
1

Shorter stabilizer circuits via Bruhat decomposition
and quantum circuit transformations

Dmitri Maslov and Martin Roetteler

Abstract— In this paper we improve the layered implementa-
tion of arbitrary stabilizer circuits introduced by Aaronson and
Gottesman in Phys. Rev. A 70(052328), 2004: to implement a gen-
eral stabilizer circuit, we reduce their 11-stage computation -H-
C-P-C-P-C-H-P-C-P-C- over the gate set consisting of Hadamard,
Controlled-NOT, and Phase gates, into a 7-stage computation of
the form -C-CZ-P-H-P-CZ-C-. We show arguments in support
of using -CZ- stages over the -C- stages: not only the use of
-CZ- stages allows a shorter layered expression, but -CZ- stages
are simpler and appear to be easier to implement compared to
the -C- stages. Based on this decomposition, we develop a two-
qubit gate depth-(14n−4) implementation of stabilizer circuits
over the gate library {H, P, CNOT}, executable in the LNN
architecture, improving best previously known depth-25n circuit,
also executable in the LNN architecture. Our constructions rely
on Bruhat decomposition of the symplectic group and on folding
arbitrarily long sequences of the form (-P-C-)m into a 3-stage
computation -P-CZ-C-. Our results include the reduction of the
11-stage decomposition -H-C-P-C-P-C-H-P-C-P-C- into a 9-stage
decomposition of the form -C-P-C-P-H-C-P-C-P-. This reduction
is based on the Bruhat decomposition of the symplectic group.
This result also implies a new normal form for stabilizer circuits.
We show that a circuit in this normal form is optimal in the
number of Hadamard gates used. We also show that the normal
form has an asymptotically optimal number of parameters.

I. INTRODUCTION

Stabilizer circuits are of particular interest in quantum
information processing (QIP) due to their prominent role in
fault tolerance [7], [13], [20], [22], the study of entanglement
[4], [20], and in evaluating quantum information processing
proposals via randomized benchmarking [16], to name a few.

Stabilizer circuits are composed of the Hadamard gate H,
Phase gate P, and the controlled-NOT gate CNOT defined as

H :=
1
√
2

[
1 1
1 −1

]
, P := [1 0

0 i] , and CNOT :=

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
,

where in case of H and P each of these gates is allowed to
act on any of a given number n of qubits, and on any pair of
qubits in case of the CNOT gate.

The stabilizer circuits over n qubits, such as defined above
form a finite group which is known to be equivalent [7], [8] to
the group of binary 2n× 2n symplectic matrices, Sp(2n,F2).
Knowing this equivalence allows to evaluate the stabilizer
group size, through employing the well-known formula to

D. Maslov is with the National Science Foundation, Arlington, VA 22230,
USA. M. Roetteler is with Microsoft Research, Redmond, WA 98052, USA.

This material was based on work supported by the National Science
Foundation, while DM working at the Foundation. Any opinion, finding,
and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science
Foundation.

calculate the number of elements in the respective symplectic
group,

|Sp(2n,F2)| = 2n
2
n∏
j=1

(22j − 1) = 22n
2+O(n).

In this paper, we rely on the phase polynomial represen-
tation of {P,CNOT} circuits. Specifically, arbitrary quantum
circuits over P and CNOT gates can be described in an alter-
nate form, which we refer to as phase polynomial description,
and vice versa, each phase polynomial description can be
written as a P and CNOT gate circuit. We use this result
to induce circuit transformations via rewriting the respective
phase polynomials. We adopt the phase polynomial expression
result from [2] to this paper as follows:

Theorem 1: Any circuit C on n qubits over {P,CNOT}
library with k Phase gates can be described by the combination
of a phase polynomial p(x1, x2, ..., xn) = f1(x1, x2, ..., xn)+
f2(x1, x2, ..., xn) + · · · + fk(x1, x2, ..., xn) and a linear re-
versible function g(x1, x2, ..., xn), such that the action of C
can be constructed as

C|x1x2...xn〉 = ip(x1,x2,...,xn)|g(x1, x2, ..., xn)〉,

where i is the complex number i. Functions fj corresponding
to the jth Phase gate are obtained from the circuit C via
devising Boolean linear functions computed by the CNOT
gates in the circuit C leading to the position of the respective
Phase gate.

In the following we focus on finding a short layered se-
quence of gates capable of representing an arbitrary stabilizer
circuit over n primary inputs. The layers are defined as
follows:

• -H- layer contains all unitaries representable by arbitrary
circuits composed of the Hadamard gates. Since H2 =
Id, and Hadamard gate is a single-qubit gate, -H- layer
has zero or one gates acting on each of the respective
qubits. The number of distinct layers -H- on n qubits is
thus 2n. We say -H- has n Boolean degrees of freedom.

• -P- layer is composed of an arbitrary set of Phase gates.
Since P4 = Id, and the Phase gate is also a single-
qubit gate, -P- layer has anywhere between zero to three
gates on each of the respective qubits. Note that P2 =
Z, and therefore the gate sequence PP may be better
implemented as the Pauli-Z gate; P3 = P†, and frequently
P† is constructible with the same cost as P. This means
that the -P- layer is essentially analogous to the -H- layer
in the sense that it consists of at most n individual single-
qubit gates. The number of different unitaries represented

ar
X

iv
:1

70
5.

09
17

6v
1

 [
qu

an
t-

ph
]

 2
5

M
ay

 2
01

7

2

by -P- layers on n qubits is 22n. We say -P- has 2n
Boolean degrees of freedom.

• -C- layer contains all unitaries computable by the CNOT
gates. The number of different -C- layers corresponds to
the number of affine linear reversible functions, and it is

equal to
n−1∏
j=0

(2n − 2j) = 2n
2+O(n) [21]. We say -C- has

n2 +O(n) Boolean degrees of freedom.
• -CZ- layer contains all unitaries computable by the CZ

gates, where CZ gate is defined as

CZ :=

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
.

Since all CZ gates commute, and due to CZ being self-
inverse, i.e., CZ2 = Id, the number of different unitaries
computable by -CZ- layers is

n∏
j=1

2n−j = 2
n2

2 +O(n). We

say -CZ- has n2

2 +O(n) Boolean degrees of freedom.
Observe that the above count of the degrees of freedom

suggests that -P- and -H- layers are “simple”. Indeed, each
requires no more than the linear number of single-qubit gates
to be constructed via a circuit. The number of the degrees
of freedom in -C- and -CZ- stages is quadratic in n. Other
than two-qubit gates often being more expensive than the
single-qubit gates [10], [15], the comparison of the degrees
of freedom suggests that we will need more of the respective
gates to construct each such stage. The -CZ- layer has roughly
half the number of the degrees of freedom compared to the
-C- layer. We may thus reasonably expect that the -CZ- layer
can be easier to obtain.

Unlike the -C- circuits, the problem of optimizing -CZ-
circuits does not seem to have been studied in the literature.
Part of the reason could be due to the CZ gate complexity
of -CZ- circuits being a very inconspicuous problem to study:
indeed, worst case optimal circuit has (n−1)n

2 CZ gates, and
optimal circuits are easy to construct, as they are determined
by the presence or lack of CZ gates acting on the individual
pairs of qubits. However, we claim that using only CZ gates
to construct -CZ- layer is not the best solution, and a better
approach would be to also employ the CNOT and P gates. In-
deed, both CNOT and CZ gates must have a comparable cost
of the implementation, since they are related by the formula
CNOT(a, b) = H(b)CZ(a, b)H(b), and single-qubit gates are
“easy” [10], [15]. CZ is furthermore the elementary gate in
superconducting circuits QIP [11], and as such, technically,
it costs less than the CNOT, and in the trapped ions QIP the
costs of the two are comparable [19]. Further discussion of the
relation of implementation costs between -C- and -CZ- layers
is postponed to Section III.

The different layers can be interleaved to obtain stabilizer
circuits not computable by a single layer. A remarkable
result of [1] shows that 11 stages over a computation of
the form -H-C-P-C-P-C-H-P-C-P-C- suffices to compute an
arbitrary stabilizer circuit. The number of Boolean degrees of
freedom in the group of stabilizer unitaries, defined as the
logarithm base-2 of their total count, is given by the formula
log2 |Sp(2n,F2)| = 2n2 + O(n). This suggests that the 11-
stage circuit by Aaronson and Gottesman [1] is suboptimal,

as it relies on 5n2 +O(n) degrees of freedom, whereas only
2n2 + O(n) are necessary. Indeed, we find (Section VI) a
shorter 9-stage decomposition of the form -P-C-P-C-H-C-P-
C-P- in which all -C- stages correspond to upper triangular
matrices having n2/2 degrees of freedom each, leading to an
asymptotically tight parameterization of all stabilizer circuits.

Notation. We denote with GL(n,F2) the group of invertible
n×n matrices, with Sn the full permutation group on n letters,
and with diag(A,B) the (block) diagonal operator that has
diagonal elements A and B.

II. (-P-C-)m CIRCUITS

In this section we show that an arbitrary length n-qubit
computation described by the stages -P-C-P-C-...-P-C- folds
into an equivalent three-stage computation -P-CZ-C-.

Theorem 2: (-P-C-)m = -P-CZ-C-.
Proof: Suppose (-P-C-)m circuit has k ≤ 3nm Phase

gates. Name those gates Pj=1..k, denote Boolean linear
functions they apply phases to as fj=1..k(x1, x2, ..., xn),
and name the reversible linear function computed by
(-P-C-)m (Theorem 1) as g(x1, x2, ..., xn). Phase polyno-
mial computed by the original circuit is f1(x1, x2, ..., xn) +
f2(x1, x2, ..., xn)+ ...+fk(x1, x2, ..., xn). We will next trans-
form phase polynomial to an equivalent one, that will be easier
to write as a compact circuit. To accomplish this, observe
that ia+b+c+(a⊕b)+(a⊕c)+(b⊕c)+(a⊕b⊕c) = i4 = 1, where a,
b, and c are arbitrary Boolean linear functions of the primary
variables. This equality can be verified by inspection through
trying all 8 possible combinations for Boolean values a, b, and
c. The equality can be rewritten as

ia⊕b⊕c = i3a+3b+3c+3(a⊕b)+3(a⊕c)+3(b⊕c), (1)

suggesting how it will be used. The following algorithm takes
n− 2 steps.

Step n. Consolidate terms in the phase polynomial
f1(x1, x2, ..., xn) +f2(x1, x2, ..., xn) + ...+fk(x1, x2, ..., xn)
by replacing ufj(x1, x2, ..., xn) + vfk(x1, x2, ..., xn) with
(u+v mod 4)fj(x1, x2, ..., xn) whenever fj = fk. Once done,
look for fj = x1⊕x2⊕...⊕xn, being the maximal length linear
function of the primary inputs. If no such function found, move
to the next step. If it is found with a non-zero coefficient u,
as an additive term u(x1 ⊕ x2 ⊕ ... ⊕ xn), replace it by the
equivalent 6-term mixed arithmetic polynomial (4 − u)x1 +
(4−u)x2+(4−u)(x3⊕x4⊕...⊕xn)+(4−u)(x1⊕x2)+(4−
u)(x1⊕x3⊕x4⊕ ...⊕xn) + (4−u)(x2⊕x3⊕ ...⊕xn). This
transformation is derived from eq. (1) by assigning a = x1,
b = x2, and c = x3 ⊕ x4 ⊕ ... ⊕ xn. Consolidate all equal
terms. The transformed phase polynomial is equivalent to the
original one in the sense of the overall combination of phases
it prescribes to compute, however, it is expressed over linear
terms with at most n−1 variables.

Step s, s = (n−1)..3. From the previous step we have phase
polynomial of the form u′1f

′
1(x1, x2, ..., xn)+u′2f

′
2(x1, x2, ...,

xn) + ... + u′k′f
′
k′(x1, x2, ..., xn). By construction it is guar-

anteed that the functions f ′j=1..k′ EXOR no more than s
literals. For each f ′j = xj1 ⊕ xj2 ⊕ ... ⊕ xjs , with the
coefficient u′j 6≡ 0 mod 4 replace this term with the sum of

3

six terms, each having no more than s−1 literals by using
eq. (1) and setting a, b, and c to carry linear functions over
the non-overlapping non-empty subsets of {xj1 , xj2 , ..., xjs}
whose union gives the entire set {xj1 , xj2 , ..., xjs}. Value s=3
marks the last opportunity to break down a term in the phase
polynomial expression into a set of terms over smaller numbers
of variables. Upon completion of this step, the linear functions
participating in the phase polynomial expression contain at
most two literals each.

The transformed phase polynomial description of the orig-
inal circuit now has the following form: phase polynomial
n∑
j=1

ujxj +
n∑
j=1

n∑
k=j+1

uj,k(xj ⊕ xk), where u·, u·,· ∈ Z4,

and the linear reversible function g(x1, x2, ..., xn). We next
show how to implement such a unitary as a -P-CZ-C- circuit,
focusing separately on the phase polynomial and the linear
reversible part. We synthesize individual terms in the phase
polynomial as follows.
• For j = 1..n, the term ujxj is obtained as the single-

qubit gate circuit Puj (xj);
• For j = 1..n, k = j+1..n, the term uj,k(xj ⊕ xk) is

obtained as follows:
– if uj,k ≡ 2 mod 4, by the circuit P2(xj)P2(xk) =

Z(xj)Z(xk);
– if uj,k ≡ 1 or 3 mod 4, by the circuit

Puj,k(xj)Puj,k(xk)CZ(xj , xk).
The resulting circuit contains P and CZ gates; it implements

phase polynomial
n∑
j=1

ujxj +
n∑
j=1

n∑
k=j+1

uj,k(xj ⊕ xk) and

the identity linear reversible function. Since all P and CZ
gates commute, Phase gates can be collected on the left side
of the circuit. This results in the ability to express phase
polynomial construction as a -P-CZ- circuit. We conclude the
entire construction via obtaining the linear reversible function
g(x1, x2, ..., xn) as a -C- stage, with the overall computation
described as a -P-CZ-C- circuit.

Note that -P-CZ-C- can also be written
as -C-P-CZ-, if one first synthesizes the
linear reversible function g(x1, x2, ..., xn) =
(g1(x1, x2, ..., xn), g2(x1, x2, ..., xn), ..., gn(x1, x2, ..., xn)),
and then expresses the phase polynomial in terms of the
degree-2 terms over the set {g1, g2, ..., gn}. Other ways to
write such a computation include -CZ-P-C- and -C-CZ-P-,
that are obtained from the first two by commuting -P- and
-CZ- stages.

Corollary 3: -H-C-P-C-P-C-H-P-C-P-C- [1] = -H-C-CZ-P-
H-P-CZ-C-.

III. -C- VS -CZ-

We have previously noted that CNOT and CZ gates have
a comparable cost as far as their implementation within
some QIP proposals is concerned. In this section, we study
{P,CZ,CNOT} implementations of stages -C- and -CZ-. The
goal is to provide further evidence in support of the statement
that -CZ- can be thought of as a simpler stage compared to the
-C- stage, and going beyond counting the degrees of freedom
argument.

Lemma 4: Optimal quantum circuit over {CZ} library for
a -CZ- stage has at most n(n−1)

2 CZ gates.
Indeed, all CZ gates commute, which limits the expressive

power of the circuits over CZ gates. However, once we add
the non-commuting CNOT gate, and after that the Phase gate,
the situation changes. We can now implement -CZ- circuits
more efficiently, such as illustrated by the circuit identities
shown in Fig. 1. The unitary implemented by the circuitry
shown in Fig. 1 requires 7 CZ gates as a {CZ} circuit, 6
gates as a {CZ,CNOT} circuit, and only 5 two-qubit gates as
a {P,CZ,CNOT} circuit. This illustrates that the CNOT and
P gates are important in constructing efficient -CZ- circuits.

We may consider adding the P and CZ gates to the
{CNOT} library in hopes of constructing more efficient
circuits implementing the -C- stage. However, as the following
lemma shows, this does not help.

Lemma 5: Any {P,CZ,CNOT} circuit implementing an
element of the layer -C- using a non-zero number of P and
CZ gates is suboptimal.

Proof: Each P gate applied to a qubit x can be expressed
as a phase polynomial 1 · x over the identity reversible linear
function. Each CZ gate applied to a set of qubits y and z
can be expressed as a phase polynomial y+ z+ 3(y⊕ z) and
the identity reversible function. Removing all P and CZ gates
from the given circuit thus modifies only the phase polynomial
part of its phase polynomial description. Removing all P and
CZ gates from the {P,CZ,CNOT} circuit guarantees that
the phase polynomial of the resulting circuit equals to the
identity, such as required in the -C- stage. This results in the
construction of a shorter circuit in cases when the original P
and CZ gate count was non-zero.

We next show in Table I optimal counts and upper bounds
on the number of gates it takes to synthesize the most difficult
function from stages -C- and -CZ- for some small n. Observe
how the two-qubit gate counts for the -CZ- stage, when
constructed as a circuit over {P,CZ,CNOT} library, remain
lower than those for the -C- stage.

-CZ- -C-
n {CZ} {P, CZ, CNOT} {CNOT} {P, CZ, CNOT}
2 1 1 3 3
3 3 3 6 6
4 6 5 9 9
5 10 7 12 12

TABLE I
GATE COUNTS REQUIRED TO IMPLEMENT ARBITRARY -CZ- AND -C-
STAGES FOR SOME SMALL n: OPTIMAL -CZ- STAGE GATE COUNTS AS

CIRCUITS OVER {CZ}, UPPER BOUNDS ON THE TWO-QUBIT GATE COUNT

FOR -CZ- OVER {P, CZ, CNOT}, ACHIEVED BASED ON THE APPLICATION

OF IDENTITIES FROM FIG. (1) APPLIED TO CIRCUITS WITH CZ GATES,
AND OPTIMAL {CNOT} AND {P, CZ, CNOT} TWO-QUBIT GATE COUNTS

FOR STAGE -C-.

In [21] an asymptotically optimal algorithm for {CNOT}
synthesis of arbitrary -C- stage functions was reported, that
leads to the worst case gate complexity of O

(
n2

logn

)
. It

is possible that an asymptotically optimal algorithm for
{P,CZ,CNOT} circuits implementing arbitrary -CZ- stage

4

• • • •
• • • •
• •
• •
• •

=

• • •
• • • •

•
•
•

=

P • •
P P† • • •

•
•
•

Fig. 1. Circuit identities illustrating rewriting of the -CZ- circuits.

functions can be developed, at which point its complexity has
to be O

(
n2

logn

)
. To determine which of the two results in

shorter circuits, one has to develop constants in front of the
leading complexity terms.

We point out that gate count is only one of several possi-
ble metrics of efficiency. For instance, two-qubit gate depth
over Linear Nearest Neighbour (LNN) architecture is also an
important metric of efficiency. This metric has been applied
in [18] to show an asymptotically optimal upper bound of 5n
CNOT layers required to obtain an arbitrary -C- stage.

Define -̂CZ- to be -CZ- accompanied by the complete qubit
reversal (i.e., the linear reversible mapping |x1x2...xn〉 7→
|xnxn−1...x1〉). We next show that -̂CZ- can be executed as
a two-qubit gate depth-(2n+ 2) computation over LNN. This
result will be used to reduce depth in the implementation of
arbitrary stabilizer circuits.

Theorem 6: -̂CZ- can be implemented as a CNOT depth-
(2n+ 2) circuit.

Proof: Consider phase polynomial description of the
circuit -̂CZ-. However, rather than describe both parts of the
expression, phase polynomial itself and the linear reversible
transformation, over the set of primary variables, we will
describe phase polynomial over the variables y1, y2, ..., yn
defined as follows:

y1 := x1,

y2 := x1 ⊕ x2,
...,

yn := x1 ⊕ x2 ⊕ ...⊕ xn.

This constitutes the change of basis {x1, x2, ..., xn} 7→
{y1, y2, ..., yn}. Similarly to how it was done in the proof
of Theorem 2, we reduce phase polynomial representation of
-̂CZ- to the application of Phase gates to the EXORs of pairs
and the individual variables from the set {y1, y2, ..., yn},

n∑
j=1

ujyj +

n∑
j=1

n∑
k=j+1

uj,k(yj ⊕ yk), (2)

and the linear reversible function g(x1, x2, ..., xn) :
|x1x2...xn〉 7→ |xnxn−1...x1〉. Observe that yj ⊕ yk = xj ⊕
xj+1⊕...⊕xk, and thereby this linear function can be encoded
by the integer segment [j, k]. The primary variable xj admits
the encoding [j, j]. We use this notation next. In the following
we implement the pair of the phase polynomial expression
and the reversal of qubits (a linear reversible function) via a
quantum circuit.

Observe that the swapping operation g(x1, x2, ..., xn) :
|x1x2...xn〉 7→ |xnxn−1...x1〉 can be implemented as a circuit
similar to the one from Theorem 5.1 [18] in depth 2n+2. The
rest of the proof concerns the ability to insert Phase gates in the
circuit accomplishing the reversal of qubits such as to allow the
implementation of each term in the phase polynomial, eq. (2).

Since our qubit reversal circuit is slightly different from the
one used in [18], and we explore its structure more extensively,
we describe it next. It consists of n+1 alternating stages, S1

and S2, where

S1 = CNOT(x1;x2)CNOT(x3;x4)...CNOT(xn−2;xn−1)

· CNOT(x3;x2)CNOT(x5;x4)...CNOT(xn;xn−1)

for odd n, and

S1 = CNOT(x1;x2)CNOT(x3;x4)...CNOT(xn−1;xn)

· CNOT(x3;x2)CNOT(x5;x4)...CNOT(xn−1;xn−2)

for even n, is a depth-2 circuit composed with the CNOT
gates. Similarly,

S2 = CNOT(x2;x1)CNOT(x4;x3)...CNOT(xn−1;xn−2)

· CNOT(x2;x3)CNOT(x4;x5)...CNOT(xn−1;xn)

for odd n, and

S2 = CNOT(x2;x1)CNOT(x4;x3)...CNOT(xn;xn−1)

· CNOT(x2;x3)CNOT(x4;x5)...CNOT(xn−2;xn−1)

for even n, is also a depth-2 circuit composed with the CNOT
gates. We refer to the concatenation of S1 and S2 as S. The
goal is to show that after dn2 e applications of the circuit S
we are able to cycle through all n(n+1)

2 linear functions [j, k],
j ≤ k.

The remainder of the proof works slightly differently de-
pending on the parity of n. First, choose odd n = 2m+1.
Consider two patterns of length 2n−3,

Pj = (n−1, n−3, n−3, ..., 4, 4, 2, 2, 1, 1, 3, 3, ..., n−2, n−2)

and

Pk = (3, 3, 5, 5, ..., n, n, n−1, n−1, n−3, n−3, ...6, 6, 4, 4, 2).

Observe by inspection that the ith linear function computed
by the single application of the stage S is given by the
formula [Pj(n−3+ i), Pk(i)], where Pj(l) and Pk(l) return
lth component of the respective pattern. It may further be
observed, via direct multiplication by the linear reversible
matrix corresponding to the transformation S, that the ith

component upon t (t ≤ m) applications of the circuit S

5

[6,] [,] [, 3]

[4,] [,] [, 3]

[4,] [6, 3] [, 5]

[2,] [4, 3] [, 5]

[1, 1] • [2, 3] • [4, 5] • [6, 7] • [7, 7]

[2, 2] • • [1, 3] • • [2, 5] • • [4, 7] • • [6, 6]

[3, 3] • • [1, 5] • • [2, 7] • • [4, 6] • • [5, 5]

[4, 4] • • [3, 5] • • [1, 7] • • [2, 6] • • [4, 4]

[5, 5] • • [3, 7] • • [1, 6] • • [2, 4] • • [3, 3]

[6, 6] • • [5, 7] • • [3, 6] • • [1, 4] • • [2, 2]

[7, 7] • [5, 6] • [3, 4] • [1, 2] • [1, 1]

[, 6] [5, 4] [3,]

[, 4] [5, 2] [3,]

[, 4] [,] [5,]

[, 2] [,] [5,]

↓ ↑ ↓ ↑ ↓ ↑
Fig. 2. Constructing -̂CZ- for n = 7. The circuit uses m + 1 = n−1

2
+ 1 = 4 depth-4 stages S. Patterns Pj and Pk are (6, 4, 4, 2, 2, 1, 1, 3, 3, 5, 5)

and (3, 3, 5, 5, 7, 7, 6, 6, 4, 4, 2), correspondingly. Arrows ↓ and ↑ show the direction of the 2-position shifts of the respective patterns. [j, k] denotes linear
function xj ⊕ xj+1 ⊕ ... ⊕ xk of primary variables, that accepts the application of Phase gates to, so long as contained to within the circuit. A total of 4
Phase gate stages is required; Phase gates can be applied to the individual literals selectively in the beginning or at the end of the circuit.

is computable by the following formula, [Pj(n − 1 − 2t +
i), Pk(2t−2+i)] = [Pj(n−3−2(t−1)+i), Pk(2(t−1)+i)].
A simple visual explanation can be given: at each application
of S pattern Pj is shifted by two positions to the left (down,
Fig. 2), whereas pattern Pk gets shifted by two positions to
the right (up, Fig. 2).

Observe that every [j, k], j = 1..n, k = 1..n, j ≤ k is
being generated. Indeed, a given [j, k] may only be generated
at most once by the 0 to m applications of the circuit S.
This is because once a given j meets a given k for the
first time, at each following step, the respective value k gets
shifted away from j to never meet again. We next employ
the counting argument to show that all functions [j, k] are
generated. Indeed, the total number of functions generated by 0
to m applications of the stage S is (m+1)n =

(
n−1
2 + 1

)
n =

n(n+1)
2 , each linear function generated is of the type [j, k]

(j = 1..n, k = 1..n, j ≤ k), none of which can be generated
more than once, and their total number is n(n+1)

2 . This means
that every [j, k] is generated.

We illustrate the construction of the circuit implementing
-̂CZ- for n = 7 in Fig. 2.

For even n = 2m the construction works similarly.
The patterns Pj and Pk are (n, n − 2, n − 2, n − 4, n −
4, ..., 2, 2, 1, 1, 3, 3..., n−3, n−3, n−1) and (3, 3, 5, 5, ..., n−
1, n− 1, n, n, n− 2, n− 2, ..., 4, 4, 2, 2), respectively. The for-
mula for computing the linear function [j, k] for ith coordinate
after t applications of S is [Pj(n−2t+i), Pk(2t−2+i)]. After
m applications of the circuit S we generate linear functions
xn, xn−1, ..., x4, x2 in addition to the m new linear functions
of the form [j, k] (j < k).

To consider circuit depth makes most sense when applied
to measure depth across most computationally intensive op-
erations. In both of the two leading approaches to quantum
information processing, and limiting the attention to fully
programmable universal quantum machines, superconducting
circuits [15] and trapped ions [10], the two-qubit gates take
longer to execute and are associated with lower fidelity.
As such, they constitute the most expensive resource and
motivate our choice to measure depth in terms of the two-qubit
operations. The selection of the LNN architecture to measure
the depth over is motivated by the desire to restrict arbitrary
interaction patterns to a reasonable set. Both superconducting
and trapped ions qubit-to-qubit connectivity patterns [10], [15]
are furthermore such that they allow embedding the linear
chain in them.

A further observation is that the two-qubit CNOT gate may
not be native to a physical implementation, and therefore the
CNOT implementation may likely use correcting single-qubit
gates before and after using a specific two-qubit interaction.
This means that interleaving the two-qubit gates with the
single-qubit gates such as done in the proof of Theorem 6 may
not increase the depth, and restricting depth calculation to just
the two-qubit stages is appropriate. We did, however, report
enough detail to develop depth figure over both single- and
two-qubit gates for the implementations of stabilizer circuits
relying on our construction.

Corollary 7: Arbitrary n-qubit stabilizer unitary can be
executed in two-qubit gate depth 14n−4 as an {H, P,CNOT}
circuit over the LNN architecture.

Proof: Firstly, observe that -H-C-CZ-P-H-P-CZ-C = -H-

6

C-̂CZ-P-H-P-̂CZ-C-. This is because both -̂CZ- stages reverse
the order of qubits, and therefore the effect of the qubit reversal
cancels out. The two-qubit gate depth of the -C- stage is 5n
[18], and the two-qubit gate depth of the -̂CZ- stage is 2n+2,
per Theorem 6. This means that the overall two-qubit gate
depth is 14n+4. This number can be reduced somewhat by
the following two observations. Name individual stages in the
target decomposition as follows, -H-C1-̂CZ1-P-H-P-̂CZ2-C2-.
Using the construction in Theorem 6, we can implement -̂CZ1-
without the first S circuit through applying Phase gates at the
end of it (see Fig. 2 for illustration). The first S circuit can
then be combined with the -C1- stage preceding it. This results
in the saving of 4 layers of two-qubit computations. Similarly,
-̂CZ2- can be implemented up to S if it is implemented in
reverse, and phases are applied in the beginning (the end, but
invert the circuit). This allows to merge depth-4 computation
S with the stage -C2- that follows. These two modifications
result in the improved depth figure of 14n−4.

Observe how the aggregate contribution to the depth from
both -CZ- stages used in this paper, ∼4n, is less than that
from a single -C- stage, 5n. The result of [18] can be
applied to the 11-stage decomposition -H-C-P-C-P-C-H-P-
C-P-C- of [1] to obtain a two-qubit gate depth-25n LNN-
executable implementation of an arbitrary stabilizer unitary.
In comparison, our reduced 8-stage decomposition -H-C-CZ-
P-H-P-CZ-C- allows execution in the LNN architecture in only
14n−4 two-qubit stages.

IV. STABILIZERS AND THE SYMPLECTIC GROUP

We now establish a normal form for stabilizer circuits that
eliminates 2 of the layers of the 11-layer form given in [1],
while using same types of layers. As already mentioned, the
stabilizer circuits form a finite group which, modulo the group
that is generated by the center and the Pauli subgroup, is
isomorphic to the binary symplectic group defined as follows
(see also [7], [8] and [9, Chap. 2]):

Definition 8: The group Sp(2n,F2) of symplectic matrices
of size 2n× 2n with entries over the finite field F2 = {0, 1}
is defined as Sp(2n,F2) := {A ∈ GL(n,F2) : AtJA = J},
where J =

[
0n 1n
1n 0n

]
, and 1n and 0n denote the identity matrix

and the all zero matrix of size n × n (the subscript may
furthermore be dropped when it is clear what the dimension
is; 0 may furthermore be used to denote a rectangular matrix),
respectively.

Similarly to [1] we can work with a tableau representation
for symplectic matrices, where we omit column vector r as in
[1], which corresponds to an overall sign that, if needed, can
be obtained via a single layer of Z gates. Definition 8 implies

that the square block matrix M =

(
A B
C D

)
is symplectic if

and only if the following four conditions hold:

AtC = CtA, AtD + CtB = 1n,

BtD = DtB, BtC +DtA = 1n. (3)

In other words, two columns ci and cj of M are perpendicular
with respect to the symplectic inner product, unless they
form one out of n symplectic pairs (ci, cn+i), where i =

0, 1, ..., n−1, and in which case the symplectic inner product
evaluates to 1. It should be noted that if M is symplectic,
so is M−1, as the symplectic matrices form a group. As

M−1 =

(
Dt −Bt
−Ct At

)
, the equation (M−1)tJM−1 = J

implies that the following four conditions hold for M as well:

ABt = BAt, ADt +BCt = 1n,

CDt = DCt, CBt +DAt = 1n. (4)

In other words, also two rows ri and rj of M are perpendicular
with respect to the symplectic inner product, unless they
form one out of n symplectic pairs (ri, rn+i), where i =
0, 1, ..., n−1, and in which case the symplectic inner product
evaluates to 1.

Equations (3) and (4) will be useful later when we bring
a given stabilizer circuit, represented as a symplectic matrix,
into a suitable normal form.

The right side action of the stabilizer circuit layers -H-, -P-,
and -C- on a symplectic matrix M can be described as follows
(see also [1]):
• Right multiplication with a Hadamard gate on qubit k

corresponds to exchanging columns k and n+k of M .
• Right multiplication with a Phase gate on qubit k corre-

sponds to the addition modulo 2 of column k of M to
column n+k;

• Right multiplication with a CNOT gate with control j
and target k, 1 ≤ j, k ≤ n, corresponds to the addition
modulo 2 of column j to column k of M and the addition
modulo 2 of column n+k to column n+j of M .

Similarly, the left side action on the rows of M can be defined.

V. BN-PAIRS AND BRUHAT DECOMPOSITION

A property of the symplectic group that we exploit to show
an asymptotically optimal decomposition is that this group can
be written as a disjoint union

Sp(2n,F2) =
⊔
w∈W

BwB, (5)

where B is the Borel subgroup of Sp(2n,F2) and W labels
a system of representatives of the Weyl group of Sp(2n,F2).
For complex Lie group this decomposition is also known as
the Bruhat decomposition [5]. However, even over a finite field
such as F2 the decomposition eq. (5) can be suitably defined
using the notion of BN-pairs [3, Chap. 14], [24]. As we will
see below, we can identify B with a subgroup of Sp(2n,F2)
that is isomorphic to a subgroup of the upper triangular
matrices, and we can identify W with a wreath product of
Z2 with Sn which corresponds to the group generated by all
qubit permutations together with all possible Hadamard gate
combinations on n qubits.

Definition 9: (BN pair) Let G be a group and B,N ⊆ G
be two subgroups such that G = 〈B,N〉 and T := B ∩ N
is a normal subgroup of N . Let S be a set of generators
for W := N/T . Denote by C(w) = BwB the double coset
corresponding to the representative w ∈ W . If the following
two properties hold for all s ∈ S and all representatives
w ∈W

7

Fig. 3. Several important subgroups of the stabilizer group on n qubits and a visualization of the structure of the corresponding symplectic matrices: Cn
corresponds to the group generated by all CNOT gates. The block D here is equal to (A−1)t. If we consider only such CNOT(x; y) gates where the control
x and the target y labels satisfy x ≤ y, we obtain the subgroup C↓n. In circuit terms, this means that the circuits in C↓n may be written with only CNOT gates
where the targets are lower than the controls. The circuits in B0n correspond to those that can be written in the form CPC−1, where C ∈ C↓n and P is a
layer of Phase gates. Necessarily, B must then be symmetric, i.e., B = Bt. Finally, Bn denotes a Borel subgroup which is a maximal solvable subgroup of
the stabilizer group. Again, D = (A−1)t holds and furthermore ABt = BtA. Note that any element B ∈ Bn can be written as B = CP , where C ∈ C↓n
and P ∈ B0n. Note further that Cn and Bn have n2 Boolean degrees of freedom, whereas C↓n and B0n have n2/2 Boolean degrees of freedom.

• C(s)C(w) ⊆ C(w) ∪ C(sw),
• sBs−1 6⊆ B,

then (B,N) is called a BN-pair and the data (G,B,N, S) is
called a Tits system, see also [3], [5], [24].

For the group G = Sp(2n,F2) the subgroup B can be
identified with the set Bn defined in Fig. 3. Completing the
description of the BN-pair in case of Sp(2n,F2) we have to
determine the subgroups N , T , and W .

In case of the finite field F2 it turns out that T is trivial and
N consists of the group generated by all permutation matrices
and all Hadamard gates. This means that a set S of generators
for W can be defined as

S :=




0k 1k
1n−k 0n−k

1k 0k
0n−k 1n−k

 : k = 0..n


⋃ {[

τi
τi

]
: τi = (i, i+1), i = 1..n−1

}
. (6)

The first set in eq. (6 corresponds to the tensor products of
Hadamard matrices, namely W = {wk : k = 0, 1, ..., n},
where wk = H⊗k2 ⊗ 1⊗n−k2 , whereas the second set corre-
sponds to wire permutations of adjacent wires. Furthermore,
we note that

Bn =

{[
A 0n
0n (At)−1

] [
1n B
0n 1n

]
: A ∈ GL(n,F2), B ∈ Fn×n2 , B = Bt

}
,

which implies that Bn is isomorphic to a subgroup of the
upper triangular matrices, i.e., in particular, it is a solvable
group. This decomposition also implies that there are n2/2
Boolean degrees of freedom in the part corresponding to[
A 0n
0n (At)−1

]
and n2/2 Boolean degrees of freedom in

the part corresponding to
[

1n B
0n 1n

]
as B is symmetric.

Hence, matrices in Bn have an overall of n2 Boolean degrees
of freedom.

Finally, note that the elements of the form diag(τ, τ)
stabilize the set B0n as they leave the diagonal part invariant
and map the set of symmetric matrices into itself.

VI. COMPUTING THE BRUHAT DECOMPOSITION

We first state two lemmas that will be useful later for a
step-wise decomposition of a given stabilizer circuit.

Lemma 10 ([1]): For any symmetric matrix A ∈ Fn×n2

there exist matrices Λ, U ∈ Fn×n2 such that A = UU t + Λ,
where Λ is diagonal and U invertible and upper triangular.

Proof: In [1] a decomposition M = LLt + Λ was
derived, where L is lower triangular. By conjugating this
expression with a permutation matrix that exchanges the rows
(1, n), (2, n − 1), ... we see that the same proof also gives
rise to a decomposition into M = UU t + Λ′ with U upper
triangular and some diagonal matrix Λ′.

Corollary 11: Any matrix in Bn can be written in the form
-C-P-C-P- or alternatively in the form -P-C-P-C- with all -C-
layers consisting of gates in C↓n.

Proof: To see this, we first apply Lemma 10 decom-

pose a given matrix A =

[
1n B
0n 1n

]
into the product

A =

[
1n UU t

0n 1n

] [
1n Λ
0n 1n

]
. Now, the first factor can

be implemented in the form -C-P-C- and we get the following
overall circuit of the form -C-P-C-P- for A:

A =

[
U 0
0 (U t)−1

] [
1 1
0 1

] [
U−1 0
0 U t

] [
1 Λ
0 1

]
.

Clearly, the -C- layers are in C↓n. The other decomposition -P-
C-P-C- is obtained similarly, by factoring out the Λ component
on the left.

Lemma 12: For any matrix M ∈ Fn×2n2 that is the lower
n×2n part of a 2n×2n symplectic matrix, there exist a lower
triangular matrix L, an upper triangular matrix U , permutation
matrices σ, τ ∈ Sn, and k, 0 ≤ k ≤ n, such that

M=Lσ

[
1k 0 D1 D2

0 0 0 1n−k

]
diag(τ, τ) diag(U, (U−1)t).

Proof: The main idea is to use the fact that any matrix
M ∈ Fn×2n2 can be decomposed into the product of a
triangular matrix, a permutation pattern (i.e., a matrix that has
at most one non-zero entry in each row and column), and
another triangular matrix. LU decomposition with pivoting is
a special case of this decomposition [12, Theorem 3.4.2], [14,
Theorem 3.5.7], however, in our situation we cannot assume
that we know the pivoting of the matrix. Using L, P , and U as

8

shorthand for lower triangular, permutation pattern, and upper
triangular matrices, it is known that all four combinations
M = LPL = LPU = UPL = UPU are possible, see, e.g.,
[23] for a discussion. For instance, for LPL we start in the
upper right hand corner of M and eliminate going down and
left. For LPU , we start in the upper left corner and eliminate
going down and right. The remaining pattern defines the P -
part of the matrix.

Since, by assumption, M is a part of the 2n×2n symplectic
matrix, we obtain that rk(M) = n which means that using an
LPU decomposition on the left n×n block of M we can
find L1 and U1 such that L1Mdiag(U1, (U

−1
1)t) = [P1|M1],

where P1 is a permutation pattern and M1 is another matrix.
By considering the support of P1 we can define row indices
R := {i ∈ {1, 2, ..., n} : (P1)i,∗ = 0n} and column
indices C := {j ∈ {1, 2, ..., n} : (P1)∗,j = 0n}. If k :=
rk(P1), then clearly |R| = |C| = n−k. Using an LPL
decomposition on the restriction of the right block M1 of this
new matrix to the rows and columns in R × C, we therefore
obtain L2, L′2, and permutation matrices σ, τ such that
σL2L1Mdiag(U1, (U

−1
1)t)diag(((L′2)−1)t, L′2)diag(τ, τ) =[

1k 0 D1 D2

0 0 0 1n−k

]
for certain D1, D2 ∈ Fn×n2 .

Theorem 13: Any Clifford circuit on n qubits can written
in the form -P-C-P-C-H-C-P-C-P-.

Proof: We start with the 2n× 2n symplectic matrix M
of the form

M =

[
A B

C D

]
,

where A, B, C, and D are in Fn×n2 . We next give an algo-
rithm that synthesizes M in a canonical form. The algorithm
proceeds in several steps, by clearing out the entries of M
via left-hand and right-hand multiplications by other matrices,
until finally only a permutation matrix remains, which then
corresponds to a Hadamard layer up to a permutation of qubits.

Step 1. We apply Lemma 12 to the submatrix [C|D]. Note
that since M ∈ Sp(2n,F2) we have CtD = DtC, i.e., the
conditions to the lemma are satisfied and we can find a lower
triangular matrix L ∈ GL(n,F2) and a lower triangular matrix
U ∈ GL(n,F2) and two permutation matrices σ, τ ∈ Sn such
that[
σ 0
0 σ

] [
(Lt)−1 0

0 L

]
[C|D]

[
U 0
0 (U t)−1

] [
τ 0
0 τ

]
=

[
1k 0 D1 D2

0 0 0 1n−k

]
,

where 0 ≤ k ≤ n and D1 ∈ Fk×k2 and D2 ∈ Fk×(n−k)2

and 0 denotes all zero-matrices of the appropriate sizes.
Application of these operations to the initial matrix forces
some simplifications:[

σ 0
0 σ

] [
(Lt)−1 0

0 L

]
M

[
U 0
0 (U t)−1

] [
τ 0
0 τ

]

=


A1 A2 B1 B2

A3 A4 B3 B4

1k 0 D1 D2

0 0 0 1n−k

 =: M1.

Here, A2 = 0 and A4 = 1n−k because of the symplectic
condition between the last two block rows and the first two
block rows of this matrix.

Step 2. We left multiply the matrix M1 by a matrix in B0n,
as follows:

1k 0 A1 At3
0 1n−k A3 0
0 0 1k 0
0 0 0 1n−k



A1 0 B1 B2

A3 1n−k B3 B4

1k 0 D1 D2

0 0 0 1n−k



=


0 0 B′1 B′2
0 1n−k B′3 B′4
1k 0 D1 D2

0 0 0 1n−k

 =: M2.

Note that since A1 is symmetric the matrix
[
A1 A

t
3

A3 0

]
is

symmetric as well. We can apply Lemma 10 to obtain a de-
composition of this upper triangular symplectic matrix applied
from the left as -P-C-P-C-, where all -C- layers are in C↓n.

Step 3. Note that because of the symplectic condition
between columns one and three of M2 we must have B′1 = 1k.
Similarly, the symplectic condition between columns one and
four of M2 imply that B′2 = 0. Moreover, by considering the
symplectic condition between rows two and three, which needs
to be zero, we obtain that B′3 = Dt

2. We can therefore apply
a final column operation to M2 to clear out the remaining
entries by multiplying on the right


0 0 1k 0
0 1n−k Dt

2 B′4
1k 0 D1 D2

0 0 0 1n−k




1k 0 D1 D2

0 1n−k Dt
2 B′4

0 0 1k 0
0 0 0 1n−k



=


0 0 1k 0
0 1n−k 0 0
1k 0 0 0
0 0 0 1n−k

 =: M3.

As in Step 2, the symmetric matrix
[
D1 D2

Dt
2 B

′
4

]
can be decom-

posed using Lemma 10 to obtain a representation of the overall
upper triangular matrix applied from the right in the form -P-
C-P-C-, where again all -C- layers are in C↓n.

The final matrix M3 corresponds to a sequence of Hadamard
gates applied to the first k qubits.

Overall, we applied the sequence

U1π1T1MT2π2U2 = H,

where H is a product of Hadamard matrices applied to the first
k basis states, T1, T2 ∈ C↓n, π1, π2 ∈ Sn, and U1, U2 ∈ B0

n.
Multiplication by inverses from both sides yields

M = T−11 π−11 U−11 HU−12 π−12 T−12 .

Now, notice that permutations stabilize B0n, i.e., we can find
V1, V2 ∈ B0n such that

M = T−11 V1π
−1
1 Hπ−12 V2T

−1
2 .

Note that V1 is of the form -C-P-C-P- with the first -C- layer
in C↓, i.e., T−11 and V1 can be combined into one matrix
W1 ∈ Bn. Similarly, V2 can be written in the form -P-C-P-C-

9

and therefore V2 and T−12 can be combined into one matrix
W2 ∈ Bn. Note finally that we can implement π−11 Hπ−12 using
a single layer of Hadamard gates H1 acting non-trivially on
some k qubits, and merge the qubit swapping stage with either
W1 or W2. Overall, we have that M can be written as

M = W1H1πW2 ∈ -C-P-C-P-H-P-C-P-C-.

Since -C-P-C-P- circuit can be written as a -P-C-P-C- circuit,
the claimed decomposition follows.

Combining the results of Theorems 2 and 13, and Corollary
7 allows to obtain the main result of this paper,

Corollary 14: An arbitrary stabilizer circuit can be written
as a 7-stage layered decomposition -C-CZ-P-H-P-CZ-C-. It is
executable in the LNN architecture as a two-qubit gate depth-
(14n− 4) circuit.

Corollary 15: An arbitrary Clifford unitary can be
implemented as a quantum circuit over the library
{H, P, Z,CNOT,CZ} using at most one Phase gate.

Proof: Consider the 7-stage decomposition -C-CZ-P-H-
P-CZ-C- given by Corollary 14. Observe that the Phase gates
may be required only in the -P-H-P- stage of the computation.
Whenever a qubit experiences the application of more than
one Phase gate, the corresponding single-qubit circuit can be
rewritten using no more than one Phase gate by combining
different Phase gates into one, or up to the undetectable global
phase of 1+i√

2
, as follows: PHP 7→ HPZH, PHP† 7→ HPZHZ,

P†HP 7→ ZHPZH, and P†HP† 7→ ZHPZHZ. The Phase
gates are now contained to a single layer of at most n.
Observe further that two parallel Phase gates P(a)P(b) can
be implemented as a circuit using one Phase gate as follows,

P(a)P(b) = CZ(a; b)CNOT(a; b)P(b)CNOT(a; b). (7)

Folding the transformation in eq. (7) k times allows to imple-
ment a layer of k+1 Phase gates using a circuit that contains
only one Phase gate. Therefore, using such folded construction
allows to implement arbitrary Clifford circuit using at most
one Phase gate.

Corollary 16: Defining B := Bn and N(= W) to be the
group generated by -H- and all wire permutations we obtain
that B and N define a BN -pair for Sp(2n,F2).

Proof: From Theorem 13 we obtain, in particular, that
B and N generate the entire group Sp(2n,F2). Clearly we
have that T = B ∩ N is trivial, i.e., it is normal in N . The
stated property sBs−1 6⊆ B for all s ∈ S clearly holds for our
choice of the generator set S in eq. (6), as Hadamard as well
as qubit swaps do not preserve the directional CNOT gates.
Finally, to establish the coset multiplication rule C(s)C(w) ⊆
C(w) ∪ C(sw) we use [6, Chap. V.6].

Corollary 17: The Bruhat decomposition gives rise to an
asymptotically tight parametrization of all 22n

2+O(n) stabilizer
circuits.

Proof: This is a direct consequence of the decomposi-
tion into layers of the form -C-P-C-P-H-P-C-P-C- proved in
Theorem 13. From the proof of the theorem we see that the -C-
P-C-P- and the -P-C-P-C- layers correspond to the elements of
Bn, each of which has n2+o(n2) Boolean degrees of freedom.
This yields the claimed statement.

VII. NORMAL FORM FOR STABILIZER CIRCUITS

The Bruhat decomposition eq. (5) allows us to characterize
the possible block structures that stabilizer operators might
have when considered as a unitary matrix of size 2n× 2n and
how they behave under multiplication.

Definition 18: Let C be a stabilizer circuit. Let B ·w(C)·B
denote the unique double coset that C lies in. Then we can
represent w(C) by an element in Zn2 oSn, or equivalently by
a matrix of the form Uπ, where U is a tensor product of k
Hadamard matrices, where 1 ≤ k ≤ n and π is a permutation
matrix of n wires. By rearranging the non-identity Hadamard
operators, we can represent such an element Uπ in a form
σ(1⊗n−k2 ⊗H⊗k)τ , where π = στ . We call (k, σ, τ) the block
structure of C.

Note that whereas U and π are unique, in general σ and τ
are not, as there is a degree of freedom corresponding to ele-
ments in Sn−k×Sk. However, the collection I ⊂ Z2

2n defined
as I :=

{
(i, j) : |Ci,j | = 1√

2
k

}
is uniquely defined by C and

the corresponding block structure (k, σ, τ). As a corollary to
Theorem 13 we obtain the following multiplication rule for
block structures.

Corollary 19: Let C1 and C2 be stabilizer circuits
with block structures (k1, σ1, τ1) and (k2, σ2, τ2), respec-
tively. Then the block structure of C1C2 is of the form
(m,σ3, σ

−1
3 σ1τ1σ2τ2), where 0 ≤ m ≤ k1+k2 and σ3 ∈ Sn.

Proof: Let w(C1) = Uπ denote the representative of C1

in the Weyl group. Write w(C1) as a product over the gener-
ators S = Sh ∪ Sp where Sh = {hi = 1i : i ∈ {1, 2, ..., n}}
and Sp = {pi = (i, i+ 1) : i ∈ {1, 2, ..., n−1}}. As the Weyl
group is a semidirect product we can collect the factors
corresponding to Sh and Sp together and write w(C1) =∏k1
i=1 ht1,i

∏n1

j=1 ps1,i . We similarly write w(C2) and note
that as W is a semidirect product, we get w(C1)w(C2) =∏k1
i=1 ht1,i

∏k2
i=1 hπt2,i

∏n1

j=1 ps1,i
∏n2

j=1 ps2,i . As there might
be cancellation between the Hadamard matrices

∏k1
i=1 ht1,i

and
∏k2
i=1 hπt2,i , we obtain that the Hadamard block can have

m non-trivial factors where 0 ≤ m ≤ k1+k2. The permuta-
tional parts multiply, i.e., we conclude that the permuted block
structure of the product is of the claimed form.

VIII. CONCLUSION

In this paper, we reduced the 11-stage computation -H-C-
P-C-P-H-P-C-P-C- [1] into the 9-stage decomposition -C-P-
C-P-H-P-C-P-C- relying on the Bruhat decomposition of the
symplectic group. We showed that all -C- stages in our 9-
stage decomposition correspond to upper triangular matrices.
This leads to an asymptotically tight parameterization of the
stabilizer group, matching its number of 22n

2+O(n) degrees
of freedom. We then derived a 7-stage decomposition of the
form -C-CZ-P-H-P-CZ-C-, that relies on the stage -CZ-, not
considered by [1]. We showed evidence that the -CZ- stage is
likely superior to the comparable -C- stage. Indeed, the number
of the Boolean degrees of freedom in the -CZ- stage is only
about a half of that in the -C- stage, two-qubit gate counts for
optimal implementations of -CZ- circuits remain smaller than
those for -C- circuits (see Table I), and -CZ- computations

10

were possible to implement in a factor of 2.5 less depth than
that for -C- stage computations over LNN architecture.

We reported a two-qubit gate depth-(14n− 4) implementa-
tion of stabilizer unitaries over the gate library {H, P,CNOT},
executable in the LNN architecture. This improves previous
result, a depth-25n circuit [1], [18] executable over LNN
architecture.

Our 7-stage construction can be written in 16 different ways,
by observing that -C-CZ-P- can be written in 4 different ways:
-C-CZ-P-, -C-P-CZ-, -P-CZ-C-, and -CZ-P-C-. For the purpose
of practical implementation we believe a holistic approach
to the implementation of the 3-layer stage -P-CZ-C- may be
due, where the linear reversible function g(x1, x2, ..., xn) is
implemented by the CNOT gates such that the intermediate
linear Boolean functions generated go through the set that
allows implementation of the phase polynomial part.

IX. ACKNOWLEDGEMENTS

DM thanks Dr. Yunseong Nam from the University of
Maryland–College Park for helpful discussions. MR thanks
Jeongwan Haah and Vadym Kliuchnikov for discussions.
Circuit diagrams were drawn using qcircuit.tex package,
http://physics.unm.edu/CQuIC/Qcircuit/.

REFERENCES

[1] S. Aaronson and D. Gottesman. Improved simulation of stabilizer
circuits. Phys. Rev. A, 70, 052328, 2004, quant-ph/0406196.

[2] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 32(6):818–830, 2013, arXiv:1206.0758.

[3] M. Aschbacher. Finite Group Theory. Cambridge University Press, 2000.
[4] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters.

Mixed state entanglement and quantum error correction. Phys. Rev. A
54:3824–3851, 1996, quant-ph/9604024.

[5] N. Bourbaki. Elements of Mathematics – Lie Groups and Lie Algebras,
Chapters 4–6. Springer, 1968.

[6] K. S. Brown. Buildings. Springer, New York, 1989.
[7] A. R. Calderbank, E. M Rains, P. W. Shor, and N. J. A. Sloane. Quantum

error correction and orthogonal geometry. Phys. Rev. Lett. 78:405–408,
1997, quant-ph/9605005.

[8] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane.
Quantum Error Correction Via Codes Over GF(4). IEEE Transactions on
Information Theory, 44(4):1369–1387, 1998, quant-ph/9608006.

[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson.
ATLAS of Finite Groups. Clarendon Press, Oxford, 1985.

[10] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright,
and C. Monroe. Demonstration of a programmable quantum computer
module. Nature 536:63–66, 2016, arXiv:1603.04512.

[11] J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis,
and M. R. Geller. High-fidelity controlled-σZ gate for resonator-based
superconducting quantum computers. Phys. Rev. A 87, 022309, 2013,
arXiv:1301.1719.

[12] G. H. Golub and Ch. F. van Loan. Matrix Computations. 3rd ed. Johns
Hopkins University Press, 1996.

[13] M. Grassl. Code Tables: Bounds on the parameters of various types of
codes. http://www.codetables.de/, last accessed February 27, 2017.

[14] R. A. Horn and Ch. R. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[15] IBM Quantum Experience, http://www.research.ibm.com/quantum/, last
accessed February 27, 2017.

[16] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost,
C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized
benchmarking of quantum gates. Phys. Rev. A 77, 012307, 2008,
arXiv:0707.0963.

[17] R. Koenig and J. A. Smolin. How to efficiently select an arbi-
trary Clifford group element. J. Math. Phys. 55, 122202, 2014,
arXiv:1406.2170.

[18] S. A. Kutin, D. P. Moulton, and L. M. Smithline. Computation at a
distance. 2007, quant-ph/0701194.

[19] D. Maslov. Basic circuit compilation techniques for an ion-trap quantum
machine. New J. Phys. 19, 023035, 2017, arXiv:1603.07678.

[20] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum
Information, Cambridge University Press, New York, 2000.

[21] K. N. Patel, I. L. Markov, and J. P. Hayes. Optimal synthesis of linear
reversible circuits. Quantum Information and Computation 8(3&4):282–
294, 2008.

[22] A. M. Steane. Quantum computing and error correction. 2003,
quant-ph/0304016.

[23] G. Strang. Banded matrices with banded inverses and A = LPU . Proc.
Fifth Intl. Congress of Chinese Mathematicians (ICCM2010), American
Mathematical Society, Providence, RI, pp. 771–784, 2012.

[24] J. Tits. Buildings of spherical type and finite BN-pairs. Lecture Notes
in Mathematics, vol. 386, Springer, 1974.

http://physics.unm.edu/CQuIC/Qcircuit/
http://arxiv.org/abs/quant-ph/0406196
http://arxiv.org/abs/quant-ph/0406196
https://arxiv.org/abs/1206.0758
http://arxiv.org/abs/1206.0758
https://arxiv.org/abs/quant-ph/9604024
http://arxiv.org/abs/quant-ph/9604024
https://arxiv.org/abs/quant-ph/9605005
http://arxiv.org/abs/quant-ph/9605005
https://arxiv.org/abs/quant-ph/9608006
http://arxiv.org/abs/quant-ph/9608006
http://arxiv.org/abs/1603.04512
http://arxiv.org/abs/1603.04512
https://arxiv.org/abs/1301.1719
http://arxiv.org/abs/1301.1719
http://www.codetables.de/
http://www.research.ibm.com/quantum/
https://arxiv.org/abs/0707.0963
http://arxiv.org/abs/0707.0963
https://arxiv.org/abs/1406.2170
http://arxiv.org/abs/1406.2170
https://arxiv.org/abs/quant-ph/0701194
http://arxiv.org/abs/quant-ph/0701194
https://arxiv.org/abs/1603.07678
http://arxiv.org/abs/1603.07678
https://arxiv.org/abs/quant-ph/0304016
http://arxiv.org/abs/quant-ph/0304016

	I Introduction
	II (-P-C-)m circuits
	III -C- vs -CZ-
	IV Stabilizers and the symplectic group
	V BN-pairs and Bruhat decomposition
	VI Computing the Bruhat decomposition
	VII Normal form for stabilizer circuits
	VIII Conclusion
	IX Acknowledgements
	References

