
through a maze with a weighted average of the training policy and
the learned network policy, am: + (1 — a)m,, with « decreasing
after each run. We then collect the states where the network policy
disagreed with the training policy and append them to the current
training set, D, with labels generated from the training policy. This
allows for the network training set to be formed with minimal re-
dundancy as states the network performs well on will be ignored.
Additionally, the network is gradually given more control allowing
for the agent to learn from states outside the realm of the demon-
strated data.

For tasks with a large amount of state variability (such as visual
navigation with randomly changing mazes) it is necessary for Al-
gorithm [T] to collect a large dataset for training. This can be time
consuming as the agent would need to run through each maze se-
quentially with intermittent network training. We address this inef-
ficiency by applying Algorithmmin an asynchronous actor-learner
framework.

>

Replay
Memory

Figure 3: Asynchronous MinDagger

Figure[3]outlines the basic architecture of the asynchronous min-
imal data aggregation algorithm (MinDagger). A set of parallel
agent nodes (bottom) sample the current network parameters from
the learner node (top left) and run Algorithm |I| on a randomly
selected maze environment with a matching training policy (top
right). Each agent node will then append its set of collected states,
labeled by the training policy, to the central dataset (top center)
before restarting Algorithm [T] with a new maze and a newly sam-
pled set of network parameters from the learner node. In parallel,
the learner node continuously samples data from the central dataset
and updates the network parameters to match the network policy to
the training policy.

4. SOLVING MAZES IN MINECRAFT

We apply the proposed method to the task of solving 3D mazes
in Minecraft using the Malmo platform for artificial intelligence
experimentation [8]. Malmo is lightweight and allows for mate-
rial customization. This enables the construction of vastly differ-
ent obstacle and environment types where agents with egocentric
vision respond to continuous action commands. Different block
types offer different dynamics when an agent moves across them.
This coupled with an asynchronous communication system that ex-
hibits inconsistent execution and observation rates, leads to a non-
deterministic agent environment.

For our experiments we consider four different action classes
(forward, reverse, left, and right) paired with a [0, 1] continuous
value for speed. A neural network is trained to map an agents visual
observations to actions via supervised training. A softmax distribu-
tion is calculated over the network outputs and the action with the
maximum value is chosen at each state, with the softmax value of
that action assigned to the speed. This allows for the agent to move
faster in each direction when it is more confident in its decision.
The agent navigates through each 3D maze from some initial po-
sition to a goal position signified by a red block. The block types
used in these mazes can vary and the agent needs to navigate to
the goal in under 30 seconds through doorways and bridges across
lava or water as seen in Figures[T]and [J] Running out of time be-
fore the goal is reached kills the agent and ends the mission as does
touching lava or water.

4.1 Policy Network

Each state is represented by a 3-channel 120x160 RGB image
generated from the agents point of view (Figure ID which is verti-
cally cropped to the 3x60x160 bottom half of the image (below the
horizon [2]]). The network is trained to maximize the negative log
likelihood optimization function to match the predicted action, Y,



to the action chosen by the training policy for that state, y;,

| D]
L(6,D) = = > Inp(Y = yilas,0),
i=1

given network parameters 6, training data D and input x;.

The network is initially formed by five convolutional layers each
with a 5x5 kernel and a 2x2 stride followed by a single convo-
lutional layer with a 2x5 kernel. Strided convolutions incorporate
regularization into the convolutional layers while improving effi-
ciency in network performance [21] when compared to standard
max-pooling based sub-sampling, which is important for real-time
visual navigation networks [2]]. The final convolutional layer re-
duces each feature map to a single neuron to improve generaliza-
tion while reducing the number of parameters needed to train [21].
The number of feature maps in each of these layers are 16-32-32-
64-64-128 ending with a 128x1x1 set of feature maps. We follow
the convolutional layers with a fully connected layer of 64 neurons
and another fully connected layer mapping the output to 4 neurons
each representing a different action. Figure [ outlines the network
architecture

4
Outpt
Neurons
64
Neurons

128x1x1
Feature Maps

64x5x2
Feature Maps

64x10x4
Feature Maps

32x20x8
Feature Maps

32x40x15
Feature Maps

16x80x30
Feature Maps

5x51_{...
Kernebyl#

3x160x60
Input Frame

Figure 4: Diagram of the convolutional network architecture.

2Exponentiated Linear Units (ELU) [3]] are used as the activation
functions in each layer.

In order to improve the efficiency of our training routine we use
spatial batch normalization [7] to normalize the feature maps gener-
ated after each convolutional layer. This ensures that the input dis-
tribution for each layer is consistent (zero mean and unit variance)
greatly improving learning performance. Moreover, we apply spa-
tial batch normalization to each incoming frame to normalize the
input features of the network as well as spatial dropout [22] for
regularization.

5. RESULTS

In this section we compare the results of training end to end neu-
ral networks for navigating 3D mazes in Minecraft from raw visual
input with the proposed asynchronous MinDagger algorithm to a
set of competitive baselines for data aggregation. We apply each
comparison algorithm in the same asynchronous learning system
as described in Section[3] ensuring a fair evaluation.

We compare our results in two settings. The first is the network
being trained with a set of 20 static mazes with varying block types
and obstacles each with a single demonstrated path through the
maze. We then test our results on a set of 10 mazes with similar
obstacles and block types.

The second setting is similar to the first setting with the key dis-
tinction that the block types of the mazes are now randomly chang-
ing on every run through the mazes. This greatly expands the vari-
ety of input features the network is learning making for a far more
difficult task. As in training, the test mazes also contain randomly
changing block types allowing for us to incorporate generalization
into our evaluation.

We initially implemented the deep Q learning algorithm [17]]
(DQN) with intermediary sub-goals (doorways, bridges, etc.) grant-
ing positive rewards. Unfortunately, it failed to achieve meaningful
results with fewer than 100 runs through each maze which is not
surprising given an epsilon greedy Q learning algorithm [23|]. For
this reason, we decided to focus on the following dataset aggrega-
tion methods for comparison.

For Figures [3] [6]and [8] we train a single network to navigate 20
different mazes and average the results after running through each
maze (1 mission run) and display the standard deviation from the
mean.

Dagger

The standard Dagger algorithm for data aggregation [[19] (Dagger).
This method is similar to Algorithm [I]except every state in a sam-
pled path through the maze is collected and labeled for training.

Deep Active Dagger

The deep active learning algorithm for autonomous navigation [6]]
(Deep Active Dagger). In this method the network policy is used to
sample a trajectory through the maze. When the entropy of the net-

work policy, H(s) = — Z P(m,(8))logP(mn(s)), for the cur-

rent state s is above some threshold, 5 = O.Eﬂ the training policy
decides the next action and the current state is added to the dataset.
Essentially, the training set is grown from states where the network
is uncertain of a decision.

Expert MinDagger

We additionally compare our results with two versions of Algo-
rithm[T] In the first (Expert MinDagger) we set o = 1 and never al-
low for the network to take control of the agent. In non-deterministic

*Found via a grid search on the hyper-parameter space.



environments this generates a large set of varied guiding trajec-
tories from the training policy which are appended to the dataset
when the network policy disagrees.

MinDagger

Finally we compare against the proposed MinDagger algorithm for
collecting a minimally optimal training set for visual navigation.
We gradually give control of the agent to the network policy by
setting a to o = 0.975ﬂ before each agent begins a maze, where ¢
is the number of times the agent has run through a maze.

&
© —
X 06 Dagger _
@ — Deep Active Dagger
@ — Expert MinDagger
8 04 g
s+ — MinDagger
w0

0.2

0
2 4 6 8 10

Mission Run

N
Ul

b
9

=
Q

Distance from Goal (Blocks)
o o

o

2 4 6 8 10
Mission Run

=

o
©

0.8

o
~!

Decision Accuracy
© © o 9 ©
MW e oo

2 4 6 8 10
Mission Run

Figure 5: The average success rate (top), distance the agent is
from the goal at the end of each mission (middle), and the aver-
age decision accuracy (bottom) compared to the training policy
for each run through the static set of missions.

1-— Dagger
— Deep Active Dagger
0.g- — Expert MinDagger

Q — MinDagger
©
O 06
wn
(%]
(]
8 04
>
%)
0.2
0
5 10 15 20 25 30
Mission Run

N

Ul
| 3
>

n
<

=
<

g

Distance from Goal (Blocks)
[
a

0
5 10 15 20 25 30
Mission Run
1
> 0.8
o
3
g 06
<
5
@ 0.4
[5]
(5]
o]
0.2
O f
5 10 15 20 25 30
Mission Run

Figure 6: The average success rate (top), distance the agent is
from the goal at the end of each mission (middle), and the aver-
age decision accuracy (bottom) compared to the training policy
for each run through the random set of missions.

5.1 Mazes with Static Block Types

Figure[5]displays the results of the network policy running through
the static test mazes after being trained by data aggregated from a
set of static training mazes using the four different baseline meth-
ods. We store the current iteration of the network policy after each
of the training missions and run it through the test mazes for evalua-
tion. The figure shows the evaluated results of each method in terms
of the average number of times the agent reached the goal (success
rate), the average distance to the goal at the end of each mission
due to reaching the goal, running out of time, or dying (distance to



goal), and the average percent of action choices taken by the agent
where the network policy agreed with the training policy (decision
accuracy).

It is clear from Figure [3] that the deep active dagger algorithm
is failing to learn a sufficient policy even after 10 runs through
each training maze. The restriction of only collecting data when
the entropy of the network policy is above some threshold fails to
gather an effective amount of training data. Lowering the threshold
does not improve the results until it is lowered to a value where the
entropy becomes redundant and the algorithm is collecting almost
every state.

In Figure[3] the proposed method (MinDagger) outperforms the
standard dagger algorithm while only collecting about 17% of the
data the standard dagger algorithm collects. This is evidence that
MinDagger collects a very effective dataset. Furthermore, the im-
provement of MinDagger over Expert MinDagger shows that al-
lowing the network to gain control of the agent is beneficial in
training a sufficient network policy.

5.2 Mazes with Random Block Types

LA
s

Figure 7: Example of random block types.

Figure[f]displays the results of the network policy running through
the test mazes with random block types after being trained on a
set of mazes with randomly changing blocks. The figure shows the
evaluated results of each method in terms of the average number
of times the agent reached the goal (success rate), the average dis-
tance to the goal at the end of each mission due to reaching the
goal, running out of time, or dying (distance to goal), and the aver-
age percent of action choices taken by the agent where the network
policy agreed with the training policy (decision accuracy).

The proposed method (MinDagger) achieves the highest success
rate by reaching the goal in each of the test mazes after 28 iterations
through the training mazes. None of the other methods manage to
train a network to reach the goal in every test maze in under 30
iterations.

This becomes more significant when viewing Figure[8 where we
plot the evaluation results of the top three performing methods with
respect to the number of states collected for training. We omit the
deep active learning method from this evaluation as it failed to col-
lect much data (fewer than 1000 states in 30 runs) and performed
poorly as seen in Figure[6] In this graph it is clear that the proposed
MinDagger algorithm performs very strongly with far less train-
ing data (about 60,000 states) than the standard dagger algorithm
which required more than 200,000 states before it began to return
strong results. This is significant as it shows MinDagger collects a
smaller more valuable dataset for training.

0.8

0.6

Success Rate

0.4

— Dagger
— Expert MinDagger
— MinDagger

0.2

0 20k 40k 60k 80k 100k 120k 140k
Dataset Size

n
<

15

Distance from Goal (Blocks)
=
o

0 20k 40k 60k 80k 100k 120k 140k
Dataset Size

e
©

o
D

o
o

Decision Accuracy

0.2

0 20k 40k 60k 80k 100k 120k 140k
Dataset Size

Figure 8: The average success rate (top), distance the agent is
from the goal at the end of each mission (middle), and the aver-
age decision accuracy (bottom) compared to the training policy
as a function of the number of states in the dataset for the set
of random missions.

Additionally, the fact that MinDagger is able to solve the mazes
while collecting less than 30% of the total states visited gives cre-
dence to the trained networks ability to generalize to unseen en-
vironments. There are 69 different block types that are randomly
sampled at each iteration and the chance of the network seeing the



same maze twice is very small.

A key limitation to the proposed approach is the reliance on
a consistently accurate training policy dependent on the demon-
strated trajectories matching the maze environment. This is preva-
lent in cases when the dynamics deviate strongly from those ex-
perienced by the demonstrations, due either to the communication
delay in Minecraft or the properties of the random block material in
the environment. Additionally, the use of random blocks can lead to
the creation of environments that have distinct visual features that
the network rarely encounters and thus poorly learns. Fortunately,
these cases rarely occur and do not greatly hinder the network from
learning a robust policy.

5.3 Emergent Network Features

Visualizing the learned feature maps of the convolutional net-
work allows us to examine which emergent environment features
it may have learned. The network was not trained to detect objects
or features, only predict actions. However, in order to predict the
training policy the network learned some important features of the
mazes.

Figure 9: Example of learned emergent features.

Figure [9] displays four different images the agent encountered
while running through the test mazes along with the output of the
networks second convolutional layer. In each state the network is
recognizing key information about the scene that will help it deter-
mine the next action. When a door or a bridge is to the left or right

of the agent we see a clear activation of neurons in similar locations
in the feature maps. The agent has learned to identify and localize
doorways and bridges while ignoring excess information.

6. DISCUSSION AND FUTURE WORK

We have presented an asynchronous framework for efficiently
gathering an efficient training set for end to end autonomous vi-
sual navigation from single shot examples (one demonstration per
maze). We applied our method and multiple baselines to the task
of completing 3D mazes in Minecraft from raw images with both
static and randomly changing block types. Our method outperforms
the standard methods of data aggregation while collecting a much
smaller dataset, and trains a network policy from single shot exam-
ples.

A key limitation of the proposed approach lies in the require-
ment of a locally informed policy for training. In the presented ex-
periments we formed this policy using the coordinate positions of
the agents. This may not be available in all problem settings and
can be expensive to generate. In the future, we plan to extend this
method to domains without access to this information. In addition,
we plan to incorporate recurrent network structures 5] in order to
capture the memory of key features (doorway) that may move out
of frame with an agent’s motion. Lastly, we would like to apply the
proposed method to different problem settings altogether such as
first-person-shooters and autonomous driving.

Acknowledgments

Partly support for this research was provided by the Toyota Re-
search Institute / MIT CSAIL Joint Research Center and part of
this work was done while Mathew Monfort was a research intern at
Microsoft Research Cambridge.

REFERENCES

[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
Curriculum learning. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML *09,
pages 41-48, New York, NY, USA, 2009. ACM.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,

B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end
learning for self-driving cars. CoRR, abs/1604.07316, 2016.

[3] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and
accurate deep network learning by exponential linear units
(elus). CoRR, abs/1511.07289, 2015.

[4] A. Dragan, K. Lee, and S. Srinivasa. Legibility and
predictability of robot motion. In Ari, 2013.

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735-1780, Nov. 1997.

[6] A.Hussein, M. M. Gaber, and E. Elyan. Deep Active
Learning for Autonomous Navigation, pages 3—17. Springer
International Publishing, Cham, 2016.

[7] S.Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[8] M. Johnson, K. Hofmann, T. Hutton, and D. Bignell. The
malmo platform for artificial intelligence experimentation. In
25th International Joint Conference on Artificial
Intelligence, 2016.

[9] Y. LeCun and Y. Bengio. Convolutional networks for images,
speech, and time series. In M. A. Arbib, editor, The



[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

Handbook of Brain Theory and Neural Networks, pages
255-258. MIT Press, Cambridge, MA, USA, 1998.

S. Levine and P. Abbeel. Learning neural network policies
with guided policy search under unknown dynamics. In
Advances in Neural Information Processing Systems, pages
1071-1079, 2014.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end
training of deep visuomotor policies. J. Mach. Learn. Res.,
17(1):1334-1373, Jan. 2016.

S. Levine and V. Koltun. Guided policy search. In ICML ’13:
Proceedings of the 30th International Conference on
Machine Learning, 2013.

S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich
manipulation skills with guided policy search. In 2015 IEEE
international conference on robotics and automation (ICRA),
pages 156-163. IEEE, 2015.

L.-J. Lin. Reinforcement Learning for Robots Using Neural
Networks. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1992. UMI Order No. GAX93-22750.
D.-R. Liu, H.-L. Li, and D. Wang. Feature selection and
feature learning for high-dimensional batch reinforcement
learning: A survey. International Journal of Automation and
Computing, 12(3):229-242, 2015.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. CoRR,
abs/1602.01783, 2016.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,
and D. Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 02
2015.

[18] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon,
A. D. Maria, V. Panneershelvam, M. Suleyman, C. Beattie,
S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, and
D. Silver. Massively parallel methods for deep reinforcement
learning. CoRR, abs/1507.04296, 2015.

[19] S.Ross, G.J. Gordon, and J. A. Bagnell. No-regret
reductions for imitation learning and structured prediction. In
In AISTATS, 2011.

[20] D. Silver, J. A. D. Bagnell, and A. T. Stentz . Active learning
from demonstration for robust autonomous navigation. In
IEEE Conference on Robotics and Automation, May 2012.

[21] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A.
Riedmiller. Striving for simplicity: The all convolutional net.
CoRR, abs/1412.6806, 2014.

[22] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler.
Efficient object localization using convolutional networks.
CoRR, abs/1411.4280, 2014.

[23] C.J. Watkins and P. Dayan. Q-learning. Machine learning,
8(3):279-292, 1992.

[24] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and
S. Levine. Collective robot reinforcement learning with
distributed asynchronous guided policy search. CoRR,
abs/1610.00673, 2016.

[25] X. Zhu, C. Vondrick, C. C. Fowlkes, and D. Ramanan. Do
we need more training data? International Journal of
Computer Vision, 119(1):76-92, 2016.



