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Abstract. Symbolic transducers extend classical finite state transducers
to infinite or large alphabets like Unicode, and are a popular tool in
areas requiring reasoning over string transformations where traditional
techniques do not scale. Here we develop the theory for and an algorithm
for computing quotients of such transducers under indistinguishability
preserving equivalence relations over states such as bisimulation. We
show that the algorithm is a minimization algorithm in the deterministic
finite state case. We evaluate the benefits of the proposed algorithm over
real-world stream processing computations where symbolic transducers
are formed as a result of repeated compositions.

1 Introduction

Finite state automata and transducers are used in a wide variety of applications,
ranging from program compilation and verification [5,21] to computational lin-
guistics [32]. A major limitation of classic automata is that their alphabets need
to be finite (and small) for the algorithms to scale. To overcome this limitation
several approaches have been proposed to accommodate infinite alphabets [28,37].
One approach is to use predicates instead of concrete characters on state transi-
tions [37,41]. The theory and algorithms of such symbolic finite automata (SFAs)
and symbolic finite transducers (SFTs) modulo theories, has recently received
considerable attention [39,17] with applications in areas such as parameterized
unit testing [38], web security [25], similarity analysis of binaries [16], and code
parallelization [40]. Our interest in symbolic transducers (STs or SFTs with
registers) is motivated by recent applications in string processing and streaming
computations [35] where STs are used to express input to output transformations
over data streams and UTF8-encoded text files, and STs are fused (composed
serially) in order to eliminate intermediate streams.

In many applications the need to minimize the number of states without
affecting the semantics is crucial for scalability. Much like product composition of
classical finite state automata, for STs as well as SFT's, fusion implies a worst case
quadratic blowup in the number of (control) states. Thus, similar to automata
frameworks such as MONA [27], it is highly beneficial to be able to reduce the



number of states after fusion. Concretely, our initial motivation for minimizing
STs came from studying Huffman decoders [26], which we represented as SFTs.
When an ST that implements Huffman decoding is fused with some other ST
that ignores a part of the decoders output (e.g. everything that is not a digit),
then a subgraph of the fused ST’s states will resemble an SFA, i.e., have no
outputs and no register updates. More generally, fusion might result in a lot of
states being indistinguishable, i.e., have equivalent behavior for all inputs. This
was the key insight that led us to a general algorithm for reducing the number of
states of ST's, presented here.

In the case of deterministic SFAs it is possible to reduce minimization to
classical DFAs at an upfront exponential cost in the size of the SFA [17]. In the
case of SFTs, a similar transformation to finite state transducers is not possible
because SFTs allow copying of input into the output that breaks many of their
classic properties [22]. Despite many differences, several algorithms are decidable
for SFTs [39]. Whether SFTs can be minimized has been an open problem.

Here we develop a general state reduction algorithm that applies to all STs
and guarantees minimality in the case of deterministic SFTs. In order to capture
minimality we need to extend the definition of an ST [39] to allow initial outputs
in addition to final outputs. The algorithm builds on and generalizes techniques
from [33]. First, an ST A is quasi-determinized to an equivalent ST QD(A) where
all common outputs occur as early as possible. Second, QD(A) is transformed
into an SFA SFA(QD(A)) over a complex alphabet theory where in addition to
the input, each complex character includes a list of output and a pair of current
and next register values; A and SFA(QD(A)) have the same set of (control) states.
Third, sFA(QD(A)) is used to compute a bisimulation relation ~ over states
through algorithms in [17,18]. Finally, the quotient QD(A),. is formed to collapse
bisimilar states. A series of theorems are stated to establish correctness of this
algorithm. In particular, Mohri’s minimization theorem [33, Theorem 2] is first
generalized and used to show that, for deterministic SF'Ts, the algorithm produces
a minimal SFT, where minimality is defined with respect to number of states.
We show that, for STs in general, SFA(A), accepts an over-approzimation of all
the valid transductions of the ST A, but the quotient A, preserves the precise
semantics of A for any equivalence relation ~ over states that respects state
indistinguishability in SFA(A). We further generalize the algorithm to use register
invariants. We evaluate the resulting algorithm on a set of STs produced by
composing pipelines consisting of real-world stream processing computations.
The results show that the state reduction algorithm is effective at reducing the
size of symbolic transducers when applied after composition.

To summarize, our contributions are as follows:

— We extend the minimization theorem [33, Theorem 2] to a larger class of
sequential functions (Theorem 1). We generalize the quasi-determinization
algorithm from [33] to the symbolic setting. (§ 3)

— We develop a theory of state reductions of STs through an over-approximating
encoding to SFAs (§ 4 and § 5).
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Fig. 1. a) symbolic finite automaton; b) symbolic transducer.

— We describe how to strengthen STs using known invariants to enable register
dependent state reductions (§ 6).

— We provide a construction of STs that implement decoders and encoders for
prefix codes, e.g., Huffman codes (§ 7.1).

— We show the effectiveness of our state reduction approach on a varied set of
STs obtained as compositions of stream processing pipelines (§ 8).

2 Symbolic Automata and Transducers

Here we recall the definitions of a symbolic finite automaton (SFA) and a symbolic
transducer (ST) [39]. Before giving the formal definitions below, the underlying
intuition behind symbolic automata and transducers is the following. An SFA
is like a classical automaton whose concrete characters have been replaced by
character predicates. The character predicates are symbolic representations of
sets of characters. Such predicates may even denote infinite sets, e.g., when the
character domain is the set of integers. The minimal requirements about such
predicates are that they are closed under Boolean operations and that checking
their satisfiability is decidable.

Ezxample 1. Consider characters that are integers and character predicates as
quantifier free formulas over integer linear arithmetic (with modulo-constant
operator) containing one free variable x. Define Py, as the predicate z mod 2 =
0, and similarly, define P,4q as the predicate z mod 2 = 1. In this setting the
predicate Peyen A Pogq is unsatisfiable and the predicate Peyen V Poqq denotes
the whole universe. The SFA in Figure 1(a) accepts all sequences of numbers
such that every element in an odd position is even and every element in an even
position is odd. The first position of a sequence is 1 (thus odd) by definition. X

An ST has, in addition to an input predicate, also an output component, and it
may potentially also use a register. An ST has finitely many control states similar
to an SFA, but the register type may be infinite. Therefore an ST may have an
infinite state space, where a state is defined as a pair of a control state and a
register value. The outputs of an ST are represented symbolically using terms
that denote functions from an input and a register to an output.

Ezample 2. Consider the symbolic transducer in Figure 1(b). A label ¢/0; u reads
as follows: ¢ is a predicate over (z,y) where x is the input and y the register;
o0 is a sequence of terms denoting functions from (z,y) to output values; u is



a function from (z,y) denoting a register update. For example, true/[y > 3];0
means that the output sequence is the singleton sequence containing the truth
value of the current register y being greater than or equal to 3, and the register
is reset to 0. A label p/o is the label of a finalizer leading to an implicit final
state, with o being the output upon reaching the end of the input if p is true for
the register. X

In the following we present formal definitions of SFAs and STs. The notations
for SFAs are consistent with [17].

A sequence or list of n elements is denoted by [e1,...,e,] or [e;]7;. The
empty sequence is [| or e. Concatenation of two sequences u and v is denoted
by juxtaposition wv and if e is an element and w a sequence then ew (resp. we)

denotes the sequence [eJw (resp. wle]) provided that the types of e and w are

clear from the context. Let u and v be sequences and w = uv. Then u™'w £

denotes the left division of w by u. The relation u < v means that u is a prefix
of v. The operation u A v denotes the maximal common prefix of v and v.

We do not distinguish between a type and the universe that the type denotes,
thus treating a type also as a semantic object or set. Given types ¢ and 7, we write
F(o—) for a given recursively enumerable (r.e.) set of terms f denoting functions
[f] of type o — 7. Let the Boolean type be B. Terms in P(c) = F(c—B) are
called (o-)predicates. The type o X7 is the Cartesian product type of o and 7.

Ezample 3. Suppose we use a fixed variable x for the function argument (x is
possibly a compound argument or a tuple of variables), then an expression such
as X1 + xg € F(ZxZ—Z) represents addition, where x has type ZxZ and x;
represents the i’th element of x for i € {1,2}. E.g. x4 > 0Axy >0 € P(ZxZ)
restricts both elements of x to be positive. X

If S is a set then S* denotes the Kleene closure of S, i.e., the set of all finite
sequences of elements of S. The definitions of symbolic automata and transducers
make use of effective Boolean algebras in place of concrete alphabets. An effective
Boolean algebra A is a tuple (U, ¥,[], L, T,V,A,—) where U is a non-empty
recursively enumerable set of elements called the universe of A. ¥ is an r.e. set
of predicates that is closed under the Boolean connectives, V,A : ¥ X ¥ — ¥,
—:¥ = ¥, and L, T € ¥. The denotation function [] : ¥ — 2V isr.e. and is such
that, [L] =0, [T] =U, for all p,9p € ¥, [oV¢] = [p] U], [p AY] = [e] N[V,
and [~¢] = U \ [¢]. For ¢ € ¥, we write Sat(¢) when [¢] # 0 and say that ¢
is satisfiable. The algebra A is decidable if Sat is decidable. We say that A is
infinite if U is infinite. In practice, an effective Boolean algebra is implemented
with an API having methods that correspond to the Boolean operations.

2.1 Symbolic Finite Automata

Here we recall the definition of a symbolic finite automaton (SFA). The notations
are consistent with [17]. We first define a X -automaton over a (possibly infinite)
alphabet X, a (possibly infinite) set of states Q as a tuple M = (X,Q,Q°, F, A)



where QY C @Q is the set of initial states, F C Q is the set of final states, and
A:Q x X x Q is the state transition relation. A single transition (p,a,q) in A
is denoted by p = ¢. The transition relation is lifted to Q x £* x @ as usual:
forall p,¢,r € Q,a € Y andu € X*: ¢ S ¢q; if p % ¢ and ¢ % r then p 2% r.
The language of M at pis L(M,p) ={w € X* | 3g € F : p > q}. The language
of Mis Z(M) = U,cqo £ (M,q). M is deterministic if |Q°| = 1 and whenever
p = gand p 2 7 then g = r. M is finite state or FA if Q is finite. ¥-DFA stands
for deterministic finite (state) automaton with alphabet 3.

Definition 1. p,q € Q are indistinguishable, p =1 q, if L (M,p) = L (M, q).

If = is an equivalence relation over @ then for ¢ € @, g= denotes the =-

equivalence class containing ¢ and for X C @, X< denotes the set of all g=

for ¢ € X. Clearly, =) is an equivalence relation. The =-quotient of M is
def

M= = (E,Q/E,q?E,F/E,{q/E 5 opi= | q % p}). My, is canonical and
minimal among all X-DFAs that accept the same language as M [17].

Definition 2. A symbolic finite automaton (SFA) M is a tuple (A, Q, Q°, F, A),
where A is an effective Boolean algebra called the alphabet, @) is a finite set of
states, Q° C @ is the set of initial states, F C Q is the set of final states, and A
is a finite subset of Q@ x ¥4 x @ called the transition relation.

Definition 3. Let M = (A4,Q,Q°, F, A) be an SFA and ¥ = U 4. The underlying
Y-FA of M is [M] = (2,Q,Q°% F,{(p,a,q) | (p,,q) € A,a € [¢]}).

2.2 Transducers and Sequential Functions

Sequential functions are defined in [33] as functions that can be represented by
deterministic finite state transducers that, in order to be algorithmically effective,
operate over finite state spaces and finite input and output alphabets. Here we
lift the definitions from [33] to the infinite and nondeterministic case. Fortunately,
the key results that we need from [33] do not depend on finiteness of alphabets.?

Definition 4. A transducer is a tuple f = (Q,Q°, F, I,0,1, A, $) where Q is a
nonempty set of states, Q° C Q is the set of initial states, F C Q is the set of final
states; I and O are nonempty sets called input alphabet and output alphabet,
L C Q0 x O* is the initial output relation or the initializer, A C Q x I x O* x Q is
the transition relation, and $ C F x O* is the final output relation or the finalizer.
f is deterministic if |Q°| =1, 1: Q° — O* and $ : F — O* are functions, and
A:Q xI— O* x(Q is a partial function.

In the following let f = (Q, Q°, F, I, 0,1, A, $) be a fixed transducer. The following
notations are used: p RZAN q stands for (p,a,u,q) € A, and p /—u> stands for
(p,u) € $, and /—u> p stands for (p,u) € ¢. The transition relation is lifted to

3 A technical difference is that Mohri [33] defines the state and the output components
of a transition relation separately.



Q x I x O* x Q as follows. For all p,q,7r € Q,a € I,v e I*,u,we O*: p 6/—e»p,
. a/u v/w avﬁw .
if p — g and ¢ —» r then p ——» r. Further, for complete transductions

the transition relation is lifted to Q@ x I* x O*. For all p,q, € Q,v € I*,u,w € O,

if p U/—u» q and ¢ /—w> then p M» The transduction of £ from state p is the
relation 7 (f,p) C I* x O* such that

e v/w
T (£.p) = {(v,w) | p ——»}
The transduction of f is the relation 7 (f) C I* x O* such that
T (£) = {(v,wow) | Ip € Q" such that UALN P U_/“;;}

Two transducers are equivalent if their transductions are equal. The domain of f
at state p is the set 2(f,p) = {v € I* | 3w € O* : (v,w) € T (f,p)}. The domain
of fis 2(f) = {v e I* | 3w € O* : (v,w) € F(f)}. For any state ¢ € Q define
Pt 4, or P, when f is clear, as the longest common prefiz of all outputs from ¢ in
f:

P, d:Cf/\{w | Fv: (v,w) € T(f,q)} where /\Q] e

Transform the initializer, the finalizer and the transition relation by promoting
the common output prefixes to occur as early as possible as follows:

def

(q,wPy) | (q,w) € ¢}
(p,a, By 'wPy, q) | (p,a,w,q) € A}
(¢, Py 'w) | (g, w) € 8}

l>> >

a

e
s

The corresponding transformation of f is defined as follows.
Definition 5. Quasi-determinization of f is qd(f) & (Q,Q°, F, 1,0, i, A, $).

Quasi-determinization of f can be seen as a way to reduce nondeterminism in
the output part and the following proposition follows from the definitions.

Proposition 1. 7 (f) = 7(qd(f)) and qd(qd(f) ) = qd(f).

When f is deterministic we write J;, : Z(f,p) — O* for 7 (f,p) and F :
2(f) — O* for T (f) as functions. In particular, 5 (v) = w means (v, w) € J(f)
and similarly for .7 (f, p). Moreover, let f(v) = Z;(v) for v € Z(f).

Definition 6. A sequential transducer is a deterministic transducer with finitely
many states. A sequential function is the transduction of some sequential trans-
ducer. A sequential transducer is minimal if there exists no equivalent sequential
transducer with fewer states.

The initial output is needed for minimality, while the finalizer increases expres-
siveness.



Ezample 4. Consider an HTML decoder that replaces every pattern &1t; with
<; e.g. the string "&1t;&1t" is mapped to "<&1lt". This is a sequential function
whose sequential transducer requires the use of a finalizer, unless I is extended
with a new end-of-input symbol that is used to terminate all input sequences. X

Let f = (Q,Q° F,1,0,t,A,$) be a transducer. The underlying automaton of f
combines inputs and outputs into single labels. Let ¢°,¢* ¢ Q be distinct new
states and let X' be the alphabet:

Y ={cw|3q:(q,w) € US}U{cy, | Ip,q: (p,a,w,q) € A}

The X-automaton of f is aut(f) = (2, QU {¢°,¢*},{¢°}, {¢*}, Ao U A, U Ay},
where Ay = {(¢°, cw,p) | (p,w) € 1}, A1 = {(p,c2,q) | (p,a,w,q) € A}, and
Ay ={(p,cw,q®) | (p,w) € 8}

Minimization of a sequential transducer f = (Q,Q°, F, I,0,t, A, $) proceeds
now in two steps. First, f is quasi-determinized to qd(f). Second, qd(f) is mini-
mized by collapsing states that are indistinguishable with respect to aut(qd(f)).
Let = be Eaut(qd(f)) in:

ad(f)z = (Q=, QL. F=, 1,0, iz, A, $12)
b= ={(g=,w) [ (¢,w) € 1}

5= = {(g=w) | (q.w) €8}

A = {(p=a,w.q2) | (p.a,w,q) € A}

The following is a generalized form of Mohri’s theorem that allows finalizers

and infinite alphabets. For our purposes it therefore captures minimality at the
semantic level rather than providing a decision procedure for minimization.

Theorem 1 (Mohri). If f is a sequential transducer then qd(f) is a

minimal sequential transducer that is equivalent to f.

[Zaut(ad(£))

2.3 Symbolic Transducers

A symbolic transducer (ST) represents a streaming computation over finite input
sequences, where the input elements belong to some not-necessarily bounded
domain. Let X Cg, Y stand for X is a finite subset of Y.

Definition 7. A symbolic transducer is a tuple A = (I,0,Q, ¢°,0°, T, F, R, r°)
where I is an input element type, O is an output element type, R is a register
type, and Q is a finite set of control states, and where ¢° € Q is the initial control
state, r° € R is the initial register, o° € O* is the initial output,

T Can Q@ X (P(IXR) x F(IXR—0)* x F(IXxR—R)) X Q
F Can Q x (P(R) x F(R—0)")

T is the transition relation, and F is the finalizer.



Let 2(F) denote the set of all (¢,7) € F x R such that there exists a final rule
(¢,0,7) € F and r € [¢]. Given 0 = [v;]", € F(r1—72)* we let [0] denote the
function from 71 to 75 such that for a € 1, [7](a) = [[vi](a)]i;.

Definition 8. The underlying transducer of A, denoted by [A], is defined as the
transducer (Q x R, {(¢°,7°)}, 2(F),1,0,{(¢° r°) — 0°}, A, $) where

A={(pr) LD (g, [ul (@) | (. (02 5,0),) € T (a7) € []}
5= 1{(p.1) 15 | (0, (0,0)) € For €[]}

A is deterministic if [A] is deterministic. Let A = (1,0, Q,¢°,0°, T, F, R,7°) be
a fixed deterministic ST.

Definition 9. A is a symbolic finite transducer or SFT if |R| = 1. We omit the
trivial register type and omit the corresponding components when A is an SE'T
and let A= (1,0,Q,¢",0°, T, F) where T Cg,, Q x (P(I) x F(I—0)*) x Q and
F Cqy @ x O*. A deterministic SFT A is minimal if [A] is minimal.

A deterministic SFT is the symbolic counterpart of a sequential transducer.
Observe that in any symbolic transducer with a finite register type we can
eliminate the register component by fusing it with the control state component
and thus turn the ST into an SFT by using a state exploration algorithm [40].

Ezample 5. See Figure 2. Smileyfy is a deterministic SFT whose input type and
output type is Unicode.* The purpose of Smileyfy is to decode each pattern :-)
into a smiley symbol® and to leave the input unchanged otherwise. For example
Smileyfy("®@:=) :=") = "©O:-". Unsmileyfy is an SFT that replaces each smiley
with the pattern :-) and leaves the input unchanged otherwise. X

3 Quasi-Determinization of Symbolic Transducers

Let A= (1,0,Q,q",0°, T, F, R,7°) be a fixed ST. Assume that the ST is clean,
meaning that all predicates that occur in the rules of A are satisfiable. Given a rule
rin T or F' we can effectively decide if some element of the output has a fixed value
that is independent of the input and the register. Such constant value analysis is
performed as follows. Consider (p, (Az.¢(z), [Az.v;(z)];,u),q) € T. Recall that
x: I x Rand v;(z) : O. In order to decide if Vza' : p(x) A p(z') = v;(x) = v;(2)
check unsatisfiability of p(z) Ap(x") Av;(z) # v;(a’). If the formula is unsatisfiable
we know that this implies that v;(z) is a fixed value for any x such that o(z)
holds because ¢(z) is satisfiable since the ST is clean. We can then select an
arbitrary model 2 = p(x) and evaluate v;(x) in that model, say a; = v;(x)*
and replace v; by a; in the output of the rule (as a preprocessing step of A).

4 The Unicode alphabet is finite but very large, over a million characters. For most
practical purposes it is considered as the set on natural numbers N.
® For example Unicode codepoint 263416 or a smiley in the emoticon alphabet [2].
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Fig. 2. SFTs: a) Smileyfy; b) Unsmileyfy; ¢) SU = Smileyfyo Unsmileyfy; d) QD(SU).

If, on the other hand, ¢(z) A p(z') A v;(x) # v;(2') is satisfiable it means that
there exist at least two different outputs (for some different inputs for x and 2/,
respectively). Let 1 and 2 be two fixed distinct symbols. Create multi-symbol
NFA transitions p =" ¢ where ¢; = a; in the first case and ¢; € {1, 2} in the
second case. This yields an NFA over the finite alphabet O U {1,2} that can be
quasi-determinized [33] to compute the maximal common prefixes Py ,, or P,
when A is clear, for all p € Q. Observe that P, € O* because the symbols 1 and
2 cannot occur in any common prefix since they conflict with each other. Next,
the rules of A can be transformed to quasi-determinize A as follows. In each
transition from p to ¢ with output v, replace v by P, 19P,. In every final rule
from p with output v, replace ¥ by Pp_lﬂ. The initial output becomes 6° = OOqu.
Let the resulting ST be QD(A) B (1,0, Q,q°,6°,T,F,R, r0).

Lemma 1. 7 ([QD(A)]) = 7 (ad([A])).
Lemma 2. If A is an SFT then [QD(A)] = qd([A]).

The following example illustrates the effect of quasi-determinization on SFTs.
The example gives a simplified but realistic scenario involving composition of
string manipulating functions. Chains of string transformations where data has
been encoded and is being decoded before further analysis are frequent and may
lead to extensive computation overheads [35].

Ezxample 6. Recall Figure 2. Composition of Smileyfy with Unsmileyfy is an SF'T
SU that first applies Smileyfy and then Unsmileyfy. SU is shown in Figure 2(c).
If we calculate the maximal output prefixes for all the states in SU we get that



P, =€, P, =":", and P, = ":-". After quasi-determinizing SU we get the
SFT in Figure 2(d). For example, consider the transition from ¢o to ¢; in SU.

Then Py '":="P, =":=""1":=:" = ":" So in QD(SU) we have ¢, g K

To enable more quasi-determinization in the presence of registers the QD-algorithm
above can be modified to also move outputs that are only independent of the input,
but not the register. Instead of checking for a constant value, yields are checked
for input-independence: Va, a’,r : o((a,r)) A p((a',7)) = vi((a,r)) = v;((d’,7)).
The modified QD must also find common prefixes under the equivalence of yield
formulas. To move register-dependent yields the register update of the transition
the yield is moved over must be substituted into the formula. Furthermore, the
yield formulas may be equivalent only under the context of their transitions’
guards, and therefore a representative for an equivalence class of yields may need
to be constructed from the constituent formulas.

4 SFA encoding of symbolic transducers

Here we provide a translation that lifts STs to SFAs. This translation is used
to reduce state reduction of STs to minimization of SFAs and plays therefore
a central role in the paper. Given an ST A = (I,0,Q,q°, 0o, T, F,R,r") we
construct an SFA sFa(A) for A by representing the labels of all the rules of A
as predicates in a set P(L) where L is a type that encodes the labels. Let the
effective Boolean algebra be A, whose universe is L and whose set of predicates
is P(L). We write [o] for the type of finite sequences or lists of elements of
type 0. We access the i'th element of an element x having Cartesian product
type (or tuple type) by x1, x2, x3, etc. We define L as the disjoint union type
T((IxR)x[O]xR) UF(Rx][O]). The intent behind the type L is the following. A
concrete label T((a,r),b,r’) is an instance of the label of a transition such that
for input a and register r the transition produces the output sequence b and
the updated register /. A concrete label F(r,b) is an instance of the label of a
finalizer such that for register r the final output sequence is b.

Definition 10. The predicate encoding of a label | is the following L-predicate
o1 For 1= (o, [fi]*-1,9) € PUXR) x F(IxR—O0)* x F(IxR—R):

¢1(x) = IsT(2) A (1) Awy = [fil@1)]ioy A s = g(a).
For I = (¢, [fi]’~y) € P(R) x F(R—O)*:

¢i(x) = IsF(x) A p(z1) Awa = [fi(21)]i,.

An important aspect of ¢; is that it is quantifier free and that its satisfiability is
decidable provided that A is decidable. Moreover, —¢; is a quantifier free predicate
in P(L) by virtue of P(L) being closed under complement.

Definition 11. The SFA of A, denoted SFA(A), is the following SFA:

SFA(A) dZEf (P(L)a Q U {q.}a qO’ {q.}a ASFA(A))
Aseaay = {(p.¢1,0) | (p,1,9) € TYU (P, 01,¢°) | (p, 1) € F}



The following theorem relates the transduction semantics of an ST with the
language of the corresponding SFA.

Theorem 2 (Control State Abstraction). The following are equivalent for
allu=(ay--ap) € I* and v € O*:
1. (u,0%) € F([A])
2. There exist ro =19, e € O*, and, for 1 <i<n, v; € O*, r; € R, such that
[T((as, 1), vi, 7)) |7 [F(rn, €)] € ZL(SFA(A)) and v = vive - - vpe.

Proof. Any L-predicate over T-elements can be written equivalently as

)‘T((xay)’z,w)")/(xay) Nz = f(x,y) ANw = g(ac,y)

which maps one-to-one with the ST transition label «/f;g. Similarly for F-
elements. We now state the following key property between A and SFA(A) that
directly relates the trace semantics of A with the language of SFA(A). The proof
of (*) follows from the definitions.

(*) Forall p,g € Q, r,s € R,a €l and v € O*:

a/v T((a,r),v,s) e/v F(r,v) .
(p7r)W(Q7S) = P m@] 4 and (p,T)WH:) P Tmcar ¢ -
Theorem 2 is proved by induction over the length of v and by using (*). X

We refer to Theorem 2 as the ST control state abstraction theorem because
Z(sFA(A)) abstracts the use of the particular control states in any run of A.
Note that while Theorem 2 ensures that Z(SFA(A)) includes all valid trans-
ductions, Z(SFA(A)) may also include sequences that do not correspond to
valid transductions due to the register not evolving consistently, i.e., sequences
containing a subsequence [T((a;,7;), vi, i), T((@i41,75), Vit1,Tit1)] Where r; # 7.
We will see in the next section that it is still safe to use SFA(A) for control state
reduction in A.

5 Minimization

We use the following algorithm for reducing the number of control states of
an ST A. We first quasi-determinize A and then transform QD(A) into an
SFA srFA(QD(A)) and use existing algorithms to reduce the number of states
of sSFA(QD(A)). The reduction of SFA(QD(A)) provides us with an equivalence
relation ~ over ) that can be used to merge ~-equivalent states in A while
preserving the transduction semantics of A. If ~ is an equivalence relation over
Q@ then the ~-quotient of A is the ST

A (1,0, Qg {(Dn 1. 9) | (0.1.0) € TV (D) | (p.1) € FY.R.°).

The following theorem states that we can merge control states in A that are
indistinguishable in SFA(A) into one state, without affecting the transduction
semantics of A.



Theorem 3. Forallq € Qa, 7 € R, u € I*, v e O, and equivalence relations
~ C =q(a) this holds: (u,v) € T ([A],(q,7)) < (u,v) € T([AL], (¢~, 7))

Proof. Let u = [a;]?_,. Suppose p ~ q. We have the following equivalences:

(p,7) %»<:>le...pn,rl...rn,vl...vn,e:v=v1 +vo+--- v, +e,
ai /v as/v e/e
(p,7) =gy (rom1) = (P2,72) - (7)) o
S AP ... P T,V . Un, €0 =01 + V3 + -+ v, + €,
T((a1,7),v1,71) T((a2,71),v2,72) F(rn,e) .
P m@l P17 pm@] P2 Pr Fma ¢
s3Iy oph i v U, e =01+ U+ v, e,
T((a1,7),v1,71)  , T((az2,71),v2,72) 4 ) Flrn,e) o
Bl P T mm@l P2 P Fmar ¢
S 3Ipl.ph i T, v e v =01+ g+ v, e,
ay /v az/v e/e
(g,7) =g (Phme) =g (Pam2) -+ (P ) L
v

u/
= —

(@:7) T4
where the first equivalence holds by definition, the second equivalence uses
Theorem 2(*), the third equivalence uses p =g (4) ¢, the fourth equivalence uses
Theorem 2(*) again, and the last equivalence holds by definition. Therefore we
can replace g by ¢, without affecting the transduction semantics. X

The key implication for A is that we can replace all indistinguishable control
states with a single fixed representative of the indistinguishability equivalence
class. The most typical use for minimization arises as a post-processing step after
composition. The following example illustrates a simplified scenario. The fusion
composition of A and B, denoted A o B, has the classic semantics of relation
composition: (w,v) € Tuop < Iz : (w,2) € Ty A (z,0) € Tp.

Ezample 7. If we apply the SFA minimization algorithm from [17] to the SFA
SFA(QD(SU)), with QD(SU) as in in Figure 2(c), we get an equivalence relation
where all the states are indistinguishable. It turns out that the composed SF'T in
Figure 2(d) is equivalent to the minimal SFT in Figure 2(b). X

We get the following general state reduction theorem for STs by combining the
above theorems. In the special case of deterministic SFTs it is a minimization
theorem that provides a partial answer to the open problem of whether SFT's
can be effectively minimized. For the case of functional (aka. single-valued)
but possibly nondeterministic SFTs is still an open problem if an effective
minimization procedure exists.

Theorem 4. Let A= (1,0,Q,q°,0°,T,F,R,r%) be an ST. The following holds.
a) If ~ C =g (qn(a)) and ~ is an equivalence relation then 7 (QD(A).) = T (A).
b) If A is a deterministic SFT then QD(A) is minimal.

/=sea(an(A))



Proof. We prove (a) first. Let ~ C =g (qn(4)) be an equivalence relation, u € I*,

and w € O*. Recall that, for any ST B, 7(B) = F([B]). Let 0 = 0Py 0. We
get that

(u,w) € T([aD(A).]) < o< wand (u,0 'w) € T ([QD(A).], (q/N,ro))
TS 5 L wand (u,0" w) € T ([ap(A)], (¢°, %))
= (u,w) € 7([ap(A)])
T (u,w) € 7 (qd([A])
TR (u,w) € 7([A])

We prove (b) next. Let ~ be =g, (qn(a))- By [17, Theorem 2] and Lemma 2
we have that [QD(A)] = qd([A]) and so ~ = =au¢(qa([a]))- Theorem 1 implies
now that qd([A])/. is minimal and 7 (qd([A])~) = 7 (A) which implies that
QD(A)/. is minimal since [QD(A)],. = [QD(A).] = qd([A]), where we may
assume, without loss of generality, that the state space of an SFT Ais Q. X

We can apply Theorem 4(a) to deterministic STs by using the minimization
algorithms from [17] to compute =g, (gp(4)), since determinism is preserved by
the SFA transformation. It is also clear that QD(-) preserves determinism.

Theorem 4(a) also holds for nondeterministic STs. Practical significance
of Theorem 4(b) is that most SFTs that are being used in the context of
string encoding, string decoding and string sanitization routines [25] are indeed
deterministic and composition of SFTs are used frequently for example for
composing different encoding routines and minimization is one technique to
optimize such generated code.

While Theorem 4 provides a way to minimize the number of states in an
SE'T, the transitions may still have a non-minimal representation. The techniques
and complexity for minimizing guards and output formulas will depend on what
the effective Boolean algebra in question is. For example for BDDs choosing the
variable order that minimizes the size is NP-complete [11], while general Boolean
formula minimization is NP -complete [13].

6 Register-carried indistinguishability

The SFA encoding presented in Section 4 does not handle indistinguishability
arising from register carried dependencies.

Ezample 8. In the SFA encoding of the ST in Figure 1(b) the states ¢; and ¢, are
C . . . . ops true/[x > 3];0
distinguishable, since the encoding of the transition ¢; q3 matches
the set of concrete labels { T((a,r),[b],0) | a € I, € R,b = (r > 3) }, which is

distinct from the concrete labels { T((a,r),[b],0) | a € I,r € R,b = (r < 3)}
matched by the encodi>ng of the transition g true/lz < 31;0

3/11; . . . .
ST the transition qq w) q1 is the only incoming transition for ¢; and thus

the register value at ¢; will always be > 3, which implies that the transition from

qs3. However, in the



¢1 to g3 can only output [true]. By a similar argument the same holds for the
transition from go to g3. Therefore the two states are indistinguishable when the
state invariants implied by the incoming transitions are taken into account. X

Assuming such invariants are available they can be used to strengthen an ST to
make more state reduction available.

Definition 12. Let there be an ST A = (1,0, Q,¢°,0°, T, F, R,°) and a func-
tion ¢ : Q@ — P(R) such that for allp € Q, r € R, v € I* and w € O* it holds
that

(@"1°) 25 (1) = <))

Intuitively ¢ gives per-control state invariants for all reachable register values.
Now a corresponding strengthened ST INVS(A) can be constructed as:

INVS(A) = (1,0,Q,¢°,0°, T, F', R, r°)

C(p) Ap/viu
T/:{ L>q|(pasovv7uaq)€,r}

= {p P | (ppi) € F)
Theorem 5. 7 (INVS(A)) = T (A)

Proof. Recall the assumption that for all p € Q, r € R, v € I[* and w € O* it
holds that (¢°,r%) —=» 1[}[1/4]] (p,7) = C((p)(r). Now for any (p,r) appearing in a
trace of [A] we have ((p)(r) and, therefore, by Definition 8 [A] and [INV¢(A)]

have the same outgoing transitions from (p,r). Thus forallp e Q, r€ R,v el
and wg, w,w; € O* we have

Jwo 0 1;/ /w1

—>/ o ') ek ) e
[inve (A)] P [iNnve (A)] p, [inve (A)]
Therefore 7 (INVS(A)) = T (A). X

Using this strengthening the ST in Example 8 could be further reduced with
the invariants ((q1) = y > 3, ((g2) = y < 3 and ((g0) = ¢(gs) =y = 0. In
Example 8 these invariants immediately follow from the conjunction of constraints
from incoming transitions for each control state. In general reachability analysis
techniques, such as PDR [12], or other invariant condition generation algorithms
could be used. This strengthening technique also implies that transitions for STs
should be written in a non-defensive way to enable the most reduction.

7 Implementation

We have implemented an ST state reduction tool that builds upon a framework
and algorithms developed in [35] that are available in the open source Microsoft



Automata library [1]. The tool is an integrated part of a tool chain which composes
pipelines of STs and generates efficient code for them.

The tool allows STs to be specified as (i) imperative code in a subset of C#,
(ii) XPath expressions or Regular expressions with capture groups hierarchically
composed to other STs, (iii) compositions of other STs. For compositions the tool
produces a single ST using a fusion algorithm that uses Z3 to prune unsatisfiable
transitions.

7.1 Huffman coding

We have extended the tool with support for generating SFTs that perform
Huffman encoding and decoding [26]. Huffman coding is an optimal prefix code
that assigns variable length bit patterns to symbols. Symbols are assigned bit
patterns according to their frequency in such a way that more common symbols
are represented with shorter bit patterns. Huffman coding is only one class of
prefix codes. We will now give constructions of SF'T decoders and encoders for
any prefix code.

Definition 13. A prefiz code tree is a tuple (Q, E, qo, X, S,lx,ls), where @ is a
set of at least two vertices, o € @ is the root, £ C Q x Q s.t. (Q, E, qp) is a tree
rooted at gy with all edges in E directed away from the root, X' is the coding
alphabet and S is the symbol alphabet.

Iy : E — X is a function s.t. Y(p,q), (p,¢) € E : lx(p,q) # ls(p,q). Let
Qeaves De the leaves of the tree (nodes with no outgoing edges). ls : Qeaves — S
associates leaves to symbols.

Given a prefix code tree P the decoder for P is an SFT (2,5, Q \ Qicavess 90, €,
T,{(qo, true, €)}) where:

=1s(p,q)/e
T={p—"""5q| (p.9) € E\ (Q X Queaves) }
=1 s l
U {p =0 9/ (@) qo | (pa L]) eEEN (Q X Qleaves)}

The encoder for P is an SFT (S, X, {po}, po, €, T, {(po, true,€)}) where:

z = ls(q)/code(q)
T:{po i ! p0|q€Qleaves}

code(q) = let q1, ..., qn be the unique path in E from ¢o to ¢ in
[lﬂ(q()v Q1), lZ(Qla QZ)v RN ZZ,‘(Qn; q)]

We will show in our evaluation that Huffman decoders in particular are very
amenable to state reductions when composed with other transducers.

8 Evaluation

We evaluate the tool on STs drawn from [35]. These STs are fused pipelines
consisting of real-world stream processing computations. The first four pipelines



represent various stream processing scenarios: Base64-avg calculates a running
average (window of 10) for Base64% encoded ints and re-encodes the results in
Base64. CSV-max decodes an UTF-8 encoded CSV file to UTF-16, extracts
the third column with a regular expression and finds the maximum length of
these strings. The output is a single UTF-8 encoded decimal formatted integer.
Base64-delta reads Base64 encoded ints and outputs deltas of successive inputs
as UTF-8 encoded decimal integers on separate lines. UTF8-lines decodes an
UTF-8 encoded file to UTF-16 and counts the number of newline characters. The
output is a single UTF-8 encoded decimal formatted integer.

The following pipelines focus on CSV parsing scenarios using the regex
based parsing offered by the tool: CC-id is written for a dataset of consumer
complaints received by the U.S. Consumer Financial Protection Bureau. The
pipeline produces the maximum value for the ID column. CHSI-cancer is
written for a dataset on health indicators from the U.S. Department of Health
& Human Services. The pipeline produces the average lung cancer deaths for
counties in the dataset. SBO-employees is written for a dataset on business
owners from the U.S. Census Bureau. The pipeline finds the maximum number
of employees for businesses in the dataset.

Each of these pipelines consist of four phases: (i) decode UTF-8 to UTF-16,
(ii) parse a column as an int using a regular expression based parser, (iii) run a
query (maximum, minimum or average), and (iv) output the result as a sequence
of bytes. The pipelines differ only in the regular expression and query used.

The following pipelines are written for XML processing scenarios and use an
XPath based transducer for extracting the relevant data: TPC-DI-SQL The
dataset was generated by a tool from the TPC-DI benchmark [34]. The pipeline
extracts ids of accounts from customer records and for each outputs an SQL insert
statement. PIR-proteins The dataset is a protein dataset from the U.S. based
National Biomedical Research Foundation. The pipeline extracts the lengths
of all proteins in the dataset and outputs the average length. DBLP-oldest
The dataset is bibliographic information from the Digital Bibliography Library
Project. The pipeline extracts the publication year of each article and outputs
the earliest year. MONDIAL-pop Mondial is a dataset extracted from various
geographical Web data sources. The pipeline extracts the population of each city
in the dataset and outputs the highest population.

Additionally we evaluate one pipeline using the new Huffman decoding de-
scribed in Section 7.1: Huffman decodes a Huffman encoded ASCII file and
counts the newline characters. The data for creating the Huffman tree is Herman
Melville’s “Moby Dick”.

For each pipeline in our evaluation we produce a single ST as the composition
of the whole pipeline and apply the state reduction algorithm to it. In Figure 3
we report the number of control states removed, the number of control states
remaining and the time taken by the state reduction.

For the pipelines in Figure 3 an average of 25% of the control states are
removed. The amount of state reduction available is highly variable: for Huffman

5 See https://en.wikipedia.org/wiki/Base64.



Pipeline Removed |Q| Time ‘ Pipeline Removed |Q| Time

Base64-delta 10 18 39.9 s | SBO-employees 4 36 0.2s
CSV-max 4 26 18.0s | TPC-DI-SQL 68 457 44.1s
Base64-avg 114 166 99.6 s | PIR-proteins 80 355 196.1s
UTF8-lines 0 5 0.03 s | DBLP-oldest 36 219 9.8s
CC-id 2024 983 4.4s | MONDIAL-pop 56 319 124
CHSI-cancer 12 558 2.2 s | Huffman 915 360 2.6s

Fig. 3. Control states removed and remaining, and total time taken.

72% of its control states are removed, as counting lines makes all control states that
for all inputs output something else than an end-of-line character indistinguishable.
On the other hand for UTF8-lines there is nothing left to remove as neither of
the single control state line counting or integer formatting STs composed onto
the UTF8 decoder make any control states (that correspond to encodings of
different lengths) indistinguishable.

In general we see our state reduction algorithm being effective when some
control states become indistinguishable due to composition. For example we can
see great reduction in the regex and XML processing pipelines due to multi-byte
encodings from the UTF8-to-UTF16 decoder being handled equivalently in parts
of the regex or XPath matchers.

9 Related work

Minimization of finite state transducers. Minimality of sequential transducers
was first studied by Choffrut [14]. Mohri’s original work on minimizing sequen-
tial finite state transducers appears in [31] and introduces the notion of quasi-
determinization of NFAs, that is similar to classical shortest paths problems
in weighted directed graphs. An incremental algorithm of minimizing acyclic
finite state transducers is described in [30]. A notion of minimization of finite
state transducers in natural language processing is studied in [20] by using flag
diacritics. We stated Mohri’s minimization algorithm so it applies to sequential
transducers with final outputs. The notion of sequential functions with final
outputs are often called subsequential functions and were originally introduced
in [36]. Some algorithms for finitely subsequential transducers are investigated
in [6].

Minimization of symbolic automata. The concept of automata with predicates
instead of concrete symbols was first mentioned in [41] and was first discussed
in [37] in the context of natural language processing. An algorithm for minimizing
SFAs, based on Hopcroft’s partition refinement, is developed in [17]. The MONA
implementation [23] provides decision procedures for monadic second-order logic,
and uses also highly-optimized and minimized BDD-based representation of
automata [27]. The SFA minimization problem is also related to minimizing
control flow graphs of programs, which is studied in [15] by reduction to a variant
of classical automata minimization.



Nondeterministic case. Our main theorem, Theorem 4, allows the ST or SFT
to be nondeterministic and the resulting SFA may, likewise, be nondeterministic.
Recently a state reduction algorithm has been developed for nondeterminis-
tic SFAs that is based on computing forward bisimulations [18]. A forward
bisimulation ~ preserves state indistinguishability and therefore Theorem 4(a)
applies. There are numerous other algorithms, developed for nondeterministic
automata [4,3,7,24,29] that may likewise be extensible for SFAs.

Transducers with registers. Streaming string transducers [9] are another type
of transducer that include a register as part of their state. A significant departure
from symbolic transducers is that the contents of a string held in a register can
be included in the output as a flattened part of the output sequence, thus making
output in a single transition be potentially variable in length. It is unclear how our
techniques would apply to streaming string transducers. In particular, streaming
string transducers with data values are in general not closed under composition [9,
Proposition 4]. Register minimization is a form of resource minimization that
aims at reducing the number of registers and has been studied for streaming
string transducers [10]. Register minimization has also been studied for cost
register automata [8,19].

10 Conclusions

Similarly to products of DFAs and subset constructions of NFAs, compositions
of symbolic transducers (STs) present an important target for minimization.
Composition can often introduce indistinguishable control states, which makes it
possible to leverage minimization algorithms for symbolic finite automata (SFAs)
through an encoding approach. Combined with a quasi-determinization step our
approach guarantees minimality for symbolic finite transducers (SFTs) when
they are deterministic.

Minimizing an SFA encoding of an ST provides a very general control state
reduction approach, which is agnostic to how the SFA is minimized as long as
indistinguishable equivalence classes of control states are identified. The approach
is even agnostic to nondeterminism and as such enables nondeterministic ST's
to be targeted as minimization algorithms for nondeterministic SFAs become
available. To allow state reduction in STs where indistinguishability is due to
register carried constraints, an ST can be strengthened using known invariants
on the register.

On a set of STs composed from real-world streaming computations our state
reduction algorithm removes an average of 25% showing that the approach is
effective even with the over-approximation involved in the SFA encoding.
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