
END-TO-END ATTENTION BASED TEXT-DEPENDENT SPEAKER VERIFICATION

Shi-Xiong Zhang, Zhuo Chen†, Yong Zhao, Jinyu Li and Yifan Gong

Microsoft Corporation, One Microsoft Way, Redmond, WA 98052
†Columbia University, New York, NY, USA

{zhashi, yonzhao, jinyli, ygong}@microsoft.com, †zc2204@columbia.edu

ABSTRACT

A new type of End-to-End system for text-dependent speaker
verification is presented in this paper. Previously, using the
phonetic/speaker discriminative DNNs as feature extractors
for speaker verification has shown promising results. The ex-
tracted frame-level (DNN bottleneck, posterior or d-vector)
features are equally weighted and aggregated to compute an
utterance-level speaker representation (d-vector or i-vector).
In this work we use speaker discriminative CNNs to extract
the noise-robust frame-level features. These features are then
combined to form an utterance-level speaker vector through
an attention mechanism. The proposed attention model takes
the speaker discriminative information and the phonetic infor-
mation to learn the weights. The whole system, including the
CNN and attention model, is joint optimized using an end-to-
end criterion. The training algorithm imitates exactly the eval-
uation process — directly mapping a test utterance and a few
target speaker utterances into a single verification score. The
algorithm can automatically select the most similar impostor
for each target speaker to train the network. We demonstrated
the effectiveness of the proposed end-to-end system on Win-
dows 10 “Hey Cortana” speaker verification task.

Index Terms— speaker verification, end-to-end training,
attention model, deep learning, CNN

1. INTRODUCTION

Speaker verification (SV) is a binary classification problem in
which a person’s identity is verified based on his/her voice.
Speaker verification can be categorized into text-dependent
and text-independent [1]. In text-dependent systems, the same
set of phrases are used for enrollment and recognition. In text-
independent systems, on the other hand, different phrases are
used. The text-dependent SVs usually outperforms the text-
independent SVs, because of the constraint of the phonetic
variability [2, 3, 4]. Especially with the increasing popularity
of mobile/wearable devices, it is competitively beneficial to
enable the full voice interaction beginning from a fixed-phrase
(keyword) voice-authenticated wake-up [5]. At Microsoft, we
are interested in the text-dependent speaker verification with
the global keyword “Hey Cortana” (see Fig. 1). Mathemat-

ically, the relationship between text-dependent/independent
SV and Keyword Spotting (KWS) wake-up system can be de-
scribed in the following equation

text-independent SV︷ ︸︸ ︷
P (spk|O1:T) =

∑
w

joint speaker & KWS wakeup︷ ︸︸ ︷
P (spk,w1:L|O1:T)

=
∑
w

P (spk|w1:L,O1:T)︸ ︷︷ ︸
text-dependent SV

P (w1:L|O1:T)︸ ︷︷ ︸
KWS speech recognition

where O1:T is the observation sequence and w1:L is stand for
the word/phone/state sequence. One major advantage of text-
dependent speaker verification systems is it has knowledge of
the utterances phonetic content and can achieve robust verifi-
cation results with very short enrollment utterances [6].

Fig. 1. The keyword spotting and speaker verification (with
the fixed phase “Hey Cortana”) in Windows 10.

Previously, the traditional techniques [7, 8] used for text-
independent speaker verification have been found ineffec-
tive for the text-dependent tasks [4]. Better performance can
be achieved by slightly modifying the older techniques such
as GMM-UBM [4], GMM-SVM [9, 10] and i-vector/PLDA
[11]. More recently, the deep neural networks (DNNs) [12]
and recurrent neural networks (RNNs) [13] have been suc-
cessfully applied to text-dependent speaker verification. Two
types of DNNs, speaker discriminative DNNs [6] and pho-
netic discriminative DNNs [14], have been investigated to ex-
tract the frame-level features, such as d-vectors [6], bottle-

ar
X

iv
:1

70
1.

00
56

2v
1

 [
cs

.C
L

]
 3

 J
an

 2
01

7

neck features [14, 15] and phonetic posterior features (align-
ments) [12, 15]. These features are treated equally important
and then aggregated together to compute an utterance-level
speaker representation, such as i-vectors [12, 15], d-vectors
[5, 13]. These utterance-level features from the test speaker
and enrolled speaker are then scored using a similarity mea-
sure, e.g., cosine distance/PLDA [16, 17]. The DNNs/RNNs
used to extract phonetic/speaker features are fixed after the
training stage. Google recently proposed an End-to-End
method to train the DNNs/RNNs for text-dependent speaker
verification [5]. This is in contrast to the established ap-
proach of training DNNs to discriminate between speakers
at the frame-level. In [5] the cosine distance score of two
utterance-level representations are passed to a logistic regres-
sion layer to produce the final loss − logP (accept/reject).
The parameters of whole networks are learned by minimizing
this end-to-end loss.

In this paper we use speaker discriminative CNNs to ex-
tract noise robust frame-level features. This is inspired by
recent works in [18, 19] which illustrated a deep convolution
neural network (CNN) architecture outperformed LSTMs in
many speech recognition tasks. Another contribution of this
work is the CNN extracted frame-level features are smartly
combined through an attention mechanism to generate an
utterance-level speaker representation, instead of just equally
weighting and averaging all the frames [5, 6]. The proposed
attention model takes the speaker discriminative information
and phonetic information to learn the attention weights. The
third contribution is the whole system, including the CNN and
attention model, is joint optimized using a novel end-to-end
training algorithm. Unlike the Google’s end-to-end training
[5] which randomly samples the test speaker and the target
speaker, our algorithm uses the most competing impostor for
each target speaker (in the case of rejection). Finally, the end-
to-end system is evaluated on Windows 10 “Hey Cortana”
speaker verification task.

2. END-TO-END SPEAKER VERIFICATION

This section describes the overview architecture of our end-
to-end speaker verification system. The detail of its important
components will be discussed in Section 3 and 4. The exper-
imental results and analysis can be found in Section 5.

2.1. End-to-End architecture

A typical speaker verification protocol includes three phases:
training, enrollment, and evaluation. In the training phase,
our network learns to extract an internal speaker representa-
tion from the utterance. The learning network includes two
parts, a CNN and an attention network, as shown in Figure 2.
This network learning stage is like the UBM training stage.
The details of our CNN model and attention network will be
discussed in Section 3 and 4. Note that the networks are not

Fig. 2. The architecture of our end-to-end attention based
system for speaker verification. The green blocks indicate the
models can be learned in the training phase. All the green
and grey blocks are fixed in the enrollment and verification
phases. During enrollment, the extracted speaker supervec-
tors are stored as a speaker model. The red dash and blue
solid arrows indicate the representations of the test utterance
and enrolled utterances, respectively. The speaker vector pool
contains all the speaker representations in the training set and
is used to select the most similar impostor during training.

trained to discriminate between speakers at the frame-level.
Instead, all the parameters in the whole system will be jointly
trained using an end-to-end criterion described in Section 2.2.

After training, the CNN and attention networks are used
to extract the utterance-level speaker vectors (see Fig. 2) for
the enrolment and test speakers. This is done by freezing the
parameters of the learning network. In the enrollment phase,
each speaker provides a few utterances and each utterance is
converted to a supervector through the trained network. The
speaker model is obtained by averaging over a small mount
of enrollment suptervectors.

In the evaluation phase, a scoring function S(Otst,O
1:N
spk)

is used to compute the similarity between a test utterance Otst

and a claimed speaker spk. The final score will be compared
against a pre-defined (may be speaker dependent) threshold.
The system will accept if the score exceeds the threshold, i.e.,
the utterance Otst belongs to spk, and reject otherwise. Typ-
ically, a simple scoring function is the cosine similarity [16]
between the test speaker representation fcnn|att(Otst) and the
speaker model fcnn|att(O1:N

spk),

S(Otst,O
1:N
spk) =

fcnn|att(Otst)
Tfcnn|att(O

1:N
spk)

‖fcnn|att(Otst)‖ ‖fcnn|att(O1:N
spk)‖

(1)

where the speaker model fcnn|att(O1:N
spk) is precomputed in the

enrollment stage and fcnn|att(·) indicates that the feature map-
ping depends on the CNN and attention networks. In [5] the

similarity score S is then passed to a logistic regression σ(·)
which includes a linear layer with a bias. Thus,

P (accept|Otst,O
1:N
spk) = σ (S) =

1

1 + e−wS(Otst,O1:N
spk)−b

(2)
where scalar w is a score normalizer trained using the crite-
rion described in the next section, −b/w can be viewed as a
verification threshold. The reject probablity can be computed
by P (reject|Otst,O

1:N
spk) = 1− σ (S).

2.2. End-to-End training

Given the current CNN and the attention model’s parameters,
Wcnn|att, the similarity score S(Otst,O

1:N
spk) between the test

utterance and the target speaker utterances can be computed
and fed to the logistic regression σ(·). All the parameters in
the whole network (see architecture in Fig. 2) can be jointly
optimized using the following end-to-end criterion [5]

F(Wcnn|att) = −
1

I

I∑
i=1

yi log σ(xi)+(1−yi) log (1− σ(xi))

(3)
where Wcnn|att represents the parameters of CNN, attention
model and logistic regression σ(·) and F(·) is a function of
Wcnn|att. The input xi = Si(Otst,Ospk) is a similarity score
of the i-th pair of (tst, spk), which depends on the Wcnn|att.
The label yi = 1 if the testing utterance Otst belongs to spk,
otherwise yi = 0 . I is the total number of (tst, spk) pairs in
the training set (which is huge). To effectively use the data,
an algorithm that can smartly pick the most “confusing” pairs
is proposed. The detail of the approach is described in Alg. 1.
Note the training process with the criterion in Eq. 3 is actually
imitating the end-to-end evaluation metric. It directly maps a
test utterance and a few target utterances to a single score for
verification. The whole network is trained by minimizing the
end-to-end loss.

To make sure the parameters are updated using sufficient
information from diversified speakers, we group the speakers
into mini-batches. Each mini-batch contains 64 speakers as
targets. For each target speaker, we sample N utterances as
enrollment and T1 test utterances as “acceptance” data. For
each target speaker, we also select k most similar speakers as
impostors to make sure the network can learn to discriminate
between the most challenging samples. For these k impos-
tors we randomly sample T2 utterances as “reject” data. The
exact number of these hyperparameters, N,T1, T2 and k, are
discussed in Section 5.2. In order to efficiently search the k
most similar impostors, a query table is build to the store the k
nearest neighbor for each speaker. The table is built using the
all-nearest-neighbors algorithm [20] with the cosine-distance
metric inO(k ·n log n) time. The speaker vector pool used to
compute the table is initialized by i-vectors [21]. The pool can
be updated periodically (each full sweep) using the speaker
supervectors, fcnn|att(O1:N

spk).

Algorithm 1: End-to-End Training for SV
Data: 10k speakers, each speaker has 10-50 utterances.
Result: speaker discriminative CNN, attention network

and logistic regression model.
initial Wcnn|att
initial speaker vector pool V ← i-Vectors
for each full sweep do

for each minibatch in a full sweep do
for each spk in a minibatch do

1) sample N + T1 utterances of spk
N enrollment: O1:N

spk

T1 test: xi = Si(O
i
tst,O

1:N
spk), yi = 1|T1

i=1

2) search k most similar impostors in V
3) sample T2 utterances belongs to these imp

T2 test: xi = Si(O
i
imp,O

1:N
spk), yi = 0|T2

i=1

4) gather (xi, yi), accumulate ∇F(Wcnn|att)

update Wcnn|att ←Wcnn|att − η∇F(Wcnn|att)

update V ← fcnn|att(O
1:N
spk) ∀ spk

3. NEURAL NETS FOR SPEAKER VERIFICATION

This section presents a survey of DNN/RNN based methods
for speaker verification. A new speaker discriminative CNN
model is then proposed and applied to the end-to-end system
described in previous section. DNNs/RNNs have been suc-
cessfully integrated into the speaker verification paradigms.
The existing neural networks for speaker verification can be
categorized into two types — phonetic discriminative DNNs
and speaker discriminative DNNs [13] (see Fig. 2). These
two types of DNNs will discussed in Section 3.1 and 3.2.

3.1. Learning Phonetic Representation

Previous research has demonstrated that using the phonetic
information from the DNNs yields significant gains for SV
[22, 15]. These phonetic discriminative DNNs refer to the
neural networks that can classify each frame of speech as a
specific phoneme/senone. Basically, they are DNNs trained
for speech recognition [23] or keyword spotting [24]. The
gain of this approach is mainly due to the phonetic repre-
sentation extracted from these DNNs can help to align (or
normalize) different speakers into the same phonetic space to
compare.

3.1.1. Phonetic Bottleneck Features bphnt

The most successful and simple approach of using phonetic
discriminative DNNs for speaker verification is the so-called
bottleneck feature approach [25]. These DNNs are learned
in the supervised manner to classify the phoneme/senone la-
bels. Once the network is trained, the bottleneck features bphnt

can be extracted for every frame, from the outputs of the last

Fig. 3. The architecture of the CNN model for exacting the discriminate speaker representations. The green blocks indicate
the operations in the network, such as time-frequency convolutions, ReLU activation function, max pooling and full-connected
linear projection. The blue blocks show the number of parameters in each operation. The batch normalization is applied.

hidden layer of the DNN before the sigmoid nonlinearity [26].
The bottleneck features can also be incorporated together with
the input MFCC features as Tandem features [27]. These fea-
tures are then used to train a back-end classifier like a GMM-
UBM [22] or i-vector/PLDA [15].

3.1.2. Phonetic Posterior Features γphn
t

Another approach that makes use of a phonetic discriminative
DNN for speaker verification is the phonetic posterior feature
approach. The basic idea is to replace the frame alignment
posteriors γUBM

t generated by the UBM with the senone pos-
teriors γphn

t produced by the DNN [12]. These posteriors γphn
t

can be directly used to compute the first-order and second-
order statistics for i-vector extraction [12]. In this work the
phonetic posteriors features γphn

t is also used to provide con-
text information in the attention model described in Section 4.

3.2. Learning Speaker Representation

Alternative to the phonetic discriminative DNNs, this sec-
tion discusses the speaker discriminative DNNs, which rep-
resents a more natural configuration for speaker verification.
A speaker discriminative DNN is a neural network trained to
discriminate between speakers. This type of neural networks
has been successfully trained to extract speaker information,
such as speaker articulatory features [28] and d-vectors [6].

3.2.1. dnn-vectors

In this approach DNNs are trained to discriminate between
speakers at the frame-level. Basically, the model tries to clas-
sify each frame as belonging to 1-of-N speakers, where N is
the number of background speakers [6]. After training each
frame of an utterance is forward propagated through the net-
work, and the output of the last hidden layer is used to pro-
duce an frame-level speaker representation. All the frame-
level features are then averaged to form an utterance-level
speaker supervector called a d-vector. The main drawback of
d-vectors is that the speaker discrimination is achieved based
on a time-scale at which phonetic variability is dominant.

3.2.2. rnn-vectors

Previously, a RNN based approach for text-dependent speaker
verification that makes use of utterance-level features has
been proposed [5, 13]. This approach addresses the main crit-
icism of the d-vector approach, i.e., the frame-level speaker
classification. In speaker discriminate RNNs, there is a single
label associated with each utterance, instead of one for every
frame. The hidden vector (after the activation function) of the
RNNs in the last frame, hT , is an effective summary of the
entire utterance. One draw back of this utterance-level hT is
it can only be used for text-dependent speaker verification.

3.2.3. cnn-vectors

Recently, deep CNNs with small kernels have been shown
to achieve a better performance than LSTMs in many speech
recognition tasks [18, 19]. Inspired by these works, a deep
CNN architecture is proposed here to extract the speaker dis-
criminative information. The rnn-vector approach described
in Section 3.2.2 can only be applied to text-dependent speaker
verification, while the proposed CNN is suitable for both text-
dependent and text-independent tasks.

The CNNs are neural networks with special structures.
Fig. 3 illustrates the proposed deep CNN with the VGG-style
architecture [29]. In this CNN the first layer is called a con-
volution layer, which consists of a number of feature maps.
Each neuron in the convolution layer receives input from a
local field (e.g. a 3 × 3 window) representing features of a
specific frequency range. These local windows shift across
time and frequency. The neurons receive different shifted lo-
cal field as inputs. Neurons in the convolution layer that be-
long to the same feature map share the same weights, known
as kernels or filters. Thus, the convolution layer yield a con-
volution of the kernels with the inputs. One specialty of our
CNN is an asymmetric context window (30 frames in the his-
tory and 5 frames in future) is applied to the inputs to control
the latency as shown in Fig. 3. Note the LSTMs actually use
the information from O1:t for each frame t, which can also be
viewed as an asymmetric context window. The zero-padding
is used during the convolution. The batch normalization [30]
is applied to improve the training convergence.

4. ATTENTION MECHANISM

As discussed in Section 2, rather than simply averaging the
frame-level speaker representation ht from the CNN to pro-
duce an utterance-level feature, we propose to learn the best
combination of ht. The basic idea is to use an attention net-
work to learn the best way to combine the frame-level speaker
features by utilizing the phonetic context information.

The approach is motivated by the idea of visual attention
in the image captioning problem [31]. In the image caption-
ing, when the model is trying to generate the next word of
the caption, that word is usually describing only a part of the
image. Thus the attention network serves as a selection and
combination model. In the context of our problem, when the
CNN model is trying to generate a speaker feature vector, that
vector is only describing the speaker characteristics in a spe-
cific context or a specific phonetic space. Thus the attention
network servers as an alignment and combination model.

Generally, an attention model is an approach that takes T
arguments h1, . . . ,hT , and a context c. It return a vector f
which is supposed to be the summary of the h1:T , focusing on
information corresponding to the context c. More formally, it
returns a weighted mean of the ht, and the weights are chosen
according the relevance of each ht given the context c, as
shown in Fig. 4 (a).

4.1. attention network with posterior weights
The first proposed attention network simply uses the DNN
posterior features as the context information shown in Fig. 4
(b). The posterior probabilities from the KWS-DNN naturally
provide the alignment information and combination weights.
Thus the speaker supervector fcnn|att can be computed by

fcnn|att =

T∑
t=1

hspk
t ⊗γ

phn
t =

T∑
t=1

P (hh|ot) · h
spk
t

...
P (ey|ot) · hspk

t


640

(4)

where ⊗ is the Kronecker product [32], hspk
t is a 64-dim fea-

ture extracted from the speaker discriminative CNN, and fea-
ture γphn

t has 10 dimensions, each represents a probability of
phoneme in “Hey Cortana”1,

hspk
t =

[
cnn(ot)

]
64

, γphn
t =

P (hh|ot)...
P (ey|ot)


10

.

Note that the γphn
t is normally a sparse vector. The Eq.4 is

basically stacking the speaker vector hspk
t to the correspond-

ing phonetic space, with a probability weight. For example, if
P (hh|o1) = 1, then the supervector fcnn|att will only have the
top 64-dim non-zero features. By this way, different speaker
vectors will be compared only in the same phonetic space. In

1The Hey-Cortana DNN has nine phonemes {hh, ey, k, ao, r, t, aa, n, er}
and one garbage state used to absorb the silence, noise and other phonemes.

Fig. 4. The architecture of the general attention model and
two proposed attention networks. The network can learn to
align and combine the frame-level speaker representation ht

to form a speaker supervector fcnn|att.

Eq.4 the frame-level speaker features are weighted by phone
posteriors. However the frame combination weights can also
be learned through an attention network. This approach will
be discussed in the next section.

4.2. attention network with learned weights

In this section, an advanced attention network is proposed. It
not only utilizes the alignment information but can also learn
the combination weights. This is because different frames
may contain different amount of speaker discriminative infor-
mation. The architecture of this attention network is shown
in Fig. 4 (c). In this model the context information (shown
as blue arrows) contains two sources, the posterior features
γphn
t and the bottleneck feature bphnt . The sparse vector γphn

t

is used to mapping the speaker characteristics into the corre-
sponding phonetic space. The bottleneck features bphnt and
hspk
t are used together to learn the combination weights for

better speaker discrimination.

et = tanh(Whh
spk
t +Wbb

phn
t) (5)

αt =
exp et∑T
j=1 exp ej

(6)

fcnn|att =

T∑
t=1

(
αt · hspk

t ⊗ γ
phn
t

)
(7)

where the ⊗γphn
t serves as an alignment model as discribed

in previous section and the et serves as a combination model.
αt is the softmax distribution over the input sequence. The
combination weights represents the density of speaker infor-
mation in each frame according to the context. The tensor

product and the softmax functions are differentiable, there-
fore the entire network, including the CNN, attention model,
logistic regression can be jointly trained using the stochastic
gradient descent.

In this work we applied the attention model to the text-
dependent speaker verification. However, as the attention
model can learn to map the speaker features into the corre-
sponding phonetic space, the proposed approach would work
even better for text-independent task.

5. EXPERIMENTS AND RESULTS

In this section we present the details of network architectures,
network training and experimental results. All the models in-
vestigated in this work were implemented and trained using
Theano [33] and the Keras package [34].

5.1. Data Sets

The proposed approach is evaluated on the Microsoft internal
text dependent speaker verification task. A set of utterances
beginning with the voice activation phrase “Hey Cortana” is
collected from the Windows 10 desktop Cortana service logs.
The Hey Cortana segments are taken out using a keyword de-
tector. The length of these segments is around 65 frames to
110 frames. The evaluation comprises about 60k utterances
from 3k target speakers and 3k impostors. The enrollment
set comprises 6 utterances of Hey Cortana. We then selected
about 200k utterances from 10k speakers, each with 10 to 30
utterances for UBM training. There is no overlap of speakers
between the training and testing (enrollment/evaluation) data.

5.2. Experiment Setups

The spectral features used in KWS-DNN consist of 38 di-
mensional mel-frequency cepstral coefficients (MFCC) with
13 filterbanks. The MFCCs contain 12 static (without energy
C0), 13 delta and 13 delta-delta features. The baseline GMM-
UBM and i-Vector systems are using the same MFCCs as
KWS-DNNs. A rolling-window based cepstral mean normal-
ization (CMN) and feature warping [35] are applied in these
systems. The size of the rolling windows is 41. The CNN
model has three channel inputs. The first channel contains
12-dim static features (d = 12 in Fig. 3). The second and
third channels use the delta and delta-delta features [36], each
has 12 dimensions. To control the run-time latency, an asym-
metric context window, ot−25, . . . ,ot+5, is used (see Fig. 3).

The KWS-DNN consists of two hidden layers. Each layer
has 128 and 64 nodes respectively. The output layer has 10
classes. The GMM-UBM system has 128 Gaussian mixtures.
The i-vector/PLDA system uses 300 dimensional i-vectors
and these are then projected down to 64 dimensions using the
LDA [21]. The bottleneck features bphnt from the KWS-DNN
have 64 dimensions. These bottleneck features are decorre-
lated using PCA for GMM-UBM systems. The PCA also re-

duces the dimension of bphnt to 32. The CNN model in the
end-to-end system uses zero padding and 1-step striding dur-
ing the convolution operation [18]. A 2 × 2 pooling window
and 2-step striding are used during the max pooling operation.
N = 6 utterances are selected during the end-to-end network
training (see Alg. 1). This is stimulating the real enrollment
scenario as Windows 10 will ask users to enroll 6 utterances
in order to allow Cortana try to responds only to the user. To
avoid mismatch between the negative/positive samples ratio
in training and evaluation, T1 = 1 and T2 = 5 are used in the
experiments.

5.3. Results
First, we compare the results between different systems. The
equal error rates (EERs) are shown in Table 1. The KWS-
DNN bottleneck feature is effective for all the systems. The
end-to-end system outperforms the GMM and i-vector sys-
tem by 25% and 9%, respectively. Second, we compare dif-
ferent attention mechanisms and speaker discriminate neural
networks (see Table 2). The proposed attention network with
learned weights (Section 4.2) works the best. The proposed
CNN model also outperforms the DNN (with the same mount
of parameters) by 6%. Comparing with LSTMs the gain of
proposed CNN is very small. This may due to the task is text-
dependent speaker verification. Larger gains can be expected
for text-independent tasks (future work). Third, we show the
importance of using speaker vector pool to select the most
similar impostor during the end-to-end training in Table 3.

Features GMM-UBM i-vector/PLDA End-to-End

MFCC ot 5.8% 4.7% 4.2%
MFCC ot+BN bphnt 4.8% 4.3% 4.1%

Table 1. The results of the GMM-UBM, i-vector/PLDA and
End-to-End systems in EER%. The CNN model shown in
Fig. 3 and the learning-weight scaled attention network shown
in Fig. 4(c) are used in End-to-End system.

Speaker Modeling

Attention Mechanism CNN DNN LSTM

posterior scaled attention 4.5% 5.0% 4.5%
learning-weight scaled attention 4.1% 4.5% 4.2%

Table 2. EERs of different attention networks and speaker
models in End-to-End system with the same [ot+bt] features.

Training Algorithm best End-to-End system

random sample test speakers 4.6%
using speaker vector pool 4.1%

Table 3. The effectiveness of speaker vector pool in Alg. 1.

6. CONCLUSION

A novel end-to-end system for text-dependent SV is described
in this paper. A speaker discriminative CNN is used to ex-
tract frame-level features. Another contribution of this work
is the extracted frame-level speaker features are combined
through an attention network to generate an utterance-level
speaker representation. The proposed attention model takes
the speaker discriminative information and phonetic informa-
tion to learn the attention weights. The third contribution is
the whole system, including the CNN and attention models,
are joint learned using an end-to-end training algorithm. The
algorithm can automatically select the most similar impos-
tors for each target speaker during the training. We show the
effectiveness of the proposed system on Windows 10 “Hey
Cortana” speaker verification task.

7. REFERENCES

[1] J. P. Campbell Jr., “Speaker recognition: A tutorial,”
Proc. IEEE, vol. 85, no. 9, pp. 1437–1462, 1997.

[2] R. Auckenthaler, E. Parris, and M. Carey, “Improving a
GMM speaker verification system by phonetic weight-
ing,” in Proc. ICASSP, 1999, pp. 1440–1444.

[3] T. Matsui and S. Furui, “A text-independent speaker
recognition method robust against utterance variations,”
in Proc. ICASSP, 1991, pp. 377–380.

[4] Bin Ma Haizhou Li Anthony Larcher, Kong-Aik Lee,
“Text-dependent speaker verification: Classifiers,
databases and rsr2015.,” Speech Communication, vol.
60, pp. 56–77, 2014.

[5] Georg Heigold, Ignacio Moreno, Samy Bengio, and
Noam M. Shazeer, “End-to-end text-dependent speaker
verification,” in International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016.

[6] Ehsan Variani, Xin Lei, Erik McDermott, Ignacio Lopez
Moreno, and Javier Gonzalez-Dominguez, “Deep neu-
ral networks for small footprint text-dependent speaker
verification,” in ICASSP. IEEE, 2014, pp. 4052–4056.

[7] D. A. Reynolds, “Speaker identification and verification
using Gaussian mixture speaker models,” Speech Com-
munications, vol. 17, pp. 91–108, 1995.

[8] P. Kenny, P. Boulianne, G. amd Ouellet, and P. Du-
mouchel, “Joint factor analysis versus eigenchannels
in speaker recognition,” IEEE Transactions on Au-
dio,Speech and Language Processing, vol. 15, no. 4, pp.
1435–1447, May 2007.

[9] Sergey Novoselov, Timur Pekhovsky, Andrey Shulipa,
and Alexey Sholokhov, “Text-dependent gmm-jfa sys-
tem for password based speaker verification,” in
ICASSP. IEEE, 2014, pp. 729–737.

[10] Shi-Xiong Zhang and Man-Wai Mak, “Optimized dis-
criminative kernel for SVM scoring and its application
to speaker verification,” IEEE Transactions on Neural
Networks, vol. 22, no. 2, pp. 173–185, 2011.

[11] T Stafylakis, Patrick Kenny, P Ouellet, J Perez, M Kock-
mann, and Pierre Dumouchel, “Text-dependent speaker
recognition using plda with uncertainty propagation,”
matrix, vol. 500, pp. 1, 2013.

[12] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell
McLaren, “A novel scheme for speaker recognition
using a phonetically-aware deep neural network,” in
ICASSP. IEEE, 2014, pp. 1695–1699.

[13] Gautam Bhattacharya, Patrick Kenny, Jahangir Alam,
and Themos Stafylakis, “Deep neural network based
text-dependent speaker verification : Preliminary re-
sults,” in Odyssey 2016: The Speaker and Language
Recognition Workshop, Bilbao, Spain, June 21-24 2016,
pp. 9–15.

[14] Fred Richardson, Douglas Reynolds, and Najim Dehak,
“Deep neural network approaches to speaker and lan-
guage recognition,” IEEE Signal Processing Letters,
vol. 22, no. 10, pp. 1671–1675, 2015.

[15] Hossein Zeinali, Lukas Burget, Hossein Sameti, On-
drej Glembek, and Oldrich Plchot, “Deep neural net-
works and hidden markov models in i-vector-based text-
dependent speaker verification,” in Odyssey 2016: The
Speaker and Language Recognition Workshop, Bilbao,
Spain, June 21-24 2016, pp. 24–30.

[16] Najim Dehak, Reda Dehak, James R Glass, Douglas A
Reynolds, and Patrick Kenny, “Cosine similarity scoring
without score normalization techniques.,” in Odyssey,
2010, p. 15.

[17] Patrick Kenny, Themos Stafylakis, Pierre Ouellet,
Md Jahangir Alam, and Pierre Dumouchel, “Plda for
speaker verification with utterances of arbitrary dura-
tion,” in 2013 IEEE International Conference on Acous-
tics, Speech and Signal Processing. IEEE, 2013, pp.
7649–7653.

[18] Tom Sercu and Vaibhava Goel, “Advances in very
deep convolutional neural networks for LVCSR,” arXiv
preprint arXiv:1604.01792, 2016.

[19] George Saon, Hong-Kwang J Kuo, Steven Rennie, and
Michael Picheny, “The IBM 2015 english conversa-
tional telephone speech recognition system,” arXiv
preprint arXiv:1505.05899, 2015.

[20] Pravin M Vaidya, “An O(nlogn) algorithm for the all-
nearest-neighbors problem,” Discrete & Computational
Geometry, vol. 4, no. 2, pp. 101–115, 1989.

[21] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Du-
mouchel, and Pierre Ouellet, “Front-end factor analysis
for speaker verification,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 19, no. 4, pp.
788–798, 2011.

[22] Fred Richardson, Douglas Reynolds, and Najim Dehak,
“A unified deep neural network for speaker and language
recognition,” arXiv preprint arXiv:1504.00923, 2015.

[23] George E Dahl, Dong Yu, Li Deng, and Alex Acero,
“Context-dependent pre-trained deep neural networks
for large-vocabulary speech recognition,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 20, no. 1, pp. 30–42, 2012.

[24] Guoguo Chen, Carolina Parada, and Georg Heigold,
“Small-footprint keyword spotting using deep neural
networks,” in 2014 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2014, pp. 4087–4091.

[25] Tianfan Fu, Yanmin Qian, Yuan Liu, and Kai Yu, “Tan-
dem deep features for text-dependent speaker verifica-
tion.,” in INTERSPEECH, 2014, pp. 1327–1331.

[26] Frantisek Grézl, Martin Karafiát, Stanislav Kontár, and
Jan Cernocky, “Probabilistic and bottle-neck features
for lvcsr of meetings,” in 2007 IEEE International Con-
ference on Acoustics, Speech and Signal Processing-
ICASSP’07. IEEE, 2007, vol. 4, pp. IV–757.

[27] Qifeng Zhu, Barry Chen, Nelson Morgan, and Andreas
Stolcke, “Tandem connectionist feature extraction for
conversational speech recognition,” in International
Workshop on Machine Learning for Multimodal Inter-
action. Springer, 2004, pp. 223–231.

[28] S. X. Zhang, M. W. Mak, and H. M. Meng, “Speaker
verification via high-level feature based phonetic-class
pronunciation modeling,” IEEE Trans. on Computers,
vol. 56, no. 9, pp. 1189–1198, 2007.

[29] K. Simonyan and A. Zisserman, “Very deep convolu-
tional networks for large-scale image recognition,” in
ICLR, 2015.

[30] Sergey Ioffe and Christian Szegedy, “Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[31] Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan, “Show and tell: A neural image cap-
tion generator,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp.
3156–3164.

[32] Alexander Graham, “Kronecker products and matrix
calculus: With applications.,” JOHN WILEY & SONS,
INC., 605 THIRD AVE., NEW YORK, NY 10158, 1982,
130, 1982.

[33] Theano Development Team, “Theano: A Python frame-
work for fast computation of mathematical expressions,”
arXiv e-prints, vol. abs/1605.02688, May 2016.

[34] François Chollet, “Keras,” https://github.com/
fchollet/keras, 2015.

[35] Jason Pelecanos and Sridha Sridharan, “Feature warp-
ing for robust speaker verification,” in Interspeech,
2001.

[36] Ossama Abdel-Hamid, Abdel-Rahman Mohamed, Hui
Jiang, Li Deng, Gerald Penn, and Dong Yu, “Con-
volutional neural networks for speech recognition,”
IEEE/ACM Transactions on audio, speech, and lan-
guage processing, vol. 22, no. 10, pp. 1533–1545, 2014.

