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Abstract
Algebraic e�ect handlers generalize many control-�ow abstractions

that are implemented specially in most languages, like exception

handling, iterators, or backtracking. In this article, we show how

we can implement full support for asynchronous programming

as a library using just algebraic e�ect handlers. The consistent

type driven approach also leads naturally to powerful abstractions

like block-scoped interleaving, cancellation, and timeout’s that

are lacking in other major asynchronous frameworks. We also

introduce the concept of ambient state to reason about state that is

local to the current strand of asynchronous execution.

Keywords Algebraic e�ects, Koka, e�ect types, asynchronous

programming

1. Introduction
Suppose I design a programming language that should support

complex control �ow statements like exception handling, iterators

(yield ), and even asynchrony (async-await ). I could take the C#,

C++, or JavaScript way and implement each of these specially: �rst

I change the compiler to add special keywords and syntax to the

language that are checked with speci�c type rules. Then I extend

the runtime with exception handling stack frames for exceptions.

For iterators and async-await it is more complicated and I also need

to implement special compiler transformations to turn regular code

into stack restoring state machines etc. I also need to take special

care that all of these features interact as expected, e.g. ensure that

�nally blocks from my exception handling code are not forgotten

in the state machines for the iterator code. It is possible to do this,

but it is a di�cult road to travel. Moreover, I need to do all of this

again for the next control �ow abstraction that comes along.

Or I could have used algebraic e�ect handlers instead!

Algebraic e�ects (Plotkin and Power, 2003) and their extension

with handlers (Plotkin and Pretnar, 2013, 2009), come from cat-

egory theory as a way to reason about semantics of e�ects. An

algebraic e�ect has interface in terms of a set of operations (and laws

governing those operations), and we can give those operations a

semantics through an e�ect handler . This single mechanism can de-

scribe any (algebraic) free monad and as a consequence generalizes

most control-�ow abstractions that need to be handled specially in

many other languages. We argue that it is better if a language just

implements support for algebraic e�ects and implements all other

abstractions on top of that. This has several advantages:

• Algebraic e�ects have a solid semantic foundation in cate-

gory theory and are well understood. They can be composed
freely and their composition is always well de�ned.

• It can lead to simpler and more e�cient runtimes and com-

pilers since there is just one mechanism that needs to be

supported well. As shown in Section 4.1, the operational

semantics is simple and o�ers many opportunities for op-

timization. Moreover, it is an untyped dynamic semantics

– meaning that algebraic e�ects can be applied in many

settings and that static types (as in Koka) are not essential.

• With general algebraic e�ects library writers are empow-

ered to implement various high-level abstractions without

needing special compiler support or language extensions.

This paper does not give a �nal answer to the above argument.

However, we answer part of it by giving an overview of how we

can implement the asynchronous async-await (and exceptions and

iterators) abstraction as a library using just algebraic e�ects. In

particular:

• We implement full support for asynchronous programming

in the style of async-await but as a library using just plain

algebraic e�ect handlers without adding special primitives

to our language. We demonstrate this in Koka, a language

with algebraic e�ects with static type inference, which com-

piles to JavaScript that can run fully asynchronous on either

Node.js or the browser.

• The consistent type driven development leads naturally to

powerful abstractions that are (currently) lacking in main-

stream asynchronous platforms like Node.js and .NET, like

cancelable , timeout , and interleaved . These are all non-

trivial to implement and we spend a signi�cant part of the

paper to discuss them in detail (Section 3). It’s our hope this

work may lead to these abstractions being implemented on

other platforms in the future.

• The implementation of asynchronous operations on top of

real world platforms is also a validation of the expressive-

ness of Koka’s e�ect types based on row-polymorphism (Lei-

jen, 2017, 2016b, 2005). We extensively use rank-2 polymor-

phic types (Leijen, 2009, 2008) to safely encapsulate local mu-

table state inside e�ect handlers (Leijen, 2014; Launchbury

and Sabry, 1997). This technique has not found wide-spread

use before, but safe state encapsulation works surprisingly

well in combination with algebraic e�ect handlers.

There is a full implementation of async-await as a library in Koka

and all examples can be run in either the browser or on Node.js.

See (Leijen, 2016a) for detailed instructions to download Koka and

program with algebraic e�ects.

We start by giving a general overview of Koka and algebraic

e�ects in Section 2. The main part of the paper is the description of

the implementation of asynchronous e�ects in Section 3. Section 4

de�nes the formal semantics of our system and we �nish with the

conclusion in 5. There is no separate related work section – instead

we try to reference and discuss related work at each topic inline.

2. Overview
In this section we give an overview of programming with alge-

braic e�ects. The interested reader may take a quick look ahead at



Figure 4 in Section 4.1 to see the precise operational semantics of

algebraic e�ect handlers. For the sake of concreteness, we show all

examples in the current Koka implementation but we stress that

the techniques shown here apply generally and can be applied in

many other languages.

Koka is a call-by-value programming language with type in-

ference that tracks e�ects. The type of a function has the form

τ→ ϵ τ ′ signifying a function that takes an argument of type τ ,

returns a result of type τ ′ and may have a side e�ect ϵ . Note that,

unlike Haskell, there are three arguments to the function arrow

and we should not parse ϵ τ as the type application ϵ 〈τ〉! We can

leave out the e�ect and write τ→ τ ′ as a shorthand for the total

function without any side e�ect: τ→ 〈〉 τ ′. A key observation on

Moggi’s early work on monads (Moggi, 1991) was that values and

computations should be assigned a di�erent type. Koka applies that

principle where e�ect types only occur on function types; and any

other (value) type, like int , truly designates an evaluated value that

cannot have any e�ect.

Koka has many features found in languages like ML and Haskell,

such as type inference, algebraic data types and pattern matching,

higher-order functions, impredicative polymorphism, open data

types, etc. A pioneering feature of Koka is the use of row types with

scoped labels to track e�ects in the type system, striking a balance

between conciseness and simplicity. The system works well in prac-

tice and has been used to write signi�cant programs (Leijen, 2015).

Recently, the e�ect system was extended with full algebraic e�ects

and handlers (Leijen, 2017).

There are various ways to understand algebraic e�ects and han-

dlers. As described originally (Plotkin and Power, 2003; Plotkin and

Pretnar, 2013), the signature of the e�ect operations forms a free al-

gebra which gives rise to a free monad (Awodey, 2006). Free monads

provide a natural way to give semantics to e�ects, where handlers

describe a fold over the algebra of operations (Swierstra, 2008; Kise-

lyov and Ishii, 2015; Wu and Schrijvers, 2015). The original work

on algebraic e�ects gives a solid semantic foundation and works

well for proofs and semantic exploration.

However, for working with algebraic e�ects as a programming

construct, it is can be more intuitive to use a more operational

perspective. It turns out we can view algebraic e�ects operationally

as resumable exceptions (or perhaps as a more structured form

of delimited continuations). We therefore start our overview by

modeling exceptional control �ow.

2.1. Exceptions as Algebraic E�ects
Suppose we have a programming language (like Koka) that has

algebraic e�ects, but no builtin notion of exception handling. In

such language you can de�ne exception handling yourself as a

library – no need for special compiler support! The exception e�ect

exn can be de�ned in Koka as:

e�ect exn {

fun throw( s : string ) : a
}

This de�nes a new e�ect type exn with a single primitive operation,

throw with type string → exn a for any a (Koka uses single letters

for polymorphic type variables). The throw operation can be used

just like any other function:

fun exn-div( x, y ) {

if (y == 0) then throw("divide by zero") else x / y
}

Note that in Koka we can use identi�ers with dashes (as in exn-div
) and end identi�ers with question marks (as in done? ). Type infer-

ence will infer the type exn-div : (int,int) → exn int propagating

our new exception e�ect. Up to this point we have introduced the

new e�ect type and the operation interface, but we have not yet

de�ned what these operations mean. The semantics of an opera-

tion is given through an algebraic e�ect handler which allows us to

discharge the e�ect type. The standard way to discharge exceptions

is by catching them, and we can write this using e�ect handlers as:

fun catch(action,h) {

handle(action) {

throw(s)→ h(s)
}

}

The handle construct for an e�ect takes an action to evaluate and a

set of operation clauses. The inferred type of catch is:

catch : ( action : () → 〈exn | e〉 a, h : string → e a) → e a

The type is polymorphic in the result type a and its �nal e�ects e
, where the action argument can have the exn e�ect and possibly

more e�ects e. As we can see, the handle construct discharged the

exn e�ect and the �nal result e�ect is just e. For example,

fun zero-div(x,y) {

catch( {

exn-div(x,y)

}, fun(s){ 0 } )

}

has type (int,int) → 〈〉 int and is a total function. Note that the

Koka syntax { exn-div(x,y) } denotes an anonymous function that

takes no arguments. Koka also allows trailing function arguments

to be applied Haskell-style without parenthesis, and we can write

the catch application more concisely as:

fun zero-div(x,y) {

catch {

exn-div(x,y)

}

fun(s){ 0 }

}

We use this syntax extensively in Section 3. Generally in Koka,

expressions between parenthesis are eagerly evaluated while ex-

pressions between curly braces are generally part of a function

body whose evaluation is delayed. These syntax conventions are

very convenient for de�ning new control-�ow abstractions.

Besides clauses for each operation, each handler can have a

return clause too: this is applied to the �nal result of the han-

dled action. In the previous example, we just passed the result

unchanged, but in general we may want to apply some transfor-

mation. For example, transforming exceptional computations into

maybe values:

fun to-maybe(action) {

handle(action) {

return x→ Just(x)

throw(s)→ Nothing
}}
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with the inferred type (() → 〈exn | e〉 a) → e maybe〈a〉.
The handle construct is actually syntactic sugar over the more

primitive handler construct:

handle(action) { ... } ≡ (handler{ ... })(action)

A handler just takes a set of operation clauses for an e�ect, and

returns a function that discharges the e�ect over a given action.

This allows us to express to-maybe more concisely as a (function)

value:

val to-maybe = handler {

return x→ Just(x)

throw(s)→ Nothing
}

with the same type as before.

Just like monadic programming, algebraic e�ects allows us to

conveniently program with exceptions without having to explicitly

plumbmaybe values around. When using monads though we have

to provide a Monad instance with a bind and return, and we need

to create a separate discharge function. In contrast, with algebraic

e�ects we only de�ne the operation interface and the discharge is

implicit in the handler de�nition.

In Koka, we exceptions are implemented not just over strings

but using an open exception type that can be extended with user de-

�ned constructors. The operations try and untry convert between

explicit exceptions and the exception e�ect:

val try = handler {

return x → Right(x)

throw(exn)→ Left(exn) }

fun untry(ex) {

match(ex) {

Left(exn)→ throw(exn)

Right(x) → x
} }

where try has type (() → 〈exn | e〉 a) → e either〈exception,a〉. We

will use these functions again when implementing asynchronous

e�ects in Section 3

2.2. Resuming Operations
The exception e�ect is somewhat special as it never resumes: any

instructions following the throw are never executed. Usually, oper-

ations will resume with a speci�c result. An example of a resumable

e�ect is a reader e�ect, where we dynamically bind a readable value.

This can for example be used in Node.js servers to expose the cur-

rent request object as ambient state (Section 3.6). Here we illustrate

this with an input e�ect:

e�ect input { getstr() : string }

where the operation getstr returns some input. We can use this as:

fun hello() {

val name = getstr()
println("hello " + name)

}

An obvious implementation of getstr gets the input from the user,

but we can just as well create a handler that takes a set of strings

to provide as input, or always returns the same string:

val always-there = handler {

getstr()→ resume("there")

}

Every operation clause in a handler brings an identi�er resume in

scope which takes as an argument the result of the operation and

resumes the program at the invocation of the operation – if the

resume occurs at the tail position (as in our example) it is much like

a regular function call. Executing always-there(hello) will output:

> always-there(hello)

hello there

The resume function is very powerful as it resumes the program at

the operation’s invocation site – in the implementation this entails

saving the current execution context, including the stack up to the

handler, such that it can be restored when invoking resume. The

resume function is a �rst-class function and can be passed around,

stored in data structures etc. Due to the structure of algebraic e�ects,

we can generally implement this quite e�ciently and optimize

for common scenarios. For example, multi-core OCaml (Dolan

et al., 2015) supports a very e�cient resume implementation by

restricting it to one-shot resumes only.

2.3. State
As another example of resuming, we can de�ne a stateful e�ect:

e�ect state〈s〉 {

get() : s
put( x : s ) : ()

}

The state e�ect is polymorphic over the values s it stores. For

example, in

fun counter() {

val i = get()
if (i ≤ 0) then () else {

println("hi")

put(i - 1)

counter()
} }

the type becomes () → 〈state〈int〉,console,div | e〉 () with the state s
instantiated to int. To de�ne the state e�ect we could use the built-

in state e�ect of Koka, but a cleaner way is to use parameterized
handlers. Such handlers take a parameter that is updated at every

resume. Here is a possible de�nition for handling state:

val state = handler(s) {

return x→ (x, s)
get() → resume(s, s)
put(s’) → resume(s’, ())

}

We see that the handler binds a parameter s (of the polymorphic

type s), the current state. The return clause returns the �nal result

tupled with the �nal state. The resume function in a parameterized

handler takes now multiple arguments: the �rst argument is the

handler parameter used when handling the resumption, while the

last argument is the result of the operation. The get operation leaves

the current state unchanged, while the put operation resumes with

its passed-in state argument. Just like resume, the function returned

by the parameterized handler also takes the initial state as an extra

argument:
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state : (x : s, action : () → 〈state〈s〉 | e〉 a) → e (a,s)

and we can use it as:

> state(2,counter)
hi
hi

2.4. Iterators
Many contemporary languages, like JavaScript or C#, have spe-

cial syntax and compilation rules for iterators and the yield state-

ment (The EcmaScript committee, 2015). Algebraic e�ects general-

ize over this where the yield e�ect can be de�ned as:

e�ect yield〈a〉 {

yield( item : a ) : ()

}

This e�ect is polymorphic in the values a that are yielded. For

example, we can de�ne an “iterator” over lists as:

fun iterate( xs : list〈a〉 ) : yield〈a〉 () {

match(xs) {

Nil → ()

Cons(x,xx)→ { yield(x); iterate(xx) }

}}

and similarly for many data structures. Orthogonal to the iterators,

we can de�ne handlers that handle the yielded elements. For ex-

ample, here is a generic foreach function that applies a function

f to each element that is yielded and breaks the iteration when f
returns False:

fun foreach(f : a → e bool, act : () → 〈yield〈a〉 | e〉 ()) : e () {

handle(action) {

return x→ ()

yield(x)→ if (f(x)) then resume(()) else ()

}}

Note how we can stop the iteration simply by not calling resume –

and that we can de�ne this behavior orthogonal to the de�nition

of any particular iterator.

2.5. Multiple Resumptions
You can enter a room once, yet leave it twice.

— Peter Landin (1965, 1998)

In the previous examples we looked at abstractions that never re-

sume (e.g. exceptions), and abstractions that resume once (e.g.

reading and state). Such abstractions are common in most program-

ming languages. Less common are abstractions that can resume

more than once. Examples of this behavior can usually only be

found in languages like Lisp and Scheme, that implement some

variant of callcc (Thielecke, 1999). A nice example to illustrate

multiple resumptions is the ambiguity e�ect:

e�ect amb {

�ip() : bool
}

where we have a �ip operation that returns a boolean. As an

example, we take the exclusive or of two �ip operations:

fun xor() : amb bool {

val p = �ip()

val q = �ip()

((p || q) && ! (p && q))

}

There are many ways we may assign semantics to �ip . One handler

just �ips randomly:

val coin�ip = handler {

�ip()→ resume(random-bool())
}

with type (action : () → 〈amb,ndet | e〉 a) → 〈ndet | e〉 a where

random-bool induced the (built-in) non-deterministic e�ect ndet. A

more interesting implementation though is to return all possible

results, resuming twice for each �ip : once with a False result, and

once with a True result:

val amb = handler {

return x→ [x]

�ip() → resume(False) + resume(True)

}

with type amb : (action : () → 〈amb | e〉 a) → e list〈a〉, discharging

the amb e�ect and lifting the result type a to a list〈a〉 of all possible

results. The return clause wraps the �nal result of the action in a list,

while in the �ip clause we append the results of both resumptions

(using + ). Since each resume is handled by the same handler,

the results of each resumption will indeed be of type list〈a〉. For

example, executing amb(xor) leads to:

> amb(xor)
[False,True,True,False]

Multiple resumptions should be used with care though as the com-

position with other e�ects can sometimes be surprising. As an

example, consider a program that uses both state and ambiguity:

fun surprising() : 〈state〈int〉,amb〉 bool {

val p = �ip()

val i = get()
put(i + 1)

if (i ≥ 1 && p) then xor() else False
}

We can use our earlier handlers to handle the state and ambiguity

e�ects, but we can compose them in two ways, giving rise to two

di�erent semantics. First, we can handle the state outside the

ambiguity handler, giving rise to a “global” state that is shared

between each ambiguous assumption.

> state(0, { amb(surprising) })

([False,False,True,True,False],2)

The �nal result is a tuple of a list of booleans and the �nal state.

Since the state is shared, only the �rst time (i ≥ 1 && p) is evaluated

the result will be False (the �rst element of the result list). On the

second resumption, xor() will be evaluated leading to the other 4

elements.

If we change the order of the handlers, we e�ectively make the

state “local” to each ambiguous resumption:

> amb( { state(0,surprising) } )

[(False,1),(False,1)]
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and the result is now a list of tuples and in both resumptions of the

�rst �ip the i will be the initial state leading to two False elements

in the result list.

Note that, in contrast to general monads, algebraic e�ects can be

composed freely (since they are restricted to the free monad). This

is quite an improvement over previous work (Swamy et al., 2011; Va-

zou and Leijen, 2016) where composing di�erent monads required

implementing a combined monad by hand.

Generally we need to program careful with e�ects that can re-

sume more than once since, as shown, those can interact in unusual

ways with stateful computations – and similarly for never resuming

e�ects like exceptions. Nevertheless, it turns out that both resum-

ing multiple times and never resuming are natural for many e�ects,

like backtracking, and parsers (Wu et al., 2014; Leijen, 2017), and

are also needed to implement asynchronous primitives as we will

see in the next section.

3. Asynchronous Programming
Similarly to iterators, many programming languages are adding

support for async-await style asynchronous programming (The

EcmaScript committee, 2016). For example, web servers written in

JavaScript using Node.js are highly asynchronous and without lan-

guage support the resulting programs are di�cult to write and de-

bug due to excessive callbacks (i.e. the so-called “pyramid of doom”).

Extending a language with async-await is non-trivial though, both

in terms of semantics, as well as compilation complexity where

async methods need to be translated into state-machines to sim-

ulate co-routine behavior (Bierman et al., 2012). The interaction

with iterators and exceptions is also complex and not always well

understood. In this section we look at implementing asynchronous

abstraction using just algebraic e�ects.

3.1. An Asynchronous E�ect
We begin by de�ning a type aliasresult〈a〉 type that captures that an

asynchronous operation may either return a result or an exception:

alias result〈a〉 = either〈exception,a〉

The asynchronous e�ect just consists of a single await operation:

e�ect async {

fun await( initiate : (result〈a〉 → io ()) → io ()) : result〈a〉
}

The await operation takes a single argument initiate that initiates a

primitive asynchronous operation. The initiate function gets as an

argument itself a callback function of type result〈a〉 → io () which

takes the results value that will be returned from await .
Usually we immediately translate a result〈a〉 into a thrown ex-

ception or a plain value. The await1 abstraction does just that:

fun await1 ( initiate : (a → io ()) → io ()) : 〈async,exn〉 a {

untry( await( fun(cb){

initiate( fun(x){ cb(Right(x)) } )

}))

}

We can also de�ne await
0

which is convenient for operations that

return a unit result:

fun await
0

( initiate : (() → io ()) → io ()) : 〈async,exn〉 () {

await1 ( fun(cb) { initiate( { cb(()) } )})

}

Using our new await operation, it becomes easy to expose primitive

asynchronous operations in the async e�ect. For example, we can

de�ne a wait function that waits for a speci�ed duration:

fun wait( secs : duration ) : 〈async,exn〉 () {

await
0

fun(cb) {

set-timeout( cb, secs.milli-seconds.int
32

)

()

} }

external set-timeout( cb : () → io (), ms : int
32

) : io timeout-id {

js "setTimeout(#1,#2)"

}

The external declaration is part of the foreign function interface

of Koka – here we call the JavaScript setTimeout function with

the given callback cb and duration ms in milliseconds. What is of

essence here is just that our new async e�ect declaration gives us

an await operation that allows us to capture the execution context,

and pass the continuation as a �rst-class callback function cb to the

primitive asynchronous operations of the host platform – and this

can all be done without special compiler support for asynchrony!

We can now use our new wait function as any other function:

fun hello-world() : 〈async,exn,console〉 () {

println("hello")

wait(2.seconds)
println("world")

}

Et voilà – a true asynchronous program build on top of plain alge-

braic e�ects. But of course, we need to still de�ne an actual handler

for async!

3.2. Implementing an asynchronous handler
The implementation of the async handler is surprisingly straight-

forward – we simply pass the resume function directly as the actual

callback to initiate :

val async-handle = handler {

await(initiate)→ initiate( resume )

}

How beautifully concise! Moreover, it corresponds exactly to the

algebraic de�nition of shift for delimited continuations (as shown

in Section 4.2) – just instantiated to a particular type instead of

being fully generic:

async-handle : (() → 〈async,io〉 ()) → 〈async,io〉 ()

Of course, the async-handle function is meant to be used on the most

outer level of the program (i.e. around main) since after initiate
the host platform expects a program to exit main and return to

the host event loop which will call the registered callbacks when

primitive asynchronous operations are completed. This is the case

for all major asynchronous environments, in particular the browser,

Node.js and the .NET environment. Nevertheless, sinceasync is just

a regular e�ect, we can always declare other handlers: for example

to mock certain functionality or to use a special event loop.

Actually, another point in the design space that we explored is

to describe all available asynchronous operations as a generalized

algebraic data type (GADT) (Johann and Ghani, 2008). This way, an

async handler can introspect all asynchronous requests and choose

various ways to implement them. This would allow for example a

testing framework with various interleaving strategies. The main
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drawback of using the GADT approach is that it does not extend

well: we need to de�ne the entire asynchronous API in the request

type. For that reason we currently do not use this approach.

3.3. Interleaving
Even though its type is sound, the basic await operation is perhaps

a bit too powerful as it allows embedding any io operation in the

async e�ect. As such we envision the use of await mostly for library

writers to encapsulate primitive asynchronous operations.

As an example of the power of await , we can write a function

that exits the program without ever returning:

fun exit() : 〈async,exn〉 a {

await( fun(cb) { } ).untry
}

It does this by simply ignoring the callback cb . This seems a rather

useless function but as we see later, it is essential to implement

more higher-level primitives.

Dually, we can also implement operations that return multiple

times from await . This is used to implement primitive forking.

fun fork() : 〈async,exn,ndet〉 bool {

await1 fun(cb) {

set-timeout({cb(True)}, 0.int
32

)

cb(False)

}

}

The fork function returns twice: �rst with False, and later with True
(using set-timeout ). Note how we immediately return with False
by calling the callback directly – which in turn calls resume and

resumes at the point where fork was called. Often, the e�ects async
, exn , and ndet occur together so we de�ne a convenient type alias:

alias asyncx = 〈async,exn,ndet〉

Using the new fork and exit operations, we are now in the position

to de�ne interleaved :

fun interleaved(a : () → 〈asyncx | e〉 a,

b : () → 〈asyncx | e〉 b) : 〈asyncx | e〉 (a,b) {

val (ar,br) = interleavedx(a,b)

(ar.untry,br.untry)

}

The function interleaves two actions a and b and is de�ned over the

interleavedx function which returns a result for each component:

fun interleavedx(a : () → 〈asyncx | e〉 a,

b : () → 〈asyncx | e〉 b ) : 〈asyncx | e〉 (result〈a〉,result〈b〉)
{

handle-shared {

var ares := Nothing
var bres := Nothing
if (fork()) {

val br = try( inject-st(b) )

bres := Just(br)
match(ares) { Nothing → exit()

Just(ar)→ (ar,br)
} }

else {

val ar = try( inject-st(a) )

ares := Just(ar)
match(bres) {Nothing → exit()

Just(br)→ (ar,br)
} } } }

For now we ignore the handle-shared function which is discussed

later. The function starts by declaring to mutable variables ares and

bres that will store the result of either action. The fork function

will return twice – once with True and once with False – and

depending on its result we execute either action a or b . The actions

are executed under a try operation that catches any exceptions

and wraps the result in an either type (see Section 2.1). We then

store the result in our mutable variable and then match on the

mutable variable of the other action: if it is Nothing that action did

not complete yet and we use exit() to exit from our asynchronous

strand. Otherwise, both actions did complete and we return a tuple

of the results.

3.3.1. Safe Encapsulation of State
The reader may wonder why the stateful mutation is not re�ected

in the e�ect type of interleavedx . The Koka type system does infer

that the body of the function has a stateful e�ect. In particular,

the ares variable has type ref〈h,maybe〈result〈a〉〉〉 for some heaph.

Assigning and reading from such variable leads to a stateful e�ect

st〈h〉. When generalizing over the body of the function though, it

can be determined thath can be generalized and does not escape its

scope. As such, the e�ect st〈h〉 is not observable from the outside

and can be safely discarded. This mechanism is proven sound

by Leijen (2014) and is similar to the safe encapsulation of state

using runST in Haskell (Launchbury and Sabry, 1997).

This is also the reason for the use of inject-st which injects the

st〈h〉 e�ect into a function e�ect e:

inject-st : (() → e a) → total (() → 〈st〈h〉 | e〉 a)

If we would not have applied this function over the actions a and

b , the e�ects of those functions would have directly uni�ed with

the ambient e�ect which contains st〈h〉; in that case the type h
would escape into the types of a and b preventing Koka from

discarding the st〈h〉 e�ect at generalization time. By injecting an st
〈h〉 e�ect manually into the types of a and b , we prevent this from

happening.

3.3.2. Semantics of interleaving
The current de�nition of interleaved may not yet quite be what we

expect. In particular, since async-handle is the outermost handler of

e�ects any e�ect handlers under it are ‘isolated’ per asynchronous

strand – just like our previous example of a state handler under an

ambiguous e�ect (Section 2.3). For example, suppose we de�ne the

following ‘append’ state e�ect:

e�ect astate { append( s : string ) : () }

val astate-handle = handler(acc = "") {

return x→ (x,acc)

append(s)→ resume(acc + s + " ", ())

}

and use that state inside di�erent interleaved actions:
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val (_,st) = astate-handle {

interleaved
{ wait(1.seconds); append("1") }

{ wait(2.seconds); append("2") }

}

println("�nal state: " + st)

Unfortunately, the �nal state is not "1 2" but rather just "2". This

is because the async handler is the outermost handler, and each

asynchronous strand gets its own isolated copy of the append state.

One way around this is to use the builtin state e�ect st〈h〉 since the

builtin e�ects are handled even outside async. However, generally

we would like the user to be able to de�ne various stateful e�ects

that are shared between the various asynchronous strands. For

example, when de�ning Express Node.js servers, one typically

threads an explicit request object req to all functions – it would

be much nicer to de�ne a request e�ect instead that gives access

to the current request without plumbing around an explicit object

everywhere.

3.3.3. Sharing the Handler Context
It turns out that in combination with mutable state we can rede�ne

the sharing of the handler stack using a regular e�ect handler! Here

is the de�nition of handle-shared 1
:

fun handle-shared(action : () → 〈async,exn | e〉 a ) : 〈async,exn | e〉 a
{

var latest := fun(_) { () }

handle(inject-st(action)) {

await(initiate)→ {

val r : either〈exception,() → 〈async | e〉 a〉
= await fun(cb) {

latest := cb
initiate( fun(x : either〈exception,a〉 ) {

latest( Right( { resume(x) } ) )

})

}

match(r.fst) { Right(f)→ f()
Left(exn)→ resume( Left(exn) )

} } } }

In order to share we are going to share part of the callback func-

tion among the di�erent strands. The handler captures all await
operations. It immediate calls the await itself but with a modi�ed

initiate function: the �nal callback cb that is passed is stored in the

local variable latest . The original initiate function is now called but

with a modi�ed callback: it calls the latest callback (instead of cb)

with a result function that calls the local resume function.

The cb (and thus latest ) functions will always return exactly to

the await in our handler (as shown by the arrow). Even though all

callbacks use latest to return to the handler, the result r contains

the anonymous function that calls the resume that returns to the

original asynchronous strand. This is exactly the behavior we want:

all the encapsulated asynchronous strands share the latest callback

from our handler, but below that each strand uses a regular resume.

The local state mutation of latest can again be safely hidden

because it is not observable from outside; we need to use inject-st

1
We assume scoped type variables here to concisely annotate the binders but Koka

does currently not support this feature and you need to use the some quanti�er for

those.

again on the action to prevent the local heap parameter from escap-

ing into the type of the action. Rerunning our previous example

with a handle-shared handler in the de�nition of interleavedx gives

now the expected �nal state of "1 2".

3.4. Cancellation
A very important building block for further abstraction is cancella-

tion. Our main primitive is the cancelable handler:

fun cancelable( action : () → 〈asyncx | e〉 a) : asyncx a

and a new operation cancel that is added to the async e�ect:

e�ect async {

fun await( initiate : (result〈a〉 → io ()) → io ()) : result〈a〉
fun cancel() : ()

}

The cancel operation cancels any outstanding asynchronous oper-

ation under its enclosing cancelable handler. Canceling an asyn-

chronous operation results in the Cancel exception. Implementing

cancelable and cancel is a bit involved and we delay describing it

until Section 3.4.2.

Using cancelable we can build an interleaved function �rstof
that returns the result of the �rst action that completes:

fun �rstof(a : () → 〈asyncx | e〉 a,

b : () → 〈asyncx | e〉 a ) : 〈asyncx | e〉 a {

val (ra,rb) = cancelable {

interleavedx
{ val x = a(); cancel(); x }

{ val y = b(); cancel(); y }

}

(if (ra.canceled?) then rb else ra).untry
}

where canceled? is de�ned as:

fun canceled?( x : either〈exception,a〉 ) : bool {

match(x) {

Left(exn)→ exn.info.cancel?
Right → False

} }

We use our interleavedx abstraction to execute the two actions.

This is done under a cancelable handler. Each interleaved action

now calls cancel upon completion which causes the other action

to throw a Cancel exception for any outstanding asynchronous

operations (on the next tick). Once both are �nished, either with a

Cancel exception or normally, the �rst result that was not a Cancel
exception is returned. Note that if both actions are canceled (by a

cancel under a cancelable higher up), the function itself re-throws

that Cancel exception as expected. Also, it is important that the

operation cancel itself does not throw a Cancel exception – as

shown here, we actually continue after cancel with a valid result.

The �rstof is useful by itself, for example for issuing a download

request to multiple servers concurrently and using the �rst request

that completes. Our main use for �rstof though is to create an

even more interesting abstraction, namely a block scoped timeout
operation:
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fun timeout(secs : duration,

action : () → 〈asynx | e〉 a ) : 〈asynx | e〉 maybe〈a〉 {

�rstof
{ wait(secs); Nothing }

{ Just(action()) }

}

This is a general timeout function that executes action but if it

is not completed within secs duration, it cancels it and returns

Nothing instead. This is a powerful abstraction as it is not tied to a

particular operation but instead block scoped over any composition
of asynchronous operations. For example, frameworks like Node.js

or .NET usually provide a timeout on some particular operations,

like a download request, but for any composition of operations

you need to implement custom solutions – usually checking �ags

everywhere. Such custom solutions are usually not very robust and

since cancellation is not well supported it is very hard to provide

the kind of robustness and performance that is provided by the

timeout function as shown here.

3.4.1. Releasing Resources
There is still a problem with the wait implementation though: even

though it will be canceled when the action completes �rst, it will

still hold on to its registered callback in set-timeout ; when the

primitive timeout expires, this callback will be called and immedi-

ately terminate (because it was canceled) but that is still a resource

leak. In general, some primitive operations need to release their re-

sources when canceled. We re-implement wait to clear its timeout

on cancellation:

fun wait( secs : duration ) : asyncx () {

var vtid := Nothing
on-cancel {

match(vtid) {

Nothing → ()

Just(tid)→ clear-timeout(tid)

}

}

{ await
0

fun(cb) {

vtid := set-timeout(cb,secs.milli-seconds.int
32

)

}

} }

where the �rst argument of on-cancel is run whenever a Cancel
exception is raised in its second argument:

fun on-cancel( caction, action ) {

catch(action) fun(exn) {

if (exn.info.cancel?) then caction()

throw(exn)// re-throw

} }

In wait we now use a mutable variable to keep the timeout-id of the

timeout. Using on-cancel we clear the timeout if a Cancel exception

was raised. Unfortunately, the above de�nition does not type check!

The assignment vtid := ... happens as part of the io typed initiate
and the stateful e�ect st〈h〉 will unify with the global io state e�ect

(st〈global〉).
To make this pass the type checker we need to do the assignment

locally and lift it outside the io action. We can use a similar trick as

with fork where we return twice: once directly with the registered

timeout-id and once with Nothing when the timeout triggers:
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fun wait( secs : duration ) : asyncx () {

var vtid := Nothing
on-cancel {

match(vtid) {

Nothing→ ()

Just(tid)→ clear-timeout(tid)

}

}

{ val mbtid = await1 fun(cb) {

val tid = set-timeout({cb(Nothing)},secs.milli-seconds.int
32

)

cb(Just(tid))

}

match(mbtid) {

Just(tid)→ { vtid := Just(tid); exit() }

Nothing→ ()

} } }

3.4.2. Implementing Cancellation
To implement cancellation we need to add more bookkeeping to our

current implementation and keep track of all outstanding asynchro-

nous requests to be able to cancel them. Since we cannot directly

compare callback functions for equality we are going to assign each

callback a unique waiting identi�er (wid) that can only be compared

for equality.

abstract struct wid( id : int )

fun ( == )( wid1 : wid, wid2 : wid ) { wid1 .id == wid2 .id }

Moreover, we need to know when we can remove a callback from

the outstanding requests – since certain callbacks may resume more

than once, we require that callbacks return whether this is their

�nal resumption or not. The new result alias becomes a triple now:

alias result〈a〉 = (either〈exception,a〉, bool, wid)

and includes a boolean that �ags whether this is the last resumption

and the waiting identi�er of the callback. Moreover, the await
operation needs to get the assigned identi�er of the callback too,

and we need a way to create an initial unique callback identi�er.

We are going to replace the await operation in theasync e�ect with

two new operations to do this:

e�ect async {

fun await-on( initiate : result〈a〉 → io (), wid : wid ) : result〈a〉
fun await-id() : wid
fun cancel( ids : list〈wid〉 = [] ) : ()

}

The await function now abstracts over await-on and await-id to

hide the internal bookkeeping of the waiting identi�ers:

fun await(initiate : (either〈exception,a〉,bool) → io () )

: async either〈exception,a〉 {

val wid = await-id()

val res = await-on( fun(r) { initiate(r.fst,r.snd) }, wid )

res.fst
}

The outer async handler keeps track of all outstanding request in a

awaits list that maps waiting identi�ers to callbacks:

fun async-handle(action : () → 〈async,io〉 () ) : io ()

{

var awaits := []

fun callback( resume, wid : wid) { ... }

fun cancel-awaits( wids : list〈wid〉 ) { ... }

handle(action) {

await-id()→ resume(Wid(unique()))

await-on( initiate, wid )→ initiate( callback(resume,wid) )

cancel( wids )→ resume(wids || awaits.map(fst))
}

}

The await-id handler simply returns a unique identi�er. The await-
on handler now uses callback to create a wrapper callback around

resume that checks for cancellation:

fun callback( resume : result〈a〉 → io (), wid : wid ) {

fun cb(res) {

val (_, done?, wid1 : wid) = res
if (awaits.contains(wid1 )) {

if (done?) then awaits := awaits.remove(wid1 )

resume(res)
}

}

if (wid !=wid-exit) awaits := Cons((wid,cb),awaits)
cb

}

The new callback cb �rst checks if the waiting id is still in the

outstanding awaits list: this will only be the case if this was not

yet canceled or already returned with done? being True. This is

an essential check: even if an operation is canceled it may still

happen that a callback is called later on if the resources were not

properly released. For example, if we would not call clear-timeout
on a registered timeout handler. The check in callback prevents

resuming in such case and ensures cancellation will work over all

operations whether they are cancellation aware or not.

After the check, the new callback removes itself from the out-

standing awaits list if it is the last resumption, i.e. when done? is

True, and �nally resume with the result. We add the new callback

cb to the awaits list. There is a check here for the special wid-exit
id; this identi�er is used by the exit operation that never resumes –

just for that particular case we don’t want to store the callback in

the awaits list at all.

Finally, the handler for cancel calls cancel-awaits to cancel all

supplied waiting identi�ers by directly invoking their callback with

a Cancel exception:

fun cancel-awaits( wids : list〈wid〉 ) {

wids.foreach fun(wid) {

match( awaits.lookup(wid) ) {

Nothing→ ()

Just(cb)→ cb((Left(cancel-exn),True,wid))

} } }

Note that the invocation of cb will also remove the callback from

the awaits list as it will have been created by the callback function.

3.4.3. Implementing Cancelable
A cancelable handler is now straightforward to construct since we

only have to keep track of the waiting identi�ers of the asynchro-

nous requests in our scope:
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fun cancelable( action : () → 〈async | e〉 a ) : 〈async | e〉 a {

var awaits := []

var canceled? := False;

handle(inject-st(action)) {

await-on(initiate,wid)→ {

if (canceled?) then resume((Left(cancel-exn),True,wid))

else {

if (wid != wid-exit) awaits := Cons(wid,awaits)
val res = await(initiate,wid)

if (res.snd) awaits := awaits.remove( fun(i) { i == res.thd })

resume(res)
}

}

cancel(wids)→ {

canceled? := True
if (wids.nil? && awaits.nil?)

then resume(())

else resume(cancel(wids || awaits))
}

await-id()→ resume(await-id())

}

}

The handler intercepts all await-on operations and maintains its

own local list of outstanding request. If cancel is invoked with an

empty list, the handler calls the outer cancel with its own awaits
list canceling all outstanding requests in its scope. A canceled

strand could still catch the Cancel exception and perform further

asynchronous operations. The canceled? �ag is set to to True on

cancellation and checked on each await : if the strand is already

canceled.

3.5. Promises
There is an important di�erence in how the async e�ect works

using algebraic e�ects versus how languages like JavaScript and C#

handle asynchrony: in the latter, asynchronous operations always

return a Promise (or Task) which is then awaited on. When we

compose some async methods it will create a new promise that we

need to await separately, i.e. we get nested call chains of async-
await . A common problem with promises is ‘losing’ exceptions

or forgetting to await a promise (Rauschmayer, 2016, ch. 25). In

contrast, with algebraic e�ects we just have certain functions with

an async e�ect and there is no intermediate promise object – just

as all other e�ects the asynchrony is purely lexically scoped.

However, we still need to add the concept of a promise to our

framework too because not all data�ow in a program is lexically

scoped. For example, we may want to cancel a computation when

the user presses a button but cancel can only cancel asynchronous

operations up to its enclosing cancelable handler. Similarly, we

may want initiate asynchronous operations but only await them in

another part of the program.

We implement a �rst-class promise as an abstract type that

carries a mutable reference to either a list of awaiters, or its �nal

resolved value.

abstract struct promise〈a〉(
state : ref〈global,either〈list〈(a → io ())〉,a〉〉

)

When we await a promise, we either add ourselves to the awaiters

or immediately return if the promise was already resolved:

public fun await( p : promise〈a〉 ) : 〈async,exn,ndet〉 a {

await1 fun(cb) {

match ( ! p.state) {

Left(listeners)→ p.state := Left(Cons(cb,listeners))
Right(value)→ cb(value)

} } }

Resolving a promise updates the promise value and invokes all the

current awaiters.

fun resolve( p : promise〈a〉, value : a ) : 〈async,exn〉 () {

await fun(cb) {

match( ! p.state) {

Left(listeners)→ {

p.state := Right(value)

listeners.foreach fun(cbawait) { cbawait(value) }

cb(Right(()))
}

Right → cb(Left(exception("promise was already resolved.",Error)))
} } }

The new promise abstraction lets us communicate values across

separate computations, for example:

val p = promise()

interleaved {

println("what is your name?")

p.resolve( readline() )

}

{ println("your name was: " + p.await ) }

Note that our new abstraction di�ers from .NET Tasks. When the

action of a Task throws an exception, it is re-thrown at the await
. This is because the action of a Task executes outside its lexical

context and cannot use the enclosing exception handlers (Leijen

et al., 2009). We can mimic this behavior using a promise of type

promise〈either〈exception,a〉〉 returning either an exception or suc-

cessful value when awaited.

3.6. Ambient Programming
By adhering to the typed discipline of algebraic e�ects we maintain

a logical strand of execution – all operations are de�ned within their

lexical scope. This naturally leads to ambient programming: a style

of programming where we can declare variables and functions

that ambient, i.e. dynamically bound to your current strand of

execution and are neither local- nor global. The closest we have in

other languages are exception handlers, where the exception that a

function throws is handled by its nearest enclosing handler.

For example, in Node.js the Express framework (Brown, 2014) is

used to write server programs where each request is handled asyn-

chronously (i.e. interleaved with all other outstanding requests).

Each strand of execution now needs access to the current request

object (req) which needs to be passed around manually through

every function call. With algebraic e�ects, we just declare a handler

that returns ‘the current’ request object – which now becomes an

ambient read-only variable:

e�ect req {get-request() : request }

fun with-request( req : request, action : () → 〈req | e〉 a ) : e a {

handle(action) {

get-request()→ resume(req)

} }
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Expressions e ::= e(e) application

| val x = e; e binding

| handle{h}(e) handler

| v value

Values v ::= x | c | op | λx . e

Clauses h ::= return x → e
| op(x) → e; h op ∈/ h

Types τ k ::= αk type variable

| ck0 〈τ k1
1
, ...,τ knn 〉 k0 = (k1, ..., kn) → k

Kinds k ::= ∗ | e values, e�ects

| k e�ect constants

| (k1, ..., kn) → k type constructor

Type scheme σ ::= ∀αk . σ | τ ∗

Constants (), bool :: ∗ unit, booleans

(_ → _ _) :: (∗, e, ∗) → ∗ functions

〈〉 :: e empty e�ect

〈_ | _〉 :: (k, e) → e e�ect extension

Total functions τ1 → τ2 � τ1 → 〈〉 τ2
E�ects ϵ � τ e

E�ect variables µ � αe

E�ect labels l � ck 〈τ1, ...,τn〉 k = ... → k
Closed e�ects 〈l1, ..., ln〉 � 〈l1, ..., ln | 〈〉 〉
E�ect extension 〈l1, ..., ln | ϵ〉 � 〈l1 | ... 〈ln | ϵ〉 ... 〉

Fig. 1. Syntax of expressions, types, and kinds

This is much like implicit parameters (Lewis et al., 2000; Oder-

sky, 2016). The approach here is more expressive though since we

can de�ne general operations besides just passing a value. For ex-

ample, in Express, we also need to pass around the response object

explicitly. With algebraic e�ects we can declare a response e�ect

with various operations like set-status-code to manipulate the �nal

server response as ambient mutable state.

Having all operations lexically scoped, and having a clear notion

of the current strand of execution is perhaps the most important

contribution that algebraic e�ects bring when implementing async-
await . In other languages where async-await is based on promises

(or Tasks) there is no clear notion of the current strand of execu-

tion and a loss of lexically scoped operations. This leads to many

problems in practice: debuggers have trouble showing the current

variables in scope or ‘call stack’, pro�lers have trouble attribut-

ing resource usage to a particular strand of execution, in C# one

needs to manually pass around cancellation tokens to enable can-

celable operations, in Node.js there is the soft-deprecated domains
abstraction to capture ‘lost’ exceptions etc, etc.

4. Semantics
In this section we give a formal de�nition of our polymorphic row-

based e�ect system for the core calculus of Koka. The calculus and

its type system has been in use for many years now and has been de-

veloped from the start using e�ect types based on rows with scoped

ϵ � ϵ [eq-refl]

ϵ1 � ϵ2

〈l | ϵ1〉 � 〈l | ϵ2〉
[eq-head]

ϵ1 � ϵ2 ϵ2 � ϵ3

ϵ1 � ϵ3
[eq-trans]

l1 � l2
〈l1 | 〈l2 | ϵ〉 〉 � 〈l2 | 〈l1 | ϵ〉 〉

[eq-swap]

c , c′

c〈τ1, ...,τn〉 � c′〈τ ′
1
, ...,τ ′n〉

[uneq-label]

Fig. 2. Row equivalence

labels (Leijen, 2005). Originally, user-de�ned e�ects were described

using a monadic approach (Vazou and Leijen, 2016) but it turns out

that algebraic e�ects �t the original type system well with almost

no changes. Row based e�ect types are also used by Links (Lindley

and Cheney, 2012) and Frank (Lindley et al., 2017), while the E�

language uses subtype constraints instead (Pretnar, 2014).

Figure 1 de�nes the syntax of types and expressions. The ex-

pression grammar is straightforward but we distinguish values v
from expressions e that can have e�ects. Values consist of variables

x, constants c, operations op, and lambda’s. Expression include

handler expressions handle{h}(e) where h is a set of operation

clauses. The handler construct of the previous section can be seen

as syntactic sugar, where:

handler{h} ≡ λf . handle{h}(f ())

For simplicity we assume that all operations take just one argument.

We also use membership notation op(x) → e ∈ h to denote that

h contains a particular operation clause. Sometimes we shorten

this to op ∈ h.

Well-formed types are guaranteed through kinds k which we

denote using a superscript, as in τ k . We have the usual kinds

for value types ∗ and type constructors →, but because we use

a row based e�ect system, we also have kinds for e�ect rows ϵ ,

and e�ect constants (or e�ect labels) k. When the kind of a type is

immediately apparent or not relevant, we usually leave it out. For

clarity, we use α for regular type variables, and µ for e�ect type

variables. Similarly, we use ϵ for e�ect row types, and l for e�ect

constants/labels.

E�ect types are de�ned as a row of e�ect labels l. Such row is

either empty 〈〉, a polymorphic e�ect variable µ, or an extension of

an e�ect ϵ with a label l, written as 〈l | ϵ〉. E�ect labels must start

with a constant and are never polymorphic. By construction, e�ect

type are either a closed e�ect of the form 〈l1, ..., ln〉, or an open e�ect
of the form 〈l1, ..., ln | µ〉.

We cannot use direct equality on types since we would like to re-

gard e�ect rows equivalent up to the order of their e�ect constants.

Figure 2 de�nes an equivalence relation (�) between e�ect rows.

This relation is essentially the same as for the scoped labels record

system (Leijen, 2005) with the di�erence that we ignore the type

arguments when comparing labels. By reusing the scoped labels
approach, we also get a deterministic and terminating uni�cation

algorithm which is essential for type inference. Moreover, in con-

trast to other record calculi (Rémy, 1994; Lindley and Cheney, 2012;

Gaster and Jones, 1996; Sulzmann, 1997), our approach does not

require extra constraints, like lacks or absence constraints, on the

types which simpli�es the type system signi�cantly. The system

also allows duplicate labels, where an e�ect 〈exc, exc〉 is legal and
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Γ(x) = σ

Γ ` x : σ | ϵ
[Var]

Γ, x : τ1 ` e : τ2 | ϵ
′

Γ ` λx . e : τ1→ ϵ ′ τ2 | ϵ
[Lam]

Γ ` e1 : σ | ϵ Γ, x : σ ` e2 : τ | ϵ

Γ ` val x = e1; e2 : τ | ϵ
[Let]

Γ ` e1 : τ2→ ϵ τ | ϵ Γ ` e2 : τ2 | ϵ

Γ ` e1(e2) : τ | ϵ
[App]

Γ ` e : τ | 〈〉 α ∈/ �v(Γ)

Γ ` e : ∀α . τ | ϵ [Gen]

Γ ` e : ∀α . τ | ϵ
Γ ` e : τ [α 7→ τ ] | ϵ

[Inst]

Γ ` e : τ | 〈l |ϵ〉 Γ, x : τ ` er : τr | ϵ Σ(l) = {op
1
, ..., opn}

Γ, resume : τ ′i → ϵ τr , xi : τi ` ei : τr | ϵ Γ ` opi : τi → 〈l〉 τ ′i | 〈〉

Γ ` handle{ op
1
(x1) → e1; ...; opn (xn ) → en ; return x → er }(e) : τr | ϵ

[Handle]

Fig. 3. Type rules.

Evaluation contexts:

E ::= [] | E(e) | v(E) | val x = E; e | handle{h}(E)
Xop ::= [] | Xop(e) | v(Xop) | val x = Xop ; e

| handle{h}(Xop) if op ∈/ h

Reduction rules:

(δ ) c(v) −→ δ (c, v) if δ (c, v) is de�ned

(β) (λx . e)(v) −→ e[x 7→ v]
(let) val x = v; e −→ e[x 7→ v]

(return) handle{h}(v) −→ e[x 7→ v]
where

(return x → e) ∈ h

(handle) handle{h}(Xop[op(v)]) −→ e[x 7→ v, resume 7→ r]
where

(op(x) → e) ∈ h
r = λy. handle{h}(Xop[y])

Fig. 4. Reduction rules and evaluation contexts

di�erent from 〈exc〉. There are some use-cases for this but in prac-

tice we have not found many uses for duplicate e�ects (nor any

drawbacks).

The type rules for our calculus is given in Figure 3. A type en-

vironment Γ maps variables to types and can be extended using a

comma: if Γ′ equals Γ, x : σ , then Γ′(x) = σ and Γ′(y) = Γ(y)
for any x , y. A type rule Γ ` e : τ | ϵ states that under en-

vironment Γ, the expression e has type τ with possible e�ects ϵ .

All the type rules are straightforward and support complete and

principal type inference. We refer the reader to (Leijen, 2017) for

further details.

4.1. Operational semantics
In this section we de�ne a precise semantics for our core language

with algebraic e�ect handlers. It has been shown that well-typed

programs cannot go ‘wrong’ under these semantics (Leijen, 2017).

The operational semantics of our calculus is given in Figure 4 and

consists of just �ve evaluation rules. We use two evaluation con-

texts: the E context is the usual one for a call-by-value lambda

calculus. The Xop context is used for handlers and evaluates down

through any handlers that do not handle the operation op. This

is used to express concisely that the ‘nearest enclosing handler’

handles particular operations.

The �rst three reduction rules, (δ ), (β), and (let) are the stan-

dard rules of call-by-value evaluation. The �nal two rules evaluate

handlers. Rule (return) applies the return clause of a handler when

the argument is fully evaluated. Note that this evaluation rule sub-

sumes both lambda- and let-bindings and we can de�ne both as a

reduction to a handler without any operations:

(λx . e1)(e2) ≡ handle{return x → e1}(e2)

and

val x = e1; e2 ≡ handle{return x → e2}(e1)

The next rule, (handle), is where all the action is. Here we see how

algebraic e�ect handlers are closely related to delimited continua-

tions as the evaluation rules captures a delimited ‘stack’ Xop[op(v)]
under the handler h. Using a Xop context ensures by construction

that only the innermost handler containing a clause for op, can han-

dle the operation op(v). Evaluation continues with the expression

ϵ but besides binding the parameter x to v, also the resume variable

is bound to the continuation: λy. handle{h}(Xop[y]). Applying

resume results in continuing evaluation at Xop with the supplied

argument as the result. Moreover, the continued evaluation occurs

again under the handler h.

Resuming under the same handler is important as it ensures that

our semantics correspond to the original categorical interpretation

of algebraic e�ect handlers as a fold over the e�ect algebra (Plotkin

and Pretnar, 2013). If the continuation is not resumed under the

same handler, it behaves more like a case statement doing only one

level of the fold. Such handlers are sometimes called shallow han-
dlers (Kammar et al., 2013; Lindley et al., 2017).

For this article we do not formalize parameterized handlers as

shown in Section 2.3. However the reduction rule is straightforward.

For example, a handler with a single parameter p is reduced as:

handle{h}(p = vp)(Xop[op(v)])
−→ { op(v) → e ∈ h }

e[x 7→ v, p 7→ vp, resume 7→ λq y. handle{h}(p = q)(Xop[y])]

Using the reduction rules of Figure 4 we can de�ne the evaluation

function (7−→), where E[e] 7−→ E[e′] i� e −→ e′. We also de�ne

the function 7−→→ as the re�exive and transitive closure of 7−→.

4.2. Comparison with Delimited Continuations
Shan (2007) has shown that various variants of delimited continua-

tions can be de�ned in terms of each other. Following Kammar et

al. (2013), we can de�ne a variant of Danvy and Filinski’s shift and

reset operators (1990) , called shi�
0

and reset0, as

reset0(Xs[shi�0
(λk. e)]) −→ e[k 7→ λx . reset0(Xs[x])]

12



where we write Xs for a context that does not contain a reset0.

Therefore, the shi�
0

captures the continuation up to the nearest

enclosing reset0. Just like handlers, the captured continuation is

itself also wrapped in a reset0. Unlike handlers though, the handling

is done by the shi�
0

directly instead of being done by the delimiter

reset0. From the reduction rule, we can easily see that we can

implement delimited continuations using algebraic e�ect handlers,

where shi�
0

is an operation and Xs ≡ Xshi�
0

:

reset0(e) � handle{ shi�
0
(f ) → f (resume) }(e)

Using this de�nition, we can show it is equivalent to the original

reduction rule for delimited continuations, where we write h for

the handler shi�
0
(f ) → f (resume):

reset0(Xs[shi�0
(λk. e)]) � handle{h}(Xs[shi�0

(λk. e)])
−→

(f (resume))[f 7→ λk. e, resume 7→ λx . handle{h}(Xs[x])]
−→

(λk. e)(λx . handle{h}(Xs[x]))
−→

e[k 7→ λx . handle{h}(Xs[x])] � e[k 7→ λx . reset0(Xs[x])]

Even though we can de�ne this equivalence in our untyped calcu-

lus, we cannot give a general type to the shi�
0

operation in our

system. To generally type shift and reset operations a more ex-

pressive type system with answer types is required (Danvy and

Filinski, 1989; Asai and Kameyama, 2007). In recent work Forster,

Kammar, Lindley, and Pretnar (2017) show that it is possible to go

the other direction and implement handlers using delimited contin-

uations, improving on an earlier result (Kammar et al., 2013) that

used mutable state.

5. Conclusion
We have shown how we can implement full async-await style pro-

gramming with algebraic e�ects. We hope that abstractions like

cancelable and timeout will �nd their way into other asynchro-

nous platforms as well. In the future we plan to apply ambient

programming in the context of web services with algebraic e�ects.
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