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ABSTRACT
Development of a rich hand-gesture-based interface is cur-
rently a tedious process, requiring expertise in computer vision
and/or machine learning. We address this problem by introduc-
ing a simple language for pose and gesture description, a set of
development tools for using it, and an algorithmic pipeline that
recognizes it with high accuracy. The language is based on a
small set of basic propositions, obtained by applying four pred-
icate types to the fingers and to palm center: direction, relative
location, finger touching and finger folding state. This enables
easy development of a gesture-based interface, using coding
constructs, gesture definition files or an editing GUI. The lan-
guage is recognized from 3D camera input with an algorithmic
pipeline composed of multiple classification/regression stages,
trained on a large annotated dataset. Our experimental results
indicate that the pipeline enables successful gesture recog-
nition with a very low computational load, thus enabling a
gesture-based interface on low-end processors.

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies, Prototyp-
ing; I.5.4. Pattern Recognition applications: Computer vision;
I.4.9. Image processing and Computer Vision: Applications
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Hand gesture recognition; Hand gesture NUI development

INTRODUCTION
Hand gestures are a natural communication mode for humans,
and a promising direction for a human-computer interface.
Scenarios of interest range from personal computers to mobile
devices and to emerging virtual and augmented reality plat-
forms[4, 8]. In addition, advances in depth camera imaging
and computer vision have made such an interface possible in
recent years [27, 14, 15, 16, 17, 26]. However, a practical
gesture-based interface still faces severe difficulties, due to
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conflicting demands on both the development and run-time en-
vironments. Development of a rich gesture-based interface is
currently a considerable effort requiring long development cy-
cles with teams skilled in computer vision and machine learn-
ing. A common alternative is to use a mature tuned system
(like [14] or [1]), but these typically offer a small predefined
set of gestures to choose from, thus limiting the uniqueness
and richness of the experience. In the run-time environment,
the dilemma is between system accuracy and its computational
demands. Several recent articles describe systems that already
achieve real time performance using multi-core CPUs. How-
ever, a useful system should utilize only a fraction of the CPU
power, so it does not disturb other running applications, yet
maintain accuracy and responsiveness. These contradicting
demands are exacerbated in low-power, low-end CPUs used
in mobile devices.

Figure 1. The camera and user setting we address - providing a gesture-
based user interface for common laptop and desktop experiences.

We propose to address these difficulties by introducing a sim-
ple language for the definition of poses and gestures, and by
developing a set of tools and algorithms demonstrating that
the language is practical for both development and algorith-
mic recognition. Our contribution is three-fold. First, we
propose a language. In its design, our primary guideline was
to keep it simple enough so that development is easy, yet
expressive enough to enable most of the gestures coming to
one’s mind. Second, we developed a set of tools that enable
natural development of a gesture-based interface, without pre-
requisite knowledge in algorithms or machine vision. These
tools enable gesture definition using code, XAML files or an
editing GUI, and include visualization and verification tools.
Third, and most important, we have developed an algorithmic
pipeline which enables recognition of the defined gestures



from a 3D camera stream, with high accuracy. This pipeline
includes many extremely fast predictors, operating in multiple
stages, and trained on a large annotated data corpus. With
this pipeline, we achieve real time performance with a single
thread, using only a small fraction of the CPU.

The language we propose is based on four basic predicates
which are naturally used to describe hand poses, applied to the
six main interest points of the hand: the five fingertips and the
palm center. The predicates are: pointing direction (’the thumb
points up’), relative location (’the index is above the middle’),
fingertip touching (’the ring finger touches the thumb’) and
finger flexion (’the pinky is folded’). Using these predicates,
102 basic propositions are created, which serve as the basic
binary building blocks of the calculus. A hand pose (some-
times termed ’posture’) is defined mainly as a conjunction
of the basic propositions, with disjunctions partially allowed
in certain cases. A gesture, in turn, is defined plainly as a
sequence of hand poses. Defining a gesture in this language is
fairly straightforward, due to its proximity to pose description
in natural language, and the gesture developer is not asked to
state continuous parameters like distances or angles. Despite
its qualitative nature, the language is very expressive. For
example, it can express without difficulty the basic signs in
the American Sign Language (ASL) phonology [24], and the
basic poses used in several current commercial systems. See
figure 2 for some examples.

Based on the proposed language, a gesture based interface can
be built using several possible tools. For a C# programmer, a
pose class can be defined in a few lines of code, and a gesture
class can be constructed once all of its constituent poses are
defined. Above the code interface, additional layers are added
to enable gesture definitions by non-programmers. We devel-
oped a simple text parser which enables definition of poses
and gestures using XAML code. The parser then creates the
appropriate C# classes. In addition, we have designed a visual
gesture editor displaying the poses as states in a sequence.
The editor enables pose manipulations using context sensitive
menus, and its output can be exported into XAML format.
For visualizing the edited poses in real time we developed
a fast inverse kinematics algorithm, utilizing the language’s
simplicity. The algorithm produces a pose satisfying the cho-
sen propositions, which is then rendered using a generic hand
model. Finally, this system aids in identifying non-valid hand
definitions.

The algorithmic pipeline which recognizes the language has
to resolve the accuracy versus speed tension mentioned earlier.
To ease this tension, we use Convolutional Table Ensemble
(CTE) classifiers and regressors [14, 3]. These are extremely
fast predictors, typically processing an image in less than a
millisecond. As shown in [14], the CTE architecture enables
trading training sample size for speed and accuracy, that is:
by using larger sample size at the training stage, the run-time
predictor can be made faster while keeping the same accuracy.
The pipeline includes several stages, each employing a set of
CTEs. In the first stage, the position of the hand center is
found and the image is centered around it. Then the global
hand orientation is found, framed as a classification problem

into 16 discrete pose clusters, and is then refined. At a third
stage the location and direction of fingertips are found, by
applying a cluster-specific regressor. This regressor in turn
includes several stages of regressing the fingertip location,
centering the image around the tip and regressing again for
refinement. Finally, the truth value of the basic 102 language
propositions is inferred from the fingertips and palm center
locations.

In order to obtain the speed and accuracy benefits from the
CTE architecture, a large dataset is required for training. In
our proposed system, however, this training is a one time
event and no machine learning effort is required from the
gesture developer. We collected more than 360,000 annotated
images for the pipeline training, using a custom-built dome-
shaped structure equipped with multiple cameras. Since the
target camera uses IR, colors which are IR-invisible were used
to mark interest points on the hands of the subjects. Some
annotation was then automatically collected using a set of
surrounding RGB cameras, while another portion, like exact
fingertip locations, required manual tagging.

We evaluated the accuracy of our algorithm on several levels:
estimation of fingertip locations, recognition of the language
propositions, and recognition of full gestures. Hand pose
estimation is usually evaluated in the literature by consider-
ing statistics of the distance between fingertips position and
their algorithmic estimates. We evaluated our algorithm using
these metrics in two publicly available datasets, NYU [27] and
Dexter [22]. Using NYU, which is the larger and more chal-
lenging dataset, our method is comparable to the best method,
and using Dexter it is ranked third among nine methods. This
accuracy is obtained in 14 millisecond per image on a single
CPU thread - roughly an order of magnitude faster than any
other method of similar accuracy. This degree of accuracy
and speed enables a practical, real-time, gesture-based inter-
face in a variety of scenarios. Moreover, unlike other leading
methods, we recognize the hand pose without using tempo-
ral information (single frame), which makes the measured
accuracy robust to fast pose changes and short gestures.

Beyond fingertip localization errors, for real gesture recogni-
tion using a language of the type we define here, the impor-
tant statistics are the probabilities of correctly detecting basic
propositions and full gestures. We estimated our capabilities
for recognition of the basic propositions using a test set of
61,397 images containing random hand poses. Our system is
able to recognize basic propositions 92% of the time with a
false positive rate lower than 1.4%. For full gestures, we tested
our system using a set of 12 selected gestures, performed mul-
tiple times by 10 different persons, and an additional set of
non-gesture hand activity clips for false alarm rate estimation.
Our pipeline achieves an average detection rate of 96% for
users after a few minutes of practice.

RELATED WORK
Our contribution is in language and development tools for
hand gesture interface, as well as in the hand pose estimation
algorithm. Here we briefly refer to the relevant literature in
these two domains.



Figure 2. Pose dictionaries: (Left) The hand shapes found in a phonemic analysis of ASL. According to the analysis, these (together with location
and motion elements) were found to be basic patterns characterizing the symbolic vocabulary of the language. Each of these hand poses can be well
characterized, and distinguished from the others, using a few basic propositions utilizing our four base predicates: finger/palm direction, finger folding
state, finger tangency and relative direction. (Right) The hand shapes used in the static gestures of a popular commercial system [1]. These can also be
naturally described using our simple language.

a b c d e
Figure 3. Predicate operational definitions: (a) A non-thumb finger is considered folded if its tip resides in the marked quarter, defined by planes whose
normal is the palm direction and palm orientation. (b) The folding region of the thumb (c) A finger is pointing ’up’ if its direction is in a cone with the
base placed at the fingertip. An analogous definition is given for the other 5 directions. (d) Touching and not-touching relations are determined by the
intersection of multiple balls around the distal phalanges of the two fingers (e) Relative directions are determined using a cone whose axis is aligned
with canonical direction. Here the index is above the thumb because it falls in this cone for ’up’ direction.

Gesture language and development tools: In [19] the ad-
vantages of using a declarative gesture language compared to
procedural gesture programming are elaborated, but in the con-
text of full body and touch gestures. Three such advantages
are mentioned: easier feedback providing during the gesture,
avoiding code division among components (termed ’spaghetti
code’ there), and convenient treatment of compositionality and
gestures with partial overlap. Among these, our method enjoys
the two latter advantages, but does not currently address user
feedback during a gesture - an action is performed only at the
end of the poses sequence.

The Gesture Description Language (GDL), presented in [11],
uses a context free grammar to define a language describing
full body gestures. The primitive joints relate to large body
entities, but not to hand parts or fingers, and the language
is recognized using a Microsoft Kinect system followed by
an inference engine. Unlike in our methodology, describing
gestures requires the developer to state numerical parameters
and relations like exact angles or distances between joints. An-
other context free grammar for full body gesture specification
is presented in [10]. The goal of the suggested language is
not to ease interface development, and no actual recognition
engine for the language is suggested. Instead the focus is on
privacy, security and reliability: verifying that the gestures

suggested are valid, not empty, there are no collisions between
registered gestures, etc. Most similar to our method in spirit,
the ’Proton++’ system [13] includes a language and a recogni-
tion algorithm for multi-touch gestures. Like in our language,
they describe a gesture as a sequence of basic elements (finger
strokes) characterized using a small set of propositions. A
basic stroke is defined by its type (finger up/down/move), the
finger index, and several stroke attributes (movement direction,
pressure, etc.). Like in our system, a state machine handles
the recognition and disambiguation of multiple gestures.

More related to hands-based interface, in [5] a stochastic con-
text free grammar is suggested for the composition of single
poses into gestures. This grammar assigns probabilities to
gestures given an input sequence of detected primitive poses,
and so it enables gesture detection in cases of non-accurate
execution. However, the language does not include description
of general poses - instead a set of only 4 primitive poses is
used (fist, open hand, one or two fingers raised). In another
work [7] hand gestures based on hand motion are described
as compositions of 14 primitive motion elements known from
the ASL phonemic decomposition [24]. This work is orthog-
onal to ours, as hand internal pose is not addressed at all -
the hand is assumed to be rigid. In [20] the dexterity and
independence properties of the different fingers are examined,



and an efficient language for text dictation via finger folding
is devised.

Hand pose estimation algorithms: A lot of work [15, 16, 12,
27, 17, 26, 22, 21, 14, 25, 6, 2] has been done in recent years.
See [9] for a review. We compare our results to many of these
methods. There are several quite different approaches to the
hand pose estimation problem. One line of work uses a 3D
hand model and addresses the problem as model-based track-
ing [17, 2, 26]. These methods are usually accurate, but require
high computational effort. Another direction uses ensembles
of trees or ferns for pose estimation from a single frame [12,
14, 25, 18]. The advantages are the ability to run with a low
computational budget and to comprehend fast motion. Speci-
ficlly in [18] a method based on multi-stage random forest
was used to successfully discriminate between 6 pre-defined
poses on smartphones with a simple RGB camera. Our work
belongs to this algorithmic family, and significantly improves
its accuracy. Some work is based on combining modules from
model-based tracking and single-frame fast detection, such
as [22, 21]. Finally, several groups have used Convolutional
Neural Networks (CNN) [27, 15, 16] with increasing degrees
of sophistication and accuracy over time.

LANGUAGE
The language we propose is based on a set of qualitative basic
propositions, such as "the index and middle are not touching".
These propositions are close to gesture descriptions in natural
language, and thereby enable easy pose characterization for the
developer. To contrast, quantitative descriptions such as "keep
the Index and Middle tips 3cm away from each other" include
parameters that are hard for the developer to estimate as they
often do not have good intuition for their values. Moreover,
even when they do estimate such values well for their own
hands, the result is not likely to generalize well to people with
different hand size or different morphology/flexibility. We
believe tuning these parameters is better left for the system.

Basic propositions
The propositions are obtained by applying two one-argument
predicates (direction, flexion) and two two-argument predi-
cates (relative direction, tangency) to one or two of six interest
points on the hand: the fingertips and palm center. Direction
and direction relationships are quantized to 6 canonical values:
"Left (of the subject)","Right", "Up", "Down", "Forward" and
"Backward". The other two predicates, flexion and tangency,
are naturally binary. Here are the basic propositions in detail:

• Palm pose:

– Palm direction: This is the direction of the normal of
the palm, pointing out of the forehand. 6 propositions
of the form "the palm points in direction X" are defined,
for the 6 canonical directions.

– Palm orientation: The direction pointing from the wrist
to the base of the middle finger. Again 6 propositions
are defined.

The operational definition of ’pointing toward a canonical
direction’ is that the pointing direction has a small angle
with the canonical direction. However, the parameter, as

any other parameter in the system, is not exposed to the
developer. See figure 3.a for visualization of the palm di-
rection (µnormal in the figure) and orientation (µOrientation)
concepts.

• Fingers:

– Finger direction: For each finger we define the 6 propo-
sitions of pointing in the canonical directions, for a to-
tal of 30 propositions. (See figure 3.c) for the direction
operational definition.

– Finger flexion: For each finger two states are defined,
as ’open’ and ’folded’, giving 10 propositions. A non-
thumb finger is declared folded if its tip is in the quarter
of the space near the hand, as defined by two planes
(See figure 3.a). A similar characterization is given to
the thumb. (See figure 3.b).

– Finger tangency: For each of the 10 possible finger
pair combinations, an ’a is touching b’ proposition
is defined, as well as an ’a is not touching b’, for a
total of 20 propositions. To evaluate these propositions,
we define the distance between fingers as follows: K
points, d millimeters apart from each other, are defined
along the ray starting from the tip and pointing in
the opposite of the finger direction. Two fingers are
considered touching if the minimal distance between a
point on one finger and the tip of the other is lower than
a threshold (See figure 3.d), and ’not touching’ when
this minimal distance is higher than a different, greater
threshold, such that ’not touching’ and ’touching’ are
not a simple negation of each other: typically there are
cases where neither of them applies.

– Finger relative position: For each finger pair, a propo-
sition is defined stating that ’a is in direction C from
b’ where C is one of the 6 canonical directions. Since
propositions like ’middle is above the thumb’ and
’thumb is below the middle’ are equivalent, this yields
altogether 30 propositions. A proposition is satisfied
if point a is in a cone whose base is at point b and its
central axis is in the direction C (See figure 3.e).

Poses and gestures
Static hand poses are defined as conjunctions of propositions,
where a proposition is either one of the basic 102 propositions,
or a ’direction-disjunction’ over them. A direction disjunction
is a statement such as ’the thumb points either left or up’, that
is: the disjunction is over several basic propositions differing
only in the direction stated. A static hand pose can be detected
from a single frame. Gestures are defined simply as sequences
of poses in time. To complete a gesture, the user has to go
through the sequence of defined poses, with the time interval
between the poses no longer than a threshold parameter.

DEVELOPMENT TOOLS
Based on the proposed language, we have created a set of
development tools to enable easy hand gesture interface de-
velopment. Gestures can be programmed in C# using a set of
classes, or text-edited by non-programmers. On top of these
tools, we have devised a visual gesture builder tool, allowing
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Figure 4. Gesture description in formal language: (a) A ’Rotate Right’ gesture is composed of the two shown poses, starting with the index above the
thumb, and ending with the index right of the thumb (from the user’s perspective). (b) C# code that generates a ’Rotate Right’ gesture object. The two
comprising poses are defined using a single method ’CreateIndexThumbPointPose()’ accepting the required index-to-thumb relation as input argument.
’Rotate Right’ is then defined as a short sequence of the two poses. (c) ’Rotate Right’ gesture defined in XAML format. The same propositions are
applied, but without the C# syntax.

gesture editing with a graphical user interface. The builder
includes a visualization tool, which renders hand poses based
on their definition in the language.

The runtime environment
Our suggested hand pose estimation algorithm (described in
the next section) is an efficient routine running on the user’s
machine. In order to work with it, the developer builds and
registers a Gesture object, which includes a gesture definition
and a pointer to a callback function. Upon frame arrival, the
runtime system computes the relevant basic propositions - a
subset of the 102 propositions that is relevant for currently
registered gestures. The execution of each registered gesture is
tracked using a simple finite-state machine, monitoring which
of the poses were already executed and what pose is expected
next. Upon execution of the last pose, the callback function
registered with the gesture is called. The direct interface for
gesture building is programming in C#, and linking to the
runtime library.

A C# interface
Writing a new pose class is done by inheriting the new class
from an abstract SingleHandPose class, and adding the actual
propositions content of the pose using predefined enum types.
A gesture class is then defined by concatenating a predefined
set of pose classes into a sequence. An example of a ’Rotate
Right’ gesture written in C# is shown in figure 4, including
two poses. Since the two poses are similar, they are defined in
a single method, accepting as parameter the direction relation
required between the thumb and the index. The gesture is
defined in a few lines of code, and the lines describing the
poses are fairly intuitive, reflecting the tight relation to natural
language descriptions.

XAML text interface
The programming interface is the most straightforward, but it
requires programming skills in C# and it mixes the program-
ming work with gesture design, while the two tasks require
different expertise and are usually performed by different peo-
ple. Hence we consider an option to write gesture definitions in
an XAML format, which is independent of a specific program-
ming language. ’Rotate Right’ written in an XAML format is
shown in figure 4.c. These files are easier to write, and provide

a convenient middle layer for the next design level: a visual
gesture builder.

A Visual Gesture Builder
A more natural way for building gestures is using a visual
editor, providing immediate visual feedback. We have devel-
oped such a tool for gesture design in the suggested language.
The gesture is presented as a visual sequence of poses (see
figure 5). Once a pose is selected, the developer can choose
one of the six areas of interest - the palm or one of the fingers
- and edit it using a context menu. This menu allows choosing
the item’s direction and its flexion state (for fingers). For fin-
gers there are four additional items in the menu, allowing one
to choose a second finger and establishing the required rela-
tion between the two fingers. These relations are chosen from
a second-level context menu, and allow specifying fingertip
touching and directional relations between the chosen fingers.

When a menu item choice changes, the gesture builder calls
a quick inverse kinematics algorithm to find a pose (a vector
of joint angle values) which meets the new set of constraints,
and renders it instead of the previous pose. When conflicting
constraints exist, the inverse kinematics fails to find a valid
pose satisfying the constraints, and a warning message is is-
sued. For example, this happens if the thumb and index are
instructed to point forward, but the ring is instructed to point
left (see figure 5.d(bottom)). The developer may rotate the
camera view of the hand at any time by dragging the mouse
inside the pose circle, to better understand the finger locations
in complex, partially occluded poses. Once editing is done,
the gesture is saved as a XAML file, from which classes repre-
senting the new gesture are automatically generated. This tool
enables trial and error experimentation in the space of pose
definitions, and can significantly accelerate gesture develop-
ment.

The inverse kinematics algorithm mentioned above has to
solve a hard satisfaction problem including non-convex con-
straints, and do it immediately to enable real time feedback.
We use a coarse-to-fine greedy approach, starting from a base-
line pose and enforcing constraint families one at a time. First
we look for a pose satisfying the palm direction and relative
finger direction constraints, as these two constraint types put
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Figure 5. Visual gesture builder: (a) The builder presents the poses of the gesture as a sequence (top) and allows the developer to choose a pose to edit
using a mouse click (bottom). (b) A selected finger is marked in blue, and opens a context menu (top), from which a second menu enables choosing
a second finger, marked in red (bottom). (c) A selected finger can be constrained to be in folded (top) or open (bottom) state. (d) Finger direction can
be chosen, up in the example (top), but if it cannot be reconciled with current constraints an alert message is displayed instead (bottom). (e) When two
fingers are marked, relations of tip touching (top) and relative locations (bottom) can be stated. (f) the palm can be marked, then rotated to a different
direction.

Algorithm 1 Ferns Ensemble computation
Input: An image I of size Sx×Sy,
Classifier parameters {Θm,Am,W m

c ,βc}M,C
m=1,c=1

Θm = {δ 1,m
k ,δ 2,m

k , tm
k }

K
k=1, Am ⊂ {1, ..,Sx}×{1, ..,Sy}, W m

c ∈ R2K
, βc ∈ RC

Output: Class scores vector Score
Initialization: For c = 1, .,C Score[c] =−βc
For all ferns m = 1, ..,M

For all pixels p ∈ Am

Compute a k-bit index bm
p

For c = 1, .,C Score[c] = Score[c]+W m
c [bm

p ]

Return Score

strong limitations on the global hand orientation. Then finger
flexion, finger direction and finger tangency constraints are
enforced, in that order. In most cases, this process successfully
finds a pose satisfying all the constraints if there is one.

HAND POSE ESTIMATION ALGORITHM
Our practical hand pose estimation algorithm is based on two
high level ideas: multiple stage problem breakdown, and pre-
diction based on clever memorization. The pose estimation
task is broken into several stages, each with a small scope
problem to solve. At each stage we use a set of very fast pre-
dictors (the CTE family) whose activation essentially amounts
to indexing a set of tables. These tables, created during train-
ing, memorize hand pose information and enable fast answer
prediction by gathering the votes across an ensemble.

Convolutional Table Ensembles (CTE)
A CTE predictor extracts codeword indices from multiple
positions in the image, and uses them to index multiple tables.
The tables’ votes are combined linearly to predict the output
of interest. At [14] these classifiers were introduced in which
the codeword indices are extracted using a set of independent
questions, in which case the index computing structure is

called a ’fern’, and the classifier is termed a Discriminative
Ferns Ensemble (DFE). We also use some of the improvements
suggested in [3], except that for codeword computation we use
ferns rather than trees, as ferns are faster.

The ferns ensemble predictor operates on an image patch I,
consisting of P pixels. For a single fern and pixel location
p ∈ N2, a local descriptor for p’s neighborhood is computed
using a set of k = 1, ..K binary questions of the form

bk = σ(I[p+δ
1
k ]− I[p+δ

2
k ]− t) (1)

where δ 1
k ,δ

2
k ∈ {−s, ...,s}2 are location offsets, t ∈ R is a

threshold, and σ(·) is the Heaviside function. These are simple
and computationally-light questions, comparing the difference
between two pixels to a threshold. For fern m, location p and
question k denote the bit obtained by bm

p,k. Concatenating the
K bits together, a K-bit codeword bm

p is obtained at for every
fern and pixel location.

Histogram of Bit Vectors: In order to obtain translation in-
variance a spatial histogram of codewords over pixel locations
is computed. Denote the histogram for the mth fern by Hm(I).
An entry b ∈ {0,1}K of Hm is defined by

Hm
b = ∑

p∈Am
δ (bm

p −b) (2)

where δ is a discrete delta function, and Am ⊂ {1, ..,P} is the
spatial aggregation region for fern m. Note that Hm is a sparse
vector, with at most P non-zero entries.

Histograms concatenation: The final output is computed by
a linear classifier or regressor applied to the concatenation of



a b c d e

f g h i j

Figure 6. Hand estimation pipeline: (a) in the user setting we address the hand is typically the dynamic object closest to the camera in the direction
shown. (b) Latitude, longitude and azimuth in a hand-centered coordinate system. (c) The clusters we use on the (latitude, longitude) sphere, viewed
from the right axis in b. (d) The iron dome used for data gathering. (e) A segmented hand patch. (f) The hand patch after centering. Estimated hand
center marked in green. (g) The hand after coarse (latitude, longitude) finding and azimuth correction. (h) The hand after global hand pose refinement
and initial fingertip location regression. (i) A finger-centered image sent for finger refinement. (j) The final fingertip locations estimation.

the M fern histograms.

f (I) =W T H(I) =
M

∑
m=1

∑
b∈{0,1}K

wm
b Hm

b −β (3)

with H(I) = [H1(I), . . . ,HM(I)]∈NM2K
, a weight vector W =

[W 1, . . . ,W M]∈RM2K
, and a bias term β ∈R. When multiple

outputs are required (as in multiclass classification), C weight
vectors and biases {Wc,βc}Cc=1 are trained and used to obtained
C output scores using the same set of ferns.

Run time classifier/regressor: Algorithm 1 describes the op-
eration of a DFE at test time. The pipeline is extremely simple.
For each fern and each pixel in the fern’s aggregation region
we compute the codeword index, and access the tables of all
classes with this index to get the codeword’s score contribu-
tion. The complexity is O

(
MA(K +C)

)
where A is the average

number of pixels per aggregation region.

CTE training: As described in [14, 3], a CTE is trained by
iterating between adding a fern and training a global predictor
over the current set of ferns’ features. The global optimization
is done with SVM when classification is handled, and an SVR
loss when regression is required. Adding a fern, which adds
2K features to the predictor, requires optimization over the bit
function parameters Θm, and the aggregation area Am. These
are chosen greedily so that the added features align well with
the gradient of the current predictor. Following [3], beyond
bit functions comparing two pixels, we use also bit functions
comparing one pixel to a threshold, as well as spatial bits
providing information regarding the pixel location.

Hand Pose Estimation Pipeline
The algorithmic pipeline consists of multiple stages: hand
segmentation, hand centering, global orientation classification,
global pose refinement, fingers pose estimation, and finally,
estimation of basic propositions truth values. The main stages
(hand pose and finger pose estimation) rely on CTE predictors.

Hand segmentation: Hand finding is based on two assump-
tions: hand movement and hand proximity to the camera. We
start by dropping pixels far from the camera and static pix-
els, using a fast background subtraction method. Among the
remaining pixels, the pixel with lowest projection on the 3D
direction (0,−1,2) is chosen as the hand’s ’anchor pixel’, re-
flecting the relative position of the camera and user in our
setting (see figure 6.a). The hand is then segmented by taking
the set of pixels whose 3D distance from the anchor pixel is
smaller than a threshold (See figure 6.e).

Hand centering: The hand center of mass in 3D is found and
a 3D transformation is computed so as to rotate it about the
shortest rotation direction onto the camera principal axis. This
transformation, together with affine scaling, is then applied to
all the hand pixels, and the hand is re-rendered. This process
maps all hands to frame center and roughly equal size, thus
reducing variation due to perspective projection and distance
from camera (see figure 6.f).

Global hand orientation classification: We term the follow-
ing 6 parameters by ’global hand pose’: the 3D palm center
location and 3D hand orientation. Hand orientation is a main
source of variance in hand pose estimation: hands seen from
different viewpoints have very different appearances of the
palm, the fingers and their mutual occlusion patterns. There-
fore we consider the coarse global orientation determination as
a classification problem, and the pipeline in the next stages is
split to different paths according to the classification decision.
Instead of thinking about the hand as rotating, we fix it in a
canonical pose at (0,0,0), and consider the possible camera
positions and rotations on the viewing sphere (See figure 6.b).
The camera longitude and latitude determine its position on
the unit sphere, and the azimuth is related to the camera rota-
tion around its principal axis (in-plane rotation). Viewpoints
in which the hand is seen from the arm direction (first person)
are not considered, since they rarely occur in our scenario.

We treat longitude/latitude and azimuth differently in our clas-
sification. The viewing half-sphere is divided into 16 (lati-



tude, longitude) clusters (See 6.c), and the azimuth is indepen-
dently divided to 8 equidistant clusters centered at rotations
of 0◦,45◦, ..315◦. During training we use the ground truth
hand rotation to assign an image to one of the 16×8 = 128
possible labels. A single CTE classifier is learned with 16
classes, where output i is trained to discriminate images with
azimuth cluster 0 and (latitude, longitude) cluster i from all
other images. At test time, the image is rotated 8 times in
45◦ intervals, and submitted to the classifier in each rotation.
Since the classifier was trained to discriminate images from a
single rotation, 7 of the rotated images are expected to get low
scores in all their 16 outputs, and only the correct rotation gets
a high i-th output. The highest scoring class among the 128
outputs determines the (latitude, longitude) orientation cluster,
and the azimuth cluster. The hand image is then rotated so as
to cancel out the predicted azimuth. (see figure 6.g).

Global hand pose refinement: This stage refines the coarse
hand orientation and location (known from orientation classifi-
cation and hand centering stages respectively). The refinement
is done in two regression stages, each with 6 outputs. At
each stage, the hand image is re-centered and re-rotated using
the current estimates. Then the residual difference between
the current estimates and true (center, orientation) values is
regressed. During training, two such consecutive stages are
trained for each (longitude, latitude) cluster, for a total of
16×2 = 32 CTE-regressors. However, when testing only 2
regressors corresponding to the chosen cluster are activated.

Fingers regression: This part of the pipeline includes 3 re-
gression stages (see figure 6.h-j) trained separately for each
(longitude, latitude) cluster. The first stage operates on the
rotated and centered hand image and regresses the rough loca-
tion of the 5 fingertips. Following that, two finger refinement
stages take place for each finger separately. At each stage, the
image is translated to have the finger of interest centered ac-
cording to the current estimation, and the residual translation
of the real finger is regressed. At the second stage, the position
of the distal finger joint is also regressed, in order to get the
finger direction by subtracting it from the fingertip. Overall
there are 1+2×5 = 11 regressors activated at this stage, and
11×16 = 176 regressors are trained for all clusters.

Basic propositions truth value: As described earlier, each
of the 102 propositions has an operational definition in terms
of global palm direction, fingertip locations or fingertip direc-
tions. Given the estimations of the latter, the truth value of the
relevant basic propositions can be readily estimated.

Overall, the estimation system contains 209 CTE predictors,
but only 21 CTE activations are performed at test time per
frame. Such a multi-classifier approach is possible due to the
very low computational cost of CTE predictors. For example,
a classifier with m= 20 ferns, C = 10 class, K = 12 bits and an
aggregation area of 64×64 pixels runs at 550µS on a single
thread of an i7−3720QM CPU@2.6GHz processor.

Data and annotation gathering
In the CTE framework, gathering a large annotated dataset is
the key for test time speed, since a larger data set allows usage
of larger tables (larger K) and therefore fewer ferns (lower M)

- see [14] for the details. Our data was gathered using Intel’s
RealSense SR300 camera [1], providing 640×480 depth and
IR images using coded light technology. In order to get a large
dataset, we constructed an iron dome, with up to 23 affixed
Intel cameras and 8 high definition RGB cameras, all pointing
toward the dome center (See figure 6.d). All of the cameras
were jointly calibrated and synchronized (synchronization is
required due to the active nature of the cameras, which may
cause interference). Using this construction, a hand pose in the
center of the dome provides 23 depth images, and annotation
obtained can be readily propagated between them.

The RGB cameras are used to obtain the annotation needed:
global hand pose, as well as location of fingertips and dis-
tal finger joints. We marked the positions of key joints on
each subject’s right hand using colors not seen by the IR cam-
eras. Specifically, 3 points and one short line were marked
on the back of the hand, for determination of the global hand
pose. When the hand is placed at the dome’s center, each
such point is seen by at least 2 RGB cameras, so its 2D image
position was automatically detected, and its 3D point location
was found by triangulation. In this manner, the global pose
annotation is found automatically. For fingertips and other
joint locations we could not achieve this automatic annotation
due to marker confusion and occlusion problems, and so we
resorted to manual annotation.

Altogether 89,333 images were collected and automatically
tagged for global hand pose training. To this we added virtual
samples, created from the original samples using in-plane rota-
tion. For fingertips detection 274,068 images were manually
annotated. This large a sample is required since 16 different
fingertip detection pipelines are trained, one per (longitude,
latitude) cluster, using mutually exclusive sub-samples.

In addition to the training data, two datasets were gathered for
evaluation purposes. The first includes 61,397 fully annotated
images of random hand poses, used for estimation of fingertip
location accuracy and basic proposition estimation. A second
dataset includes 507 clips of 12 gestures, performed multiple
times by 10 different subjects. A 3,500 random subset of the
first dataset, and the entire second dataset are made publicly
available1. Prior to recording, the subjects were allowed to
train on the 12 gestures for three minutes, to simulate the
steady state of experienced users. Clips were annotated with
tags marking the temporal intervals in which poses of interest
were maintained. In addition, 17 minutes of intensive non-
gesture hand activities were recorded. This dataset is used for
estimation of gesture-detection statistics: detection and false
alarm rates. See the appendix for a more detailed description.

EMPIRICAL RESULTS
In most of the hand pose estimation literature [27, 15, 16, 17,
26, 25], system performance is measured using statistics of 3D
deviations between true finger locations and their estimates.
We report our results using these measures on our test data, and
compare to other methods on two publicly available datasets.
However, for practical gesture recognition performance be-
yond deviation statistics should be measured. We measure the

1https://aka.ms/atli-hands-chi2017

https://aka.ms/atli-hands-chi2017


Method Error (mm)
Taylor et al. 2016 [26] 9.5
Tagliasacchi et al. 2015 [2] 9.8
This paper, simple filter 12.7
This paper, single frame 14.8
Sharp et al. 2015 [17] 15.0
Sridhar et al. 2015 [21] 19.6
Sridhar et. al 2014 [23] 24.1
Choi et al. 2015 [6] 25.3
Sridhar et al. 2013 [22] 31.8
Tang et al. 2014 [25] 42.4

Figure 7. Joint deviation results: (Left) Max deviation CDF results on NYU dataset. See text for explanation. (Center) Max deviation CDF on a
random subset of our test data, consisting of 3,500 images. (Right) Average error rates on Dexter data for our method and alternatives. Our accuracy
is obtained in 14 millisecond per image on a single CPU thread - roughly an order of magnitude faster than any other method of comparable accuracy.
Our pose recognition is based on single-frame. When adding even a simple temporal median filter on adjacent frames, the accuracy increases (see
Method "This paper, simple filter"), demonstrating further potential for improvements.

accuracy of our system on two higher level tasks: estimating
the truth value of our 102 basic propositions, and detecting
actual gestures phrased in our language.

3D finger deviations - comparison to state of the art
We experimented with two publicly available datasets:
NYU [27] and Dexter [22]. NYU is a large dataset with
N = 8252 test images including challenging poses. Dexter
is a smaller (N = 2931) and easier dataset, where the hand
is frontal in most of the poses and all fingertips are usually
visible. We use the methodology of [26] to map the output
joints of our method to ground truth joints of the specific
dataset. In both these datasets, the hand movement is often rel-
atively slow compared to natural gestures and the importance
of temporal information is emphasized. On the contrary our
method, which is a single-frame algorithm designed to cope
with fast gestures, does not use temporal information at all. To
make the comparison fair, we show our results both for the
pure algorithm, and for the algorithm after applying a simple
temporal median filter independently for each joint location,
with a window of 5 frames.

In figure 7.Left we compare our NYU results to several alter-
natives. The graph shows a CDF of maximal deviation in a
frame: for each joint the deviation in millimeters between esti-
mated and true location is computed, and the graph shows the
fraction of frames in which the maximal deviation is smaller
than a threshold. The table in figure 7.Right lists the average
fingertip estimation error in millimeters on Dexter data set for
our algorithm and alternative methods. Figure 7.Center shows
the maximal deviation CDF on our own test set. This set is
an order of magnitude larger than the others, and it contains
diverse, random hand poses taken from the covered half of the
viewing sphere.

The comparison to alternatives shows that our method is
comparable to the state-of-the-art method [26] on NYU, and
slightly lower on Dexter. The higher relative ranking on NYU
indicates that our strength is mostly with hard poses, where
finger occlusion is prevalent. When comparing to [26] several
points should be noted: First, our method runs in 11.5ms on
a single thread (laptop with i7-4810MQ @2.8GHz), while
the method of [26] is reported to consume most of the CPU

on an 8-core, 16-thread machine. Our method is therefore at
least one order of magnitude faster. This is also true regarding
the methods accurate on Dexter [17, 2], which run on GPU.
Second, unlike these alternatives our method inferences using
a single frame, and is therefore more robust for fast and abrupt
hand motions which are prevalent in natural gesturing.

Basic proposition accuracy
We tested the algorithm in the task of estimating the truth
value of the 102 basic language propositions, using our test
set of 61,397 images. For each image the basic proposition’s
truth value was computed using the algorithm estimations, and
compared to the truth value computed using the ground truth
joint locations. Since we quantize continuous hand orientation
angles into discrete directions, we allowed margin of +/-15
degrees between positive and negative zones, and ignore bor-
derline cases with such low margins. In addition, for finger
posture propositions, we excluded cases where the palm di-
rection is away from the camera. For example, if a pose is
defined with the palm backward, it does not make sense to
add a fingertip touching condition, as fingers are occluded.
This does not factor out all types of occlusions, as one finger
may occlude other fingers. However, our hand pose recognizer
can deal with most of these types of occlusion. Detection and
false alarm rates for families of basic propositions are reported
in figure 8.Left. Among the basic proposition types, finger
tangency and finger relative location are the hardest to detect,
since successful detection requires accurate estimation of two
fingertip locations, both of which may be occluded.

Gesture recognition accuracy
Detection rates on the new gestures dataset are shown in fig-
ure 8.(Right). Most gestures are detected well, with detection
rates above 90%, with the ’Swipe down’ gesture as an ex-
ception with a detection rate of 78%. We found that one of
the main reasons for failures is that subjects do not perform
a gesture as intended, even after it is shown to them. This
highlights the importance of a real time feedback mechanism
as part of the user experience. More generally, the system
needs to understand the users’ intent, not just what the users
do.



Propositions Detection False Alarm
Palm direction 0.99 0.001
Finger direction 0.96 0.006
Finger flexion 0.91 0.043
Finger tangency 0.86 0.019
Finger non-tangency 0.98 0.005
Finger relative location 0.87 0.018
Overall 0.92 0.014

Gesture Detection Rate Gesture Detection Rate
Hang Up 1.00 Explode 1.00
Swipe Up 1.00 Mute 0.97
Like 1.00 Shoot 0.94
Lock 1.00 Flute 0.92
Bloom 1.00 Tap 0.91
Rotate Right 1.00 Swipe Down 0.78

Figure 8. (Left) Detection and false alarm rate for basic propositions. (Right) Detection rates for 12 gestures using our new data set. The average
detection rate is 96%.

The false alarm rate in real-usage scenario is very low, since
in realistic scenarios the users keep their hands down most of
the time. In addition, most of the gestures are registered only
in a specific context (for example, when a certain window is
in focus), so they are active only for a fraction of the activity
time. Modeling the realistic hand activity distribution is hence
very inefficient as it would require gathering many hours of
mostly irrelevant data. Instead, our data includes 17 minutes of
intensive non-gesture hand activity, on which the false alarm
rate is 1.21 (false alarms)/minute.

DISCUSSION
Our method can be measured using several different metrics:

• Can a non-expert define poses and gestures? How long does
it take?
• How expressive is the proposed language?
• What is the gesture recognition accuracy?

Regarding the first question above, we have shared the gesture
buidling tools with 5 software engineers and designers, with
no experience in computer vision. They were all able to learn
from sample code, and define poses and gestures on their
own in a few minutes. Nevetheless, a more comprehensive
study is required in order to estimate finer distinctions, like the
preference between visual and text-based gesture definition.
Regarding language expressivity, we believe an evidence for
the strength of the coverage is that ASL poses are covered
almost entirely, as well as standard commercial gestures.

The issue of gesture recognition accuracy is complex to esti-
mate, and may be seperated into two levels: the accuracy at
recognizing poses and gestures performed according to the
formal definitions, and the accuracy at understanding user
intent. As can be seen in figures 7,8.(Left), the algorithmic
pipe has state of the art accuracy in finger location, and high
recognition rates of the language’s basic propositions. De-
spite being multi-staged, the system is very robust, mainly
because solving for the palm global parameters, which is done
in the first stages, is much easier than fingertip location done
later. Specifically, the accuracy of the first stages, including
palm orientation detection is very high, with 98.6 of the cases
ending with very low deviations.

Understanding and interpreting correctly the user intent is
more involved. For 11 of 12 defined gestures we achieve
high detection rate (> 90%, see Table 8). The main cause of
false negatives is that some subjects performed the gesture
not as the developer intended. Bridging the gap between

ideal definition of a gesture and the way different subjects
actually perform it, is challenging and requires expertise. In
our approach, we conceal this complexity from the developer.
For this purpose, we collected gestures from multiple subjects
and tuned tolerance parameters. Still, more work is needed to
improve it.

FUTURE WORK
Our language enables a rich scope of hand gestures based
on varying the hand pose, but currently it lacks motion ele-
ments. Adding such elements to the language as additional
basic propositions is an important route to follow. The devel-
opment tools we presented here can also be improved. The
current XAML representation, for example, can gain from a
mechanism to avoid repeating lines of code when describing
two similar poses that have a minor difference. The gesture
builder lacks a clear presentation of the currently chosen ba-
sic propositions, as choices are often hidden in non-visible
context menus.

In terms of interface usefulness, our work shows that general
detection of certain hand poses is still challenging even with
state-of-the-art hand pose estimation accuracy. Specifically,
propositions of fingertip relations may benefit from additional
accuracy improvements. With the current accuracy some care
has to be taken to choose sets of gestures which are different
enough from each other, and gesture registration is better
limited to predefined contexts to avoid excessive false alarms.

There are several clear avenues for increased pose estimation
accuracy in our system. One direction is the incorporation of
temporal information and/or a generative 3D model, as in [26,
2]. This reasoning is highly complementary to the single-
frame discriminative reasoning currently used in our system.
Another element with a significant potential for improvement
is adding a fingertip detection module to complement the
currently used regression stages. This can improve accuracy
for the cases where the fingertips are visible.

CONCLUSIONS
We presented a simple language for the design of a hand-
gesture-based user interface, and a set of tools enabling rapid
development. The algorithmic pipeline, based on fast CTE
classifiers, is able to combine high speed with state of the
art accuracy, and enables recognition of general gestures ex-
pressed in the proposed language. We believe the system
represents an important step forward in the development and
employment of general and practical gesture-based interfaces,
accessible to any developer.
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