
Typhoon: A Reliable Data Dissemination

Protocol for Wireless Sensor Networks

Chieh-Jan Mike Liang, Răzvan Musăloiu-E., and Andreas Terzis

Computer Science Department
Johns Hopkins University

{cliang4,razvanm,terzis}@cs.jhu.edu

Abstract. We present Typhoon, a protocol designed to reliably deliver
large objects to all the nodes of a wireless sensor network (WSN). Ty-
phoon uses a combination of spatially-tuned timers, prompt retransmis-
sions, and frequency diversity to reduce contention and promote spatial
re-use. We evaluate the performance benefits these techniques provide
through extensive simulations and experiments in an indoor testbed.
Our results show that Typhoon is able to reduce dissemination time and
energy consumption by up to three times compared to Deluge. These
improvements are most prominent in sparse and lossy networks that
represent real-life WSN deployments.

1 Introduction

One of the main end-user requirements for WSNs is the ability to reprogram the
network after it has been deployed. In turn, the requirement to reprogram the
network generates the need to reliably disseminate large objects (∼50–100 KB)
to every node in the network. This combination of large object sizes, 100% reli-
ability, and network-wide distribution is not addressed by other WSN protocols
and thus requires a custom protocol. This need has been identified by numerous
researchers in the past (e.g., [3,4,5,13,16] among others).

In this paper we present Typhoon, a reliable data dissemination protocol that
represents a different set of choices in the design space. Our choices are moti-
vated by the observation that idle listening is the major consumer of energy
during dissemination. Thereby, all protocol decisions should be geared towards
minimizing the time that nodes are not transmitting or receiving data packets
(i.e. competing to request or waiting for the retransmission of a lost packet).

Unlike previous protocols, Typhoon sends data packets via unicast. This ap-
proach allows receivers to acknowledge the receipt of individual packets and
thereby quickly recover lost packets. While data packets are sent via unicast,
interested nodes can still receive them by snooping on the wireless medium.
Through the combination of unicast transfers and snooping, Typhoon achieves
the best of both worlds—prompt retransmissions and data delivery to all the
nodes in a broadcast domain through a single transmission. Dissemination la-
tency is also reduced by exploiting spatial reuse, through which nodes in different
parts of the network can be transmitting at the same time. We enhance spatial

R. Verdone (Ed.): EWSN 2008, LNCS 4913, pp. 268–285, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Typhoon: A Reliable Data Dissemination Protocol for WSNs 269

reuse through the combination of two techniques: setting timers in a way that
encourages nodes further from the origin to propagate the object and the use
of channel switching. Specifically, it has been shown that the minimum node
distance necessary to avoid interference among concurrent transmissions is three
hops [2]. On the other hand, if nodes switch frequency channels1 during data
transfer it is possible to reduce the distance to two hops in many cases. Typhoon
leverages this observation to reduce object dissemination time.

We evaluate the performance of Typhoon through a combination of simula-
tions and experiments on a testbed deployed in an office building. Performance
is measured in terms of the time required and the energy expended to deliver an
object to the whole network. We vary the size, diameter, and density of the net-
work and test Typhoon using different object sizes and loss rates to understand
the effects of these factors on the protocol’s behavior. Moreover, we compare
Typhoon’s performance to that of Deluge—the de facto standard for data dis-
semination in TinyOS [3]. Our results show that Typhoon can be up to three
times faster than Deluge in sparse and lossy networks.

This paper has five sections. We summarize related work in the section that
follows and provide a detailed description of the Typhoon protocol in Section 3.
We evaluate the protocol’s performance and compare it with previous protocols
proposed in the literature in Section 4. Finally, Section 5 outlines future research
directions.

2 Related Work

The problem of designing protocols for reliably disseminating large data objects
has received considerable attention in the past. One can divide existing proto-
cols in two broad categories: randomized protocols in which nodes compete to
acquire and subsequently transmit parts of the object, and protocols that avoid
contention by scheduling node transmissions.

The genealogy of the first protocol family starts with PSFQ [18], a transport
protocol for reliable delivery of objects from a sink to all the nodes in a wireless
sensor network. PSFQ uses TTL-scoped broadcast to propagate messages from
the sink and hop-by-hop retransmissions to recover from lost messages. Unlike
PSFQ, Typhoon uses unicast messages to propagate objects, while leveraging
overhearing to deliver packets to multiple receivers within the same broadcast
domain. Moreover, PSFQ uses negative acknowledgments, whereas Typhoon uses
postive acknowledgments and multiple frequency channels to increase spatial
reuse. MOAP [16] transfers the complete object one hop at a time. After re-
ceiving the whole object a node can become a secondary source, delivering it
to nodes further away from the origin. The design of MOAP is driven by the
desire to trade latency for reliability and simplicity. Unlike MOAP, Typhoon
uses pipelining in which nodes offer to further deliver pages) (i.e., subsets of
the object) as soon as they receive them. This approach dramatically reduces
the network completion time, defined as the time by which all nodes receive the
1 Current 802.15.4 radios can switch between 16 non-overlapping channels.

270 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

full image, thereby reducing energy consumption due to idle listening. MNP [5]
reduces download time by using pipelining and reduces contention in dense net-
works through the use of a sender selection algorithm. Reliability is achieved
through retransmissions, initiated by query messages sent by the packet source
to nodes receiving the transmissions. Unlike MNP, Typhoon implements oppor-
tunistic overhearing for traffic of common interest. Moreover, Typhoon uses fast
acknowledgments transmitted after each packet rather at the end of a page.
Finally, Typhoon uses channel switching to reduce contention in the broadcast
medium, amplifying the benefits of spatial reuse.

Deluge [3] is the de facto standard for data dissemination in TinyOS. It uses
an epidemic protocol that eventually propagates the object to all the nodes in the
network. Deluge relies on randomized Trickle timers [10] to reduce contention
among transmission requests. Objects are transmitted as sequences of fixed-size
pages via broadcast to leverage the broadcast nature of the wireless medium.
NACKs trigger the retransmission of lost messages after a full page has been
transmitted. NACKs also use Trickle timers to minimize the probability that
multiple retransmission requests will collide. While beneficial in reducing the
number of collisions, random timers can prolong the time required to propagate
the image throughout the network. Typhoon also delivers data to multiple re-
ceivers whenever possible. On the other hand, receivers send acknowledgments
after each data message instead of NACKs after each block transmission. This
design choice enables nodes to start offering data to downstream destinations
sooner, thereby minimizing completion time and thus energy costs. This is es-
pecially important in lossy networks in which the number of retransmissions is
expected to be high. Moreover, Typhoon uses channel switching to reduce con-
tention and to allow multiple concurrent transmissions over the same broadcast
domain.

Protocols of the second family initially distribute the object to a subset of the
network’s nodes using a fixed schedule that avoids overlapping transmissions.
The object is then broadcasted to the rest of the network. In order to mini-
mize completion time, the initial set of nodes should be the minimum connected
dominating set (MCDS) of the graph induced by the wireless network [13]. Cal-
culating that set however is an NP-hard problem even for the unit graph connec-
tivity model [1] and therefore approximation algorithms are necessary. Sprinkler
uses a distributed approximation algorithm that computes a connected domi-
nated set that is a multiplicative factor larger than the MCDS [13]. Infuse [4]
follows a similar dissemination strategy and combines it with implicit acknowl-
edgments for reliability. Furthermore, Infuse turns off the radios of nodes not
participating actively in the dissemination thus reducing energy consumption
due to idle listening. GARUDA [14] is a recent protocol that uses an efficient
mechanism for constructing an approximate MCDS during the first packet trans-
fer. Moreover, GARUDA nodes publish bitmaps indicating the packets they have
received correctly. Downstream nodes use these bitmaps to send (re)transmission
requests. Unlike protocols that rely on node coordination to prevent contention,
Typhoon minimizes contention through the use of channel switching and implicit

Typhoon: A Reliable Data Dissemination Protocol for WSNs 271

synchronization. This approach does not have the overhead of building the
MCDS, is robust to node failures, and simplifies data dissemination to new
nodes in the network.

3 Protocol Description

Typhoon is designed to reliably deliver large objects, such as code binaries, to
all the nodes in a WSN. In this context, large objects are defined as objects
that do not fit in the mote’s main memory and can be as large as 50–100 KB.
Typhoon divides an object to fixed-size pages (1 KB) which are further divided
to fixed-size packets (28 bytes in our implementation) that can be atomically
transmitted over the radio.

Even though protocols like Typhoon are unlikely to be invoked frequently,
their inherent flooding nature and the need for 100% reliability, irrespective of
loss conditions suggest that each invocation of the protocol could be resource
intensive and thus its cost should be minimized. As has been argued before,
idle listening is one of the largest energy consumers [19]. Therefore, the protocol
should make every effort to “push” the object’s pages through the network as
fast as possible. In turn this means that the protocol should attempt to lever-
age spatial re-use, transmitting pages from multiple non-overlapping nodes and
minimize contention that leads to node back-offs and thereby added latency.

We note that an alternative approach would be to use duty cycling, turning
radios off when not in use. In this case network completion time is not as crucial,
because energy consumption due to idle listening is minimized. However, we
argue that duty cycling is not appropriate for reliable dissemination protocols.
First, users want to reduce network downtime due to reprogramming. Second,
duty cycling introduces complexity which should be minimized in protocols that
serve a critical role to network operations.

3.1 Metadata Dissemination

We assume that the object to be disseminated is injected through an out-of-band
mechanism to a single node from which it must propagate to the network. In this
regard, the first necessary step is to notify the network about the existence of
this new object. Typhoon uses separate mechanisms to disseminate data objects
and metadata about these objects. By metadata, we mean information about
the existence of a new object, codified into an object ID, size and version. Nodes
decide whether they should attempt to download an advertised object by com-
paring the new object ID and version with those of previously retrieved objects.
If a node decides to download the new object, the number of pages is determined
by dividing the object’s size by the page size.

The reason for using separate mechanisms stems from the difficulty of design-
ing a single protocol that can efficiently serve both purposes. For example, since
new nodes may join the network at any time, the metadata dissemination pro-
tocol must be always active. This means that, while it should quickly propagate

272 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

Fig. 1. State transition diagram for Typhoon. State transitions are marked using the
condition/action notation in which a transition occurs when a condition is met and
results in an action (or no action in case of ’-’).

updates to the whole network, it must minimize overhead during steady state.
On the other hand, for reasons outlined above, the data dissemination protocol
should disseminate the object as fast as possible and then terminate. Typhoon
uses Trickle [10] to disseminate metadata.

For the remainder of the section we describe what happens once nodes become
aware of the existence of a new object and attempt to retrieve it.

3.2 Data Request Handshake

Figure 1 represents Typhoon’s state transition diagram. Nodes start in the
ACTIVE state and return to this state while they have more pages to download.
While in this state, a node will periodically broadcast PageReq requests that
contain the object’s ID and the number of the requested page. Nodes request
pages sequentially. By doing so, nodes within the same broadcast domain are
more likely to be in the same state, which increases the probability of overhearing
traffic of common interest.

The broadcast period is uniformly chosen from [ta, tb] to avoid collisions among
multiple interested receivers2. Nodes that have copies of the requested page and
receive a PageReq message, each respond with a unicast PageOffer message
after waiting for a random time uniformly selected from [tc, td]. The PageOffer
message includes the object’s ID as well as the number of the page offered. The
random waiting period is used to prevent collisions among multiple potential
offerers. They then transition to the WAIT state and wait for a StreamReq
message. If no StreamReq arrives within Ts seconds the offerers return to the
ACTIVE state3. Otherwise, upon receiving a unicast StreamReq message, one
of the offerers will transition to the PUB state and start the data transfer.
That offerer returns to the ACTIVE state after the page has been successfully
downloaded or after a number (five) of unsuccessful data packet transfers. These
failures are detected because the receiver acknowledges the receipt of individual
data packets (see Section 3.3).

2 We use, [ta, tb] = [400, 500] msec.
3 Ts = 20 msec in our implementation.

Typhoon: A Reliable Data Dissemination Protocol for WSNs 273

Fig. 2. Pipelining pages through the network

Conversely, a node that receives a PageOffer message matching its request,
transitions to the RCVR state and signals the source of the PageOffer message
to initiate the data download by transmitting a unicast StreamReq message.
The receiver stays in that state while more packets from the requested page
need to be retrieved and returns to the ACTIVE state either when the whole
page has been successfully downloaded or when a timeout occurs. The second
case protects the receiver against failures of the transmitting node.

Nodes that overhear a PageOffer message for a page they are missing, will
transition to the SNOOP state in which they will attempt to receive the data
packets from the offered page. While PageOffer messages are sent via unicast,
interested nodes can still receive them. For example, the CC2420 radio provides
the ability to disable address filtering enabling a node to receive all packets
irrespective of their destination address. Similar to the RCVR state, the node
leaves the SNOOP state when the page transfer has completed or when a timeout
occurs. If a node does not successfully overhear all the packets from a page, it
discards the page.

In addition to the base scheme described above, Typhoon optimizes its use of
timers to enable the pipelining of pages through the network. We describe this
optimization using the example presented in Figure 2. In this scenario, node A
has finished transmitting page n to node B. In response, node B will transition
to the ACTIVE state and transmit a PageReq for page n + 1. Node A receives
this message and starts its timer to transmit the PageOffer message. However,
node C also receives the request and deduces that node B already has page n
(because pages are downloaded sequentially). C then sends its own PageReq for
page n to B. From the perspective of pipelining, C’s request has priority over
B’s original request, since it pushes pages further downstream. To encourage this
behavior, Typhoon sets the timer at B to fire before A’s timer4. Once B’s timer
expires, it transmits a PageOffer for page n. A overhears that offer and cancels
its own PageOffer, implicitly deferring to B’s data transmission.

3.3 Data Transfer

Typhoon achieves reliable transfer in the face of packet loss, through the use
of retransmissions. However, unlike previous protocols that use negative

4 In our implementation, [tc, td] = [15, 25] msec for a node that has just finished
transmitted a page and [0, 10] msec otherwise.

274 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

(a) (b)

Fig. 3. (a) Propagation of consecutive pages on a linear topology when only one fre-
quency channel is used. Notice that node A has to wait until time period 4 to transmit
the second page in order to avoid colliding at B with node C’s transmission of the first
page. (b) When nodes can use different frequency channels to transmit data packets
(indicated by different colors in the figure) the wait time is reduced by one time period.

acknowledgments after all packets in page have been transmitted, Typhoon ac-
knowledges the receipt of individual data packets. If the sender does not receive
an acknowledgment, it retransmits the last data packet thus implementing a
stop-and-wait ARQ protocol.

A node can generate these acknowledgments in two different ways. First, mod-
ern radios offer the ability to automatically generate hardware acknowledgments
[17]. The benefit of this approach is reduced latency because the ACK is generated
as soon as the radio hardware correctly receives the packet. On the other hand,
it is possible for an acknowledged packet to be dropped before it reaches the ap-
plication. In this case, the hardware acknowledgment results in a false positive.
Fortunately, TinyOS2 [8], on which Typhoon is developed, implements a mech-
anism called software ACK that can trigger this acknowledgment at the system
level. It is thus possible to disable the hardware from automatically generating
hardware ACKs and achieve equivalent functionality using software ACKs.

An additional benefit of disabling hardware ACKs is that it enables overhear-
ing of unicast packets. This is because enabling hardware ACKs in the commonly-
used CC2420 radio also enables destination address filtering, in which case the
radio automatically discards all unicast frames not destined to the current node.
With address filtering disabled, nodes in the SNOOP state can still receive data
packets sent to the unicast address of the node that transmitted the StreamReq
message, while the explicit receiver will generate ACKs for those data packets.

3.4 Channel Switching

As we already argued, data dissemination protocols should leverage spatial re-
use to accelerate the propagation of pages through the network. Spatial re-use
is achieved by having nodes retransmit pages as soon as they arrive. However,
as Figure 3(a) demonstrates, in order to avoid collisions due to the hidden ter-
minal problem a node must wait for two additional periods (a period is defined
as the amount of time necessary to transmit a page) before it can transmit the
next page. On the other hand, as Figure 3(b) shows, this bound can be further

Typhoon: A Reliable Data Dissemination Protocol for WSNs 275

reduced if nodes have the ability to transmit at different frequency channels.
Channel switching provides another benefit in addition to accelerating the
pipelining process. Because nodes exchange PageReq and PageOffermessages on
the default common channel, having data transfers on different frequencies elim-
inates the danger of ongoing data transfers colliding with these control messages.

Considering the advantages of channel switching, Typhoon incorporates it
to the data request handshake described above. Rather than using an explicit
agreement protocol in which nodes are assigned specific frequencies, Typhoon
employs a randomized scheme to select transmission frequencies. Specifically, the
publisher suggests a frequency channel in its PageOffer message by randomly
selecting from one of the possible channels (e.g. 15 in the case of 802.15.4, since
one channel is reserved for broadcast messages). If the receiver accepts the offer
it replies with an acknowledgment (similar to the ACK used for data packets)
and switches to the suggested frequency channel. After receiving the acknowledg-
ment the publisher also tunes to the new channel and the data transfer starts.
Note that the receiver transmits a StreamReq message after switching to the
channel indicated in the PageOffer message. Although the channel is randomly
chosen, it is still possible to have multiple publishers willing to serve the same
receiver on the same channel. Therefore, the StreamReq message serves as an
explicit indication of the receiver’s decision. Although nodes randomly select
data transfer channels, it is possible that more than one ongoing data transfers
with overlapping radio coverage take place on the same channel. In this case,
interference can cause higher packet loss and thus retransmissions and possibly
failure to transmit the page due to the loss of multiple acknowledgments. In the
second case, the sender and/or the receiver will timeout, return to the ACTIVE
state, and retry downloading the original page.

While channel switching provides clear performance benefits, it also introduces
new complications. For example, Typhoon uses Trickle for metadata dissemina-
tion, and both Typhoon and Trickle can be active at the same time. Since Trickle
is not aware of the channel changes it will transmit over the channel selected by
Typhoon. This means that if a node is transferring data on a channel other than
the default one, the node’s neighbors will not be able to receive any metadata
sent via Trickle. Realizing this conflict, we implement two schemes to minimize
its effects. First, upon receiving the initial notification via Trickle, nodes wait for
a random period before they start Typhoon5. This delay allows Trickle to prop-
agate the metadata downstream. Second, nodes switch to the default channel
immediately after each page transfer, thus allowing the continued dissemination
of metadata.

4 Evaluation

4.1 Evaluation Metrics and Methodology

We evaluate the performance of Typhoon using simulations and experiments
performed on a testbed deployed in an office building. The results we report
5 Set to [400, 500] msec in our implementation.

276 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80
P

ac
ke

t r
ec

ep
tio

n
ra

te

Distance (ft)

Fig. 4. Packet reception rate as a function of distance from a packet source. The path-
loss exponent is 4.

are based on an implementation of Typhoon built on top of TinyOS 2 (T2) [8].
Moreover, we use the standard CSMA MAC protocol used in T2.

We use Deluge, the de facto standard for reliable bulk transfer in TinyOS,
as the baseline for our comparisons. Since Deluge provides no guidelines for
setting its parameters under different network conditions we use the default
parameters provided with Deluge under all cases. All simulations were carried
out in TOSSIM, a discrete event based simulator for TinyOS [9]. We lever-
age two of TOSSIM’s features to improve the fidelity of our simulations. First,
TOSSIM allows defining signal attenuation levels on a per link basis. We cal-
culate these attenuations using the log distance path loss model [15]. In this
model the path loss at distance d from the source, measured in dB, is, PL(d) =
PL(d0) + 10n log(d/d0), where n is the path-loss exponent and PL(d0) is an
experimentally measured path loss at reference distance d0. Path loss exponent
n = 2 corresponds to free space propagation, while n = 3, 4 model environ-
ments with reflections and refractions [15]. We use n = 4 for all our simulations.
Figure 4 shows the packet reception rate at various distances from a source node.
Second, we utilize TOSSIM’s ability to emulate bursty noise due to interference.

We quantify the performance of Typhoon through two metrics: (1) Com-
pletion time, which captures the time necessary to disseminate an object.
We measure both the time necessary for individual nodes as well as the net-
work completion time, defined as the longest node completion time. (2) Power
consumption. While completion time quantifies the level of disruption from
executing the object dissemination protocol (assuming the network’s operation
is disrupted during the download), power consumption quantifies the impact of
data dissemination on the network’s lifetime.

Due to the lack of a direct mechanism for measuring power consumption
in TOSSIM, we use the indirect approach of measuring the amount of time
the nodes spend transmitting, in idle listening mode, as well as the number of
packets it receives. Because the Tmote Sky data sheet [12] publishes only the
current drawn in transmit mode (17.4 mA), and in idle listening mode (19.7 mA),
we experimentally measured using a Tmote Sky mote [11] the average current
drawn while receiving one packet to be 21.7 mA. Note that our energy estimates
do not include the costs of reading and writing to flash. The reason is that

Typhoon: A Reliable Data Dissemination Protocol for WSNs 277

they represent a fixed cost which is orthogonal to the operation of the data
dissemination protocol and therefore it provides no insight into the impact of
different protocol design decisions.

We run each experiment five times and use the two evaluation metrics to
reason about the impact of different factors on the performance of Typhoon.
Specifically, we investigate the impact that network density and size, object size,
and loss rate have on data dissemination. Moreover, we evaluate the incremental
benefits of overhearing and channel switching in Typhoon. Finally we present
the behavior of Typhoon in practice through results from a small testbed.

4.2 Effect of Network Density and Size

Network density is a critical performance factor since it affects the level of con-
tention when requesting and downloading pages. We first discuss the impact of
network density on completion time. Figure 5(a) shows the effect of increasing the
number of nodes per square foot by increasing the size of an N × N node grid,
deployed on a fixed 180 × 180-foot field. Also shown in the same figure is the av-
erage node degree, defined as the set of nodes with PRR > 0, as network density
increases. One can make two observations from this figure. First, the performance
margin between Typhoon and Deluge increases in sparse networks. This is because
Deluge uses timer values that reduce the number of messages sent and increase the
probability of overhearing.However, in sparse networks, these timer values increase
the idle listening time and thus completion time. Second, Typhoon is consistently
faster throughout the density range despite its more aggressive timers. This indi-
cates that channel switching is effective in relieving channel contention.

Both Typhoon and Deluge require nodes to keep their radios on for the dura-
tion of the data dissemination. Considering that the radio consumes considerable
energy in idle listening state, completion time will influence energy consumption.
Figure 5(b) verifies this intuition as it shows that energy consumption follows
closely completion time. We found that for both protocols nodes spend less than
7% of their time transmitting further indicating that energy cost is dominated

 0

 20

 40

 60

 80

 100

 120

 0 0.005 0.01 0.015 0.02 0.025 0.03
 0

 20

 40

 60

 80

 100

 120

C
om

pl
et

io
n

tim
e

(s
ec

)

A
vg

 n
od

e
de

gr
ee

Nodes per square foot

Deluge
Typhoon

Avg node degree
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.005 0.01 0.015 0.02 0.025 0.03

P
ow

er
 c

on
su

m
pt

io
n

(m
A

h)

Nodes per square foot

Deluge
Typhoon

(a) Completion Time (b) Average power consumption

Fig. 5. Average network completion time and average node power consumption for a
20 KB object, as a function of network density. Network nodes are placed on a grid
over a 180 × 180-foot field.

278 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

 35
 40
 45
 50
 55
 60
 65
 70
 75

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30

 65
 70
 75
 80
 85
 90
 95
 100

 0 5 10 15 20 25 30
 0

 5

 10

 15

 20

 25

 30

(a) Typhoon (b) Deluge

Fig. 6. Node completion time for Typhoon and Deluge on a 180 × 180-foot field. The
field had 302 nodes uniformly distributed with a density of 0.028 nodes per square foot.
A 20 KB object was initially injected at the bottom left corner of the field.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

C
om

pl
et

io
n

tim
e

(s
ec

)

Network diameter (nodes)

Deluge
Typhoon

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

P
ag

e
re

qu
es

t a
nd

 tr
an

sf
er

 ti
m

e
(s

ec
)

Network diameter (nodes)

Deluge
Typhoon

(a) (b)

Fig. 7. (a). Network completion time of a 20 KB object, as a function of the diam-
eter changes in 1 × n linear topology. (b). Page acquisition time, including the page
request phase and subsequent data transfer. The vertical lines represent the 5th and
95th quartiles.

by idle listening time. With this result in mind, we present only completion times
for the remainder of the evaluation.

Figure 6 illustrates the propagation time for individual nodes in a dense grid.
As reported in [3], Deluge propagates the data object faster around the edges
than in the middle of the network. The main reason is that nodes in the middle
of the network have more neighbors and thus higher probability of collisions. On
the other hand, Typhoon generates a uniform wavefront pattern from corner to
corner. Although nodes in the middle have more neighbors, the only messages
broadcasted on the default channel are the first two handshake messages. The
probability of collision is thus lower than Deluge.

Unlike the grid topology in which a node might receive data from different
neighbors, the linear topology limits the propagation to only one direction. It
is therefore easier to study the effects of network size on completion time using
linear topologies.

A number of interesting observations can be made from Figure 7(a) that plots
completion time as a function of network diameter in a linear topology. First,

Typhoon: A Reliable Data Dissemination Protocol for WSNs 279

both Typhoon and Deluge benefit from pipelining, and the completion time does
not increase at the same rate as the number of nodes. Second, Deluge exhibits
faster increase compared to Typhoon. As the network diameter increases, the
number of neighboring nodes for some nodes also increases, and thus the prob-
ability of contention increases. This has a larger influence on Deluge, because
Typhoon sends packets on the common channel only during the page request
phase. Figure 7(b), which shows the average time to request and download a
single page as the network’s diameter increases, verifies this conjecture. From
the similarity between the two graphs, it is easy to see that page acquisition
time dictates completion time. Furthermore, Typhoon has approximately con-
stant page transfer time in all cases, which suggests that the shorter page request
phase underlies the difference in completion time. Finally, Deluge exhibits larger
variability in page acquisition time, due to the varying levels of contention that
different nodes experience.

4.3 Effect of Object Size

Unlike metadata dissemination protocols for which network diameter dominates
completion time, the size of the object transferred affects the completion time of
bulk data dissemination protocols. Figure 8 shows the impact of object size on
completion time in two cases: a sparse linear topology in which nodes can reach
only their immediate neighbors, and a 20 × 20 grid topology with 10-feet node
spacing. In both cases, the completion time grows linearly with the object size
with Deluge yielding a steeper slope.

To understand the root cause for this behavior, we briefly present a model
for data dissemination in sparse linear topologies. We assume ideal conditions in
which pages are transferred in perfect synchrony with no collisions. In this case,
the expected completion time for Typhoon is T̂t = 2(n − 1)Pt + d · Pt, where
n is the number of object pages, d is the network diameter, and Pt is the time
to request and receive a page (see Figure 3). Given the description of Typhoon
from Section 4, we can estimate Pt and thus T̂t. A page transfer is preceded by

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

C
om

pl
et

io
n

tim
e

(s
ec

)

Data object size (KB)

Deluge
Typhoon

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

C
om

pl
et

io
n

tim
e

(s
ec

)

Data object size (KB)

Deluge
Typhoon

(a) (b)

Fig. 8. Completion time as the object size varies in (a) 1 × 50 sparse linear topology
where nodes can reach only their immediate neighbors, and (b) 20 × 20 grid topology
with 10-feet node spacing

280 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60
C

om
pl

et
io

n
tim

e
(s

ec
)

Data object size (KB)

Modeled
Simulation

Fig. 9. Modeled and simulated completion time of Typhoon in 1 × 50 sparse linear
topology

the data request handshake. According to TOSSIM, each handshake exchange
of a 21-byte message followed by the ACK requires 1.68 msec to complete. Since
the handshake consists of three messages and two back-off timers with maxi-
mum length of 25 msec each, it should take 55.04 msec. Moreover, according to
TOSSIM, a page transfer requires approximately 428 msec and thus Pt = 483.04
msec. Figure 9 shows the modeled and simulated completion time for Typhoon
with different object sizes. Since the modeled completion time is based on ideal
conditions, it represents the lower bound on Typhoon’s performance. At the
same time, it explains that the lower completion time that Typhoon exhibits is
due to the speedup that channel switching offers.

4.4 Impact of Packet Loss

Since reliability is a requirement for bulk data dissemination protocols com-
pletion time depends on how fast lost packets are recovered. We perform two
experiments to estimate the effect of packet loss on completion time.

First, we increase the spacing between neighboring nodes in a 20 × 20 grid
topology. This increase raises the path loss on the link and therefore decreases the
packet reception rate (PRR). Figure 10 illustrates the completion time for this
experiment. It is easy to see that Deluge performance deteriorates with distance
while Typhoon is able to maintain consistent performance. Specifically, Deluge’s
completion time increases by over twofold when nodes are 35 feet apart from each
other. This is due to the fact that the PRR of the links between neighboring
nodes at this distance falls in the so-called gray region (PRR =∼ 95%, as Fig. 4
indicates). Extending the inter-node distance even further leads to a precipitous
decrease in PRR (∼ 30% at 40 feet), leading to an even worse performance
differential.

Second, we simulate the effect of bursty losses due to interference. To do so,
we use TOSSIM noise traces collected from environments with heavy 802.11
use [6]. As Table 1 shows, Typhoon’s performance degrades by 48% while the
completion time for Deluge increases threefold. Two main reasons underlie this
trend. First, Typhoon requires all data packets to be individually acknowledged,
and it bases the retransmission decision on this acknowledgment instead of a

Typhoon: A Reliable Data Dissemination Protocol for WSNs 281

 0

 40

 80

 120

 160

 200

 0 5 10 15 20 25 30 35 40

C
om

pl
et

io
n

tim
e

(s
ec

)

Node distance (ft)

Deluge
Typhoon

Fig. 10. Completion time as the inter-node
distance varies in a 20×20-node grid topology

Table 1. Completion time under
different loss environments for a
20×20-node grid topology with 10-
feet node distance

Quiet Bursty loss

Typhoon 54.30 73.37
Deluge 80.79 241.43

timer. This allows lost packets to be recovered quickly. Second, compared to
Deluge, Typhoon is more aggressive in sending packets, so the transfer moves at
a faster pace.

4.5 Benefits of Overhearing and Channel Switching

In order to better understand the performance benefits that channel switching
and overhearing offer, we selectively disable them in an experiment on a 5 × 5
grid topology.

Table 2 presents the results of this experiment. Disabling channel switching
creates a larger performance deterioration compared to disabling overhearing.
This degradation while large is expected because Typhoon assumes that data
transfers take place on a channel that is free from interference caused by other
data transfers and request handshakes. As a result, being aggressive hurts per-
formance in this case. On the other hand, overhearing provides only modest
improvement. The reason is that Typhoon performs opportunistic overhearing,
in which nodes can snoop on a page transfer only when they overheard the pre-
ceding PageOffer message. In other words, if a node misses that message, it
loses the opportunity to overhear since the transfer happens at another channel.
Moreover, if a node in the SNOOP misses one or more packets from a page due
to interference it discards the whole page. At the same time, when overhearing
is combined with channel switching, it offers ∼ 30% reduction in completion
time.

Table 2. Completion time as channel-switching and overhearing are disabled in a
5 × 5-node grid topology with 20-feet node spacing for s 3 KB object

Completion time (sec)

Channel-switching and overhearing 6.24
Channel-switching only 8.79
Overhearing only 945.80
None 1016.43

282 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 20 40 60 80 100 120 140 160 180

F
re

qu
en

cy

Number of requests

Typhoon
Deluge

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000

F
re

qu
en

cy

Number of data packets

Typhoon
Deluge

(a) (b)

Fig. 11. Probability distribution of (a) Typhoon request messages and Deluge adver-
tisements (b) Typhoon and Deluge data messages. The topology is a 10×10 node grid,
with 10-feet node distance, and the object size is 20KB. The vertical lines show the
average.

4.6 Protocol Overhead

The major design goal of Typhoon is to minimize completion time. It achieves
this goal by being aggressive in requesting and transmitting object pages.
Figure 11 illustrates the results of this aggressive behavior by comparing the
per-node packet distributions for disseminating the same object using Typhoon
and Deluge.

We focus on request and data transfer messages because they constitute the
majority of traffic. Typhoon generates approximately three times more traffic
than Deluge for both message types. The reason is that, unlike Deluge, Typhoon
does not have a request suppression mechanism, so nodes broadcast requests
more aggressively. Moreover, we found that 47% of the overhearing attempts
failed (i.e. node had to discard the partially overheard pages). While one can
suggest based on this result that nodes should sleep instead of performing op-
portunistic overhearing, sleep scheduling introduces complexity and overhead to
the protocol. Furthermore, as Section 4.5 shows, overhearing when used in con-
junction with channel switching, leads to ∼ 30% reduction in completion time.

4.7 Testbed Evaluation

We complement the simulation results presented above, with experimental re-
sults from testing Typhoon and Deluge on a small testbed. While simulations
are meant to explore the behavior of the protocols under various conditions, the
testbed is used to compare their performance in a realistic environment. Given
the two different goals, we do not compare results across simulations and the
testbed. Rather, it is the relative performance of Typhoon and Deluge under the
same testing scenarios that is of interest.

We test Typhoon on a testbed that consists of 22 motes deployed in an office
building according to the topology shown in Figure 12. Due to the shape of the
building, the testbed physically resembles a linear topology. Moreover, the center
of the testbed around location 119 tends to have relatively bad connectivity to

Typhoon: A Reliable Data Dissemination Protocol for WSNs 283

Fig. 12. The testbed floor plan shows the locations of Tmote Connect boxes, which
can have either one or two motes attached

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 56 58 60 62 64 66 68

Fr
eq

ue
nc

y

Node completion time (sec)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 90 100 110 120 130 140

Fr
eq

ue
nc

y

Node completion time (sec)

(a) (b)

Fig. 13. PDF of node completion time on the testbed for (a) Typhoon and (b) Deluge.
The green line shows the network average in each case.

the rest of the network. Dissemination starts by injecting a 20 KB object from
location 118 on the right side of the testbed.

The average network completion time was 75.15 seconds using Typhoon and
145.57 seconds with Deluge. To understand how the object propagates through
the network, Figure 13 shows the distribution of node completion times. For
both protocols, the node completion time is divided into two groups, with one
group taking longer to receive the entire object. Analysis of the experiment log
shows that the group of slow nodes is located on the left side of the testbed.
This is due to the the poor link connectivity in the center of the testbed. For
example, in the case of Typhoon, most nodes on the left side of the testbed
download pages from location 112. However, since the link connectivity between
location 112 and nodes on the right side of the testbed was poor, location 112
becomes the bottleneck.

As explained above, Typhoon uses the Dissemination service to publish meta-
data andT2 components for reading/writing to theFlash.The combined code foot-
print of all three components is 14752 bytes of ROM and 413 bytes of RAM. At the
same time, the incremental overhead of adding Typhoon to an application that
uses Dissemination and the Flash is 3806 bytes of ROM and 112 bytes of RAM.

5 Looking Forward

We have shown how Typhoon leverages frequency diversity to reduce network
contention and system-level ACKs to expedite recovery from lost data packets.

284 C.-J. Mike Liang, R. Musăloiu-E., and A. Terzis

The combination of these two techniques provides significant performance ben-
efits across a wide range of network sizes and conditions.

As we move forward, we plan to explore the benefits that dynamic packet size
adjustment provides. Preliminary results from our testbed show that changing
packet size can affect the packet reception rate by as much as 28%. The intuition
is that the probability of bit errors and thereby corruption accumulates as the
packet size increases. One should then transmit smaller packets in noisy envi-
ronments to reduce the number of retransmissions and larger packets in ’quiet’
environments to reduce packet overhead. However, the noise level is not known
in advance and changes over time. While algorithms exist for dynamically ad-
justing the packet size to maximize throughput, they are unsuitable for WSNs
due to their complexity [7]. We are currently developing algorithms for estimat-
ing the underlying bit error rates and dynamically adjusting the packet size that
can be implemented on current generation motes.

Acknowledgments

We extend our gratitude to Prabal Dutta and the anonymous reviewers for their
insightful comments and their help in improving this paper.

This research was supported in part by NSF grant CNS-0546648 and by
the U.S. Department of Homeland Security (Grant Number N00014-D6-1-0991)
through a grant awarded to the Center for Study of Preparedness and Critical
Event Response (PACER) at the Johns Hopkins University. Any opinions, find-
ing, conclusions or recommendations expressed in this publication are those of
the author(s) and do not represent the policy or position of the Department of
Homeland Security and the National Science Foundation.

References

1. Clark, B., Colbourn, C., Johnson, D.: Unit disk graphs. Discrete Mathematics 86,
165–177 (1990)

2. Couto, D.S.J.D., Aguayo, D., Bicket, J., Morris, R.: A High-Throughput Path
Metric for Multi-Hop Wireless Routing. In: MobiCom 2003. Proceedings of the 9th

ACM International Conference on Mobile Computing and Networking (September
2003)

3. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: SenSys 2004. Proceedings of the Second ACM
Conference on Embedded Networked Sensor Systems (November 2004)

4. Kulkarni, S.S., Arumugam, M.: Infuse: A TDMA Based Data Dissemination Pro-
tocol For Sensor Networks. Technical Report MSU-CSE-04-46, Michigan State
University - Computer Science and Engineering (November 2004)

5. Kulkarni, S.S., Wang, L.: MNP: Multihop network reprogramming service for sen-
sor networks. In: ICSCS. Proceedings of the 25th IEEE international Conference
on Distributed Computing Systems (June 2005)

6. Lee, H., Cerpa, A., Levis, P.: Improving Wireless Simulation Through Noise
Modeling. In: IPSN 2007. Proceedings of the Sixth International Conference on
Information Processing in Wireless Sensor Networks (2007)

Typhoon: A Reliable Data Dissemination Protocol for WSNs 285

7. Lettieri, P., Srivastava, M.B.: Adaptive frame length control for improving wireless
link throughput, range, and energy efficiency. In: Proceedings of IEEE INFOCOM
1998 (1998)

8. Levis, P., Gay, D., Handziski, V., Hauer, J.-H., Greenstein, B., Turon, M., Hui,
J., Klues, K., Cory Sharp, R.S., Polastre, J., Buonadonna, P., Nachman, L., Tolle,
G., Culler, D., Wolisz, A.: T2: A Second Generation OS For Embedded Sensor
Networks. Technical Report TKN-05-007. Telecommunication Networks Group,
Technische Universitat Berlin (2005)

9. Levis, P., Lee, N., Woo, A., Welsh, M., Culler, D.: TOSSIM: Accurate and scalable
simulation of entire TinyOS Applications. In: Proceedings of Sensys 2003 (Novem-
ber 2003)

10. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: A Self-regulating Algorithm for
Code Propagation and Maintenance in Wireless Sensor Networks. In: Proceedings
of NSDI 2004 (March 2004)

11. Moteiv Corporation. Tmote Sky. Available at http://www.moteiv.com/products/
tmotesky.php

12. Moteiv Corporation. Tmote Sky Datasheet. http://www.moteiv.com/products/
docs/tmote-sky-datasheet.pdf

13. Nail, V., Arora, A., Sinha, P.: Sprinkler: A Reliable and Energy Efficient Data
Dissemination Service for Wireless Embedded Devices. In: RTSS 2005. Proceedings
of the 26th International Real-Time Systems Symposium (2005)

14. Park, S.-J., Vedantham, R., Sivakumar, R., Akyildiz, I.F.: GARUDA: Achieving
Effective Reliability for Downstream Communication in Wireless Sensor Networks.
The IEEE Transactions on Mobile Computing (to appear, 2007)

15. Rappaport, T.S.: Wireless Communications: Principles & Practices. Prentice-Hall,
Englewood Cliffs (1996)

16. Stathopoulos, T., Heidemann, J., Estrin, D.: A remote code update mechanism for
wireless sensor networks. Technical Report CENS-TR-30, University of California,
Los Angeles, Center for Embedded Networked Computing (November 2003)

17. Texas Instruments. 2.4 GHz IEEE 802.15.4/ZigBee-ready RF Transceiver (2006).
Available at http://www.chipcon.com/files/CC2420 Data Sheet 1 3.pdf

18. Wan, C., Campbell, A., Krishnahmurthy, L.: PSFQ: A Reliable Transport Mech-
anism for Wireless Sensor Networks. In: Proceedings of the ACM International
Workshop on Wireless Sensor Networks and Applications (September 2002)

19. Ye, W., Heidemann, J., Estrin, D.: An Energy-Efficient MAC Protocol for Wireless
Sensor Networks. In: Proceedings of IEEE INFOCOM 2002 (2002)

http://www.moteiv.com/products/tmotesky.php
http://www.moteiv.com/products/tmotesky.php
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf
http://www.moteiv.com/products/docs/tmote-sky-datasheet.pdf
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

	Introduction
	Related Work
	Protocol Description
	Metadata Dissemination
	Data Request Handshake
	Data Transfer
	Channel Switching

	Evaluation
	Evaluation Metrics and Methodology
	Effect of Network Density and Size
	Effect of Object Size
	Impact of Packet Loss
	Benefits of Overhearing and Channel Switching
	Protocol Overhead
	Testbed Evaluation

	Looking Forward

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

