
Revolt: Collaborative Crowdsourcing
for Labeling Machine Learning Datasets

Joseph Chee Chang
Carnegie Mellon University

Pittsburgh, PA 15213
josephcc@cs.cmu.edu

Saleema Amershi
Microsoft Research

Redmond, WA 98052
samershi@microsoft.com

Ece Kamar
Microsoft Research

Redmond, WA 98052
eckamar@microsoft.com

ABSTRACT
Crowdsourcing provides a scalable and efficient way to con-
struct labeled datasets for training machine learning systems.
However, creating comprehensive label guidelines for crowd-
workers is often prohibitive even for seemingly simple con-
cepts. Incomplete or ambiguous label guidelines can then
result in differing interpretations of concepts and inconsis-
tent labels. Existing approaches for improving label quality,
such as worker screening or detection of poor work, are in-
effective for this problem and can lead to rejection of honest
work and a missed opportunity to capture rich interpretations
about data. We introduce Revolt, a collaborative approach that
brings ideas from expert annotation workflows to crowd-based
labeling. Revolt eliminates the burden of creating detailed
label guidelines by harnessing crowd disagreements to iden-
tify ambiguous concepts and create rich structures (groups
of semantically related items) for post-hoc label decisions.
Experiments comparing Revolt to traditional crowdsourced
labeling show that Revolt produces high quality labels without
requiring label guidelines in turn for an increase in monetary
cost. This up front cost, however, is mitigated by Revolt’s
ability to produce reusable structures that can accommodate
a variety of label boundaries without requiring new data to
be collected. Further comparisons of Revolt’s collaborative
and non-collaborative variants show that collaboration reaches
higher label accuracy with lower monetary cost.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
crowdsourcing; machine learning; collaboration; real-time

INTRODUCTION
From conversational assistants on mobile devices, to facial
recognition on digital cameras, to document classifiers in email
clients, machine learning-based systems have became ubiq-
uitous in our daily lives. Driving these systems are machine

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05...$15.00.
DOI: http://dx.doi.org/10.1145/3025453.3026044

Figure 1. Revolt creates labels for unanimously labeled “certain” items
(e.g., cats and not cats), and surfaces categories of “uncertain” items
enriched with crowd feedback (e.g., cats and dogs and cartoon cats in
the dotted middle region are annotated with crowd explanations). Rich
structures allow label requesters to better understand concepts in the
data and make post-hoc decisions on label boundaries (e.g., assigning
cats and dogs to the cats label and cartoon cats to the not cats label) rather
than providing crowd-workers with a priori label guidelines.

learned models that must be trained on representative datasets
labeled according to target concepts (e.g., speech labeled by
their intended commands, faces labeled in images, emails
labeled as spam or not spam).

Techniques for collecting labeled data include recruiting ex-
perts for manual annotation [51], extracting relations from
readily available sources (e.g., identifying bodies of text in
parallel online translations [46, 13]), and automatically gener-
ating labels based on user behaviors (e.g., using dwell time to
implicitly mark search result relevance [2]). Recently, many
practitioners have also turned to crowdsourcing for creating
labeled datasets at low cost [49]. Successful crowdsourced
data collection typically requires practitioners to communicate
their desired definition of target concepts to crowdworkers
through guidelines explaining how instances should be la-
beled without leaving room for interpretation. The guideline
generation process is similar but often less rigorous than the
process used by expert annotators in behavioral sciences [37,
53] whereby experts independently examine a sample of data,
generate guidelines especially around possibly ambiguous
concepts discovered in the data, and then discuss and iterate
over the guidelines based on feedback from others [33]. The
guidelines are used as instructions in crowdsourced labeling

tasks given to multiple crowdworkers for redundancy. Label
disagreements are commonly seen as noise or failure to care-
fully follow the guidelines, and later corrected through simple
majority voting.

While traditional crowd-based labeling has produced many
novel datasets used for training machine learning systems [17,
32, 45], a common assumption in labeled data collection is
that every task has one correct label which can be recovered
by the consensus of the crowd [5]. This assumption, however,
rarely holds for every item even for simple concepts (e.g., cat
vs. not cat as illustrated in Figure 1) and even experts have
been shown to vary their labels significantly on the exact same
data due to their evolving interpretations of the target concept
[33]. Specifying comprehensive guidelines that cover all the
nuances and subtleties in a dataset would require close exam-
ination of much of the data which is typically infeasible in
the crowdsourcing settings. Crowdworkers are then often pre-
sented with incomplete guidelines and left to make their own
decisions on items open to interpretation. Not only can this
lead to poor quality labels and machine learning models with
low accuracy, efforts to detect poor quality work (e.g., [25, 10,
22]) in these cases can actually be harmful due to rejection of
honest work. More fundamentally, limiting crowdworkers to
providing feedback only in terms of predefined labels, failing
to capture their confusions and reasoning, presents a lost op-
portunity to discover and capture rich structures in the data
that the crowdworkers had encountered.

In this paper, we present Revolt, a collaborative crowdsourc-
ing system that applies ideas from expert annotation work-
flows to crowdsourcing (e.g., supporting flagging of ambigu-
ous items and discussion) for creating high quality training
labels for machine learning. Revolt enables groups of workers
to collaboratively label data through three stages: Vote (where
crowdworkers label as in traditional labeling), Explain (where
crowdworkers provide justifications for their labels on con-
flicting items), and Categorize (where crowdworkers review
explanations from others and then tag conflicting items with
terms describing the newly discovered concepts). The rich
information gathered from the process can then be presented
to requesters at various levels of granularity for post-hoc judg-
ments to define the final label decision boundaries.

Revolt requires no pre-defined label guidelines aside from the
top-level concept of interest (e.g., faces, spam). As a result,
this approach reverses the traditional crowdsourced labeling
approach by shifting label requester efforts from guideline
creation to post-hoc analysis. The rich structures provided by
our approach has the additional benefit of enabling label re-
questers to experiment with different label decision boundaries
without having to re-run label generation with the wide variety
of possible label guidelines. For example, for collecting labels
of images of Cats (Figure 1), Revolt produces structures that
group together ambiguous sub-concepts such as cartoon cats,
cat food, leopards and lions along with descriptive explana-
tions about the structures. Requesters can then review these
structures and experiment with machine learning models that
are trained to identify leopards and lions as Cats or not.

This paper makes the following contributions:

• A new approach to crowdsourcing label collection that em-
ploys crowds to identify uncertain aspects of the data and
generate rich structures for post-hoc requester judgements,
instead of trying to clearly define target concepts beforehand
with comprehensive guidelines.

• Revolt, an implementation of our collaborative crowdsourc-
ing approach that builds structures containing rich enough
information for generating training labels for machine learn-
ing. We present both real-time and asynchronous versions
of our approach.

• An experiment comparing Revolt to traditional crowd-based
labeling on a variety of labeling tasks showing Revolt can
produce high quality labels without the need for guidelines.

• An experiment comparing Revolt to its non-collaborative
variants showing the benefits of collaboration for reducing
cost and increasing quality.

RELATED WORK

Data Labeling Techniques
Data labeling or annotation is a common practice for many
research areas. In social and behavioral sciences, researchers
annotate (or code) data to build up theories about collected
data, and then analyze the annotated results to discover inter-
esting phenomena [50]. This approach often involves multiple
experts working in iterative and collaborative workflows. For
example, annotators typically first examine and manually la-
bel a dataset (or subset of the dataset) independently and then
compare and discuss their labels to iteratively refine a set of
combined label guidelines [37, 53]. Multiple iterations of
data examination, label discussion, and guideline refinement
may also occur to ensure the quality and coverage of the final
guidelines. Once the guidelines stabilize, annotators can then
independently label additional data accordingly to produce
consistent final labels with high agreement.

Similar collaborative and iterative workflows have been re-
ported for creating high-quality labeled datasets used in natu-
ral language processing and machine learning (e.g., [39, 54,
33]). For example, Kulesza et al. [33] found that annotators
often evolved their conceptual definition of a target concept
and their corresponding labels throughout the course of ob-
serving more items in a dataset. Here, allowing annotators
to create explicit structures designating ambiguous items dis-
covered during labeling enabled them to gradually build up
a better global understanding of the data and generate more
consistent final labels. Wiebe et al. [54] also proposed an
iterative and collaborative workflow that relies on comparing
and discussing conflicting labels amongst expert annotators
to construct and refine shared labeling guidelines for produc-
ing training labels for complex datasets. These iterative and
collaborative processes provide expert annotators systematic
ways to learn about and discuss different interpretations of
data during labeling.

While expert annotation has been used in creating labeled
datasets for machine learning, this process is often too costly
and time consuming to scale to the large datasets required
for modern machine learning algorithms. As an example, the
Penn Treebank dataset that is commonly used in natural lan-
guage processing for training part-of-speech sequence labelers

and syntactic parsers, was built by teams of linguists over the
course of eight years [51]. Another example from a previous
work showed labeling 1,000 English sentences took four ex-
perts nine hours each to iteratively refine their guidelines by
labeling items independently then discussing together [54].
Many researchers and practitioners have therefore recently
turned to crowdsourcing to label data for its scalability and
relatively low cost [17, 32, 45]. However, despite its efficiency,
researchers have also reported difficulty obtaining high qual-
ity labels using crowdsourcing [3, 16]. Multiple factors can
contribute to poor quality labels, such as poor work from inat-
tentive labelers, uncertainty in the task itself (resulting from
poorly written guidelines or confusing interfaces), varying
worker backgrounds and prior knowledge, or items that are
difficult to understand by novice workers [30].

Improving the Quality of Crowdsourced Labels
While disagreements between expert annotators are typically
resolved through discussing and refining guidelines [39], dis-
agreements in crowdsourcing are commonly seen as labeling
errors to be corrected through majority voting over indepen-
dent redundant judgments of crowdworkers [26]. Methods
for further improving the quality of crowdsourced labels can
be mainly broken down into two camps [29]: techniques for
preventing poor quality work and techniques for post-hoc de-
tection of poor quality work. Prevention techniques include
screening for crowdworkers capable of different tasks [18, 27],
pre-training crowdworkers [19], maintaining quality while
controlling for cost via dynamic task allocation [52, 8], or
designing interfaces or payment structures to motivate good
work [43, 47, 22]. Post-hoc identification techniques include
probabilistic modeling based on crowdworker agreements for
weighted voting [25], analyzing crowdworker behaviors dur-
ing tasks [48], and using additional crowdworkers to review
the work of others [10, 22].

A common assumption in previous work is that every item has
one correct label, and conflicts among crowdworkers are the
result of poor quality work from novice or inattentive workers.
However, constructing comprehensive and clear instructions
about how to correctly label a dataset is often not possible due
to the large variety of nuances and subtleties that may exist
in the data, even for seemingly simple topics. For example,
requesters wanting to identify cat photos in a dataset might
not be aware that the dataset also contains photos of leopards,
and/or that leopards are sometimes referred to as big cats. As
a result, crowdworkers often have to label with incomplete
information. Concepts not specified in guidelines are then
open to interpretation and confusion amongst crowdworkers
(e.g., “should leopards, lion cubs, or cartoon cats be labeled
as cats?” Figure 1), potentially leading to inconsistent labels
(e.g., only some leopard items being labeled as cats). Methods
for identifying poor work are ineffective in these cases and can
be harmful to both crowdworker and requester reputations due
to rejection of honest work. More fundamentally, this suggests
a lost opportunity for requesters to discover interesting new
concepts already identified by human computation during the
labeling process since the crowdworkers are typically con-
strained to provide feedback in the form of predefined labels
(e.g., cats or not cats, but not leopards).

Even if requesters attempt to create comprehensive guidelines,
they often have to review large portions of a dataset to do so
which can be prohibitively expensive. Moreover, as guide-
lines become more complete, they can also become longer and
more complicated (e.g., [23] and [40]), requiring more crowd-
worker training or resulting in more errors. If the resulting
label quality is inadequate, requesters will typically have to
go through the tedious process of reviewing inconsistencies,
identifying sources of confusion, updating the guidelines, and
collecting entirely new labels given the updated guidelines
[33], potentially doubling the monetary cost of the process.

Harnessing the Diversity of Crowdsourcing
Instead of treating crowdworker disagreement as noise intro-
duced by poor work or lack of expertise, researchers have
recently begun exploring methods to harness these disagree-
ments as valuable signals. For example, researchers have
found that disagreements amongst novice workers in syntactic
labeling tasks often mirror disagreements amongst linguists
[44] and are useful signals for identifying poor task designs
[24]. In another example, Kairam and Heer [26] used la-
bel agreements to cluster crowdworkers into worker types
(e.g., liberal and conservative labelers that identified different
amount of targets in an entity extraction task). Manual analysis
of these clusters were then used to improve future task designs.
In contrast to this previous work, we use crowd disagreements
to identify and explain ambiguous concepts in data for the
purpose generating labeled data for machine learning.

Most closely related to our work is the MicroTalk system [21]
which used crowd diversity to collect and present counterar-
guments to crowdworkers during labeling to improve label
quality. However, this approach still assumes that a single
correct label exists for every item and requires crowdworkers
to pass a training stage to learn label guidelines before partici-
pating. In our work, we tackle the problem of labeling with
untrained crowdworkers under the assumption that a single
correct label might not exist for every item. Diversity in in-
terpretation is then used to create rich structures of uncertain
items for post-hoc label decisions, avoiding the burden of cre-
ating comprehensive guidelines beforehand and pre-training
crowdworkers. We compare our approach to a condition in-
spired by MicroTalk called Revote, showing that Revolt can
produce training labels with higher accuracy under the sce-
nario where comprehensive guidelines are not available.

Structuring Unlabeled Data with the Crowd
Crowd structuring refers to tasks that make use of crowd-

sourcing for organizing information without predefined target
concepts. For example, categorizing [12, 4] or create tax-
onomies [15] for a set of documents. In contrast, our work
focuses on the task of crowd labeling which is the task of as-
signing predefined target concepts to each item in a dataset. In
our approach, crowdworkers perform structuring within a la-
beling task, and only to resolve different interpretations of the
same items for post-hoc requester review. Past work in crowd
structuring also typically involves multiple stages completed
by different crowdworkers working independently, while we

Figure 2. Overview of Revolt Stages: Synchronized stages requires all
crowdworkers in the group to complete in order to move on.

took a different approach by utilizing real-time crowdsourc-
ing to maintain a shared global structure synchronized across
groups of crowdworkers working collaboratively.

Real-time Crowdsourcing
Real-time crowdsourcing has been employed for a variety
of purposes including minimizing reaction time in crowd-
powered user interfaces [7, 6, 9, 34, 36], increasing the speed
of data collection [35, 31], and improving data quality by incor-
porating expert interventions to guide novice workers [11, 20,
28]. In our work, we use real-time crowd-based collaboration
to improve the quality of labeled data without expert inter-
vention. Workers engage in real-time collaboration to build
rich structures of data that incorporate different crowdworker
perspectives and can be analyzed post-hoc. Moreover, while
most previous real-time systems employ multiple crowdwork-
ers in a single shared workspace, our approach dynamically
coordinates crowdworkers to move synchronously between
stages of different subtasks. Within each stage, crowdworkers
make independent judgments to be revealed to others in sub-
sequent stages. In this way, our approach still benefits from
common crowdsourcing mechanisms of verification through
redundant independent judgments, but can also capture and
utilize diverse crowd perspectives through collaboration.

REVOLT
In this section, we describe Revolt, a collaborative crowd-
sourcing system for generating labeled datasets for machine
learning. Throughout this section, we use the task of label-
ing images as being about “Cats” or “Not Cats” as a running
example (Figure 1).

At a high level, Revolt divides a dataset into multiple batches
and then coordinates crowdworkers to create labels for cer-
tain items (items receiving unanimous labels from multiple
crowdworkers) in each batch and identify uncertain items
(items receiving conflicting labels) for further explanation and
processing. In the synchronized version (Revolt), the system
coordinates small teams of three crowdworkers through three
synchronized stages: Vote, Explain, and then Categorize (see
Figure 2). In the asynchronized version (RevoltAsync), the
system elicits different crowdworkers to work independently
in the Vote and Explain stages, maintaining the same redundant
judgement of three crowdworkers per item while eliminating
the cost of coordinating crowdworkers in real-time. After col-
lecting crowd judgments and explanations across all batches,
both systems algorithmically produce structures (groups of
semantically related items) at various levels of granularity for
review by label requesters to determine final label decision
boundaries (e.g., assigning the “Cartoon Cats” category as
“Not Cats”) before training a machine learning model. To min-
imize redundant information, the rest of this section describes

Figure 3. Human Intelligence Task (HIT) interface for the Vote
Stage. In addition to the predefined labels, crowdworkers can also se-
lect Maybe/NotSure when they were uncertain about the item.

Revolt in the context of the synchronized version. We then
describe the differences of the RevoltAsync condition.

The Vote Stage
Revolt initially keeps crowdworkers in a lobby until enough
crowdworkers have accepted the task and can begin as a group
(Figure 2). The Vote stage then begins by collecting inde-
pendent label judgments from multiple crowdworkers using
an interface similar to that used in traditional crowdsourced
labeling (see Figure 3). In addition to showing predefined
labels as options at this stage (e.g., “Cat” or “Not Cat”), we
also include a “Maybe/NotSure” option to ensure crowdwork-
ers are not forced to make arbitrary decisions for uncertain
items that should instead be explained further in subsequent
stages. Through task instructions, crowdworkers at this stage
are informed that others in the same group are also labeling
the same items at the same time, and that they will be asked
to compare their labels in subsequent stages. By allowing
workers to express their uncertainty in the data and provide
feedback in subsequent stages, Revolt avoids unfairly rejecting
honest work [41].

Before Revolt can proceed to the next stage, all crowdwork-
ers in a group must finish labeling all items in their batch.
Crowdworkers who finish early are put into a waiting area
where they can see in real-time how many crowdworkers in
their group are still labeling items. Once the group is ready to
continue, desktop and audio notifications are sent to all crowd-
workers in case any stepped away while waiting. Once all
labels are received, certain items are assigned their final labels
as usual, and uncertain items (including items that received
“Maybe/NotSure” labels) proceed to the Explain stage.

The Explain Stage
In the Explain stage, crowdworkers are asked to provide short
explanations about their labels for items flagged as uncertain
in the previous stage. Instructions informed each crowdworker
that others in the group disagreed on the labels for these items
and therefore their task was to describe their rationale for each
label to the rest of the group (see Figure 4).

Figure 4. Human Intelligence Task (HIT) interface for the Explain
Stage. Crowdworkers enter a short description for each item that was
labeled differently in the Vote Stage. They were informed that disagree-
ment occurred, but not the distribution of different labels used.

Figure 5. Human Intelligence Task (HIT) interface for the Categorize
Stage. Crowdworkers select or create categories for items that were la-
beled differently in the Vote Stage, based on explanations from all three
crowdworkers in the same group.

Note that early prototypes of our system also revealed the
individual votes from other crowdworkers on each item at this
stage. However, pilot experiments showed that this resulted
in less descriptive explanations that were more focused on
reacting to other crowdworkers. For example, people who
picked the majority vote labels often simply reaffirmed or
expressed confidence in their original label (e.g., “nothing
says to me that this is a cat”) , whereas people who were
in the minority often just yielded to the majority (e.g., “this
could be a cat, i might have messed this one up”). Instead,
hiding the labels and only stating that a disagreement had
occurred resulted in more conceptual explanations helpful for
the following stage (e.g., “This is not a cat, but rather one of
the big felines. Leopard or Cheetah I think.” and “Although
leopards are not domesticated, they are still cats.”). As in the
Vote Stage, crowdworkers who finished early were placed in a
waiting area before they could move on together.

The Categorize Stage
In the Categorize stage, crowdworkers were tasked with group-
ing uncertain items into categories based on their explanations.
In this stage, we present the same uncertain items to each
crowdworker again, but this time also reveal the explanations
from others in the group (Figure 5). Crowdworkers were then
instructed to categorize each item based on its explanations.
Categories could either be selected from a list of existing cat-

egories presented next to each item or added manually via a
text input field. Whenever a new category was added by a
crowdworker, each list of categories was synchronized and
dynamically updated across all items within the current group,
and also across groups working on different parts of the dataset.
To encourage category reuse and reduce redundancy we also
implemented two mechanisms: First, the text field for creating
categories also acts as a quick filter of the existing categories
so that crowdworkers may more easily see and select an exist-
ing category rather than create a new one when appropriate.
Second, the list of existing categories is sorted by the num-
ber of crowdworkers (across all batches of the same dataset)
that have used each category, a similar strategy to that used
to filter out low quality crowd categories in [15, 14]. After
assigning categories, crowdworkers could submit their HITs
independently without waiting for others to complete.

Post Processing of Crowdworker Responses
After crowdworkers in all groups have gone through all three
stages, Revolt collects the crowd feedback for all batches.
Revolt assigns labels to certain items directly, and then creates
structures of uncertain items by applying simple majority
voting on the category names suggested by crowdworkers
for each item. In cases where all crowdworkers suggested a
different category, a random crowdworker’s category is used
as the final category. At this point, structures can be presented
to label requesters for review and to make final label decisions.
For example, after reviewing structures, a label requester may
decide that leopards and lions should be considered Cats while
cartoon cats and cat food should be considered Not Cats. In
this way, label assignments can be applied to the data in each
category prior to training a machine learning system.

Revolt can also expand the crowd-generated categories to dif-
ferent numbers of clusters, supporting inspection at different
levels of granularity. To do this, Revolt performs a hierarchical
clustering method that uses the crowd categories as connec-
tivity constraints. This post-processing approach works as
follows: First, a term frequency-inverse document frequency
(TF-IDF) vector is used to represent each uncertain item where
each dimension is the count of a term in its explanations di-
vided by the number of uncertain items with the same term
mentioned their explanations. Then, hierarchical clustering
with cosine similarity is applied. That is, initially, each item
is treated as a cluster by itself. Clusters are then iteratively
merged with the most similar clusters, prioritizing clusters
with items in the same crowd category, until all items are in
the same cluster.

Generating clusters at various levels of granularity allows label
requesters to adjust the amount of effort they are willing to
spend in making labeling decisions, allowing them to man-
age the trade-off between effort and accuracy. For example,
labeling low level clusters allows for more expressive label
decision boundaries, but at the cost of reviewing more clusters.

RevoltAsync
RevoltAsync removes the real-time nature of Revolt as follows:
One set of crowdworkers label items independently in the
Vote stage. RevoltAsync then still uses the results of three

crowdworkers per item to identify uncertain items. Uncertain
items are then posted to the crowdsourcing market again for
a different set of crowdworkers to explain the labels. That is,
in RevoltAsync’s Explain stage, crowdworkers are presented
with an item and a label given by another crowdworker and
then asked to justify that label given the knowledge that there
were discrepancies between how people voted on this item.

RevoltAsync does not include a Categorize stage, which would
require synchronization. Instead it uses the explanations col-
lected at the Explain stage directly for clustering during post-
processing. Clustering of explanations is still performed using
hierarchical clustering, to produce structures at different levels
of granularity, but without connectivity constraints based on
the crowd categories provided by the Categorize Stage.

EVALUATION
In this section, we describe experiments we conducted to
investigate the cost-benefit trade-off of Revolt compared to
the traditional crowdsourcing approach for collecting labeled
training data. We also examined several variants of Revolt to
better understand the benefits of different components of the
Revolt system and workflow.

To compare these workflows, we ran each condition on a va-
riety of datasets and measured the accuracy of the resulting
labels with respect to requester effort and crowdsourcing cost.
To prevent learning effects, we do not reuse crowdworkers
across conditions for the same dataset, and randomize posting
order of condition and dataset combinations so that crowd-
workers subscribed to postings from our requester account
using third party services1 were distributed across conditions.

Baselines and Conditions
Our conditions include Revolt, RevoltAsync, three variants,
and two baselines representing traditional labeling approaches:

• NoGuidelines. A baseline condition where crowdworkers
label items without guidelines. This condition should be
considered a lower bound baseline, since in most real world
scenarios requesters are likely to have some knowledge of
the data or desired labels to create some initial guidelines.

• WithGuidelines. A baseline condition where crowdworkers
label items according to provided guidelines. For this con-
dition we endeavored to create comprehensive guidelines
that left no room for subjective assessment as explained in
the next Datasets and Guidelines section. Since creating
comprehensive guidelines is often infeasible in realistic ma-
chine learning tasks, the results from this baseline should be
considered an upper bound for what can be achieved with
traditional crowdsourced labeling.

• Revolt. Our proposed Vote-Explain-Categorize workflow
with synchronized real-time collaboration.

• RevoltAsync. Our Revolt variant with asynchronous collab-
oration mechanisms.

• Revote. A Revolt variant with similar strategies used in [21]
wherein crowdworkers re-label uncertain items after con-
sidering each others’ explanations instead of categorizing

1http://www.turkalert.com/

them for post-hoc requester review. This variant replaces
Revolt’s Categorize stage with a Revote stage (without the
maybe option) and uses simple majority voting to assign
final labels to all items.

• Solo. A Revolt variant with no collaboration. In this condi-
tion, each crowdworker labels and explains their labels for
all items independently. The system still computes uncer-
tain items from three redundant labels and clusters uncertain
items using their explanations.

• SoloClusterAll. A variant of Solo where the system clusters
all items based on their explanations. Note that clustering
all items (certain and uncertain) is only possible in the Solo
variants where explanations were collected on all items.
This approach creates categories for certain items as well
as uncertain, requiring requester review of even items that
reached consensus through crowd labeling.

Note that no post-hoc requester effort is required in the NoGu-
idelines, WithGuidelines and Revote conditions and only the
WithGuidelines baseline requires requesters to create guide-
lines prior to crowd labeling. We implemented the Revolt,
Revote, Solo, and SoloClusterAll conditions using the Turk-
Server library [38], which provided the infrastructure for re-
cruiting and coordinating crowdworkers in real-time. Labels
for the RevoltAsync, NoGuidelines, and WithGuidelines con-
ditions were collected through the Mechanical Turk form
builder feature on the requester interface.

Datasets and Guidelines
We evaluated each of our conditions with eight tasks made
up of different data types (images and webpages) and sizes
(around 100 and 600 items, respectively). All of our datasets
were obtained from the publicly available ImageNet [17] or
Open Directory Project2 databases, both commonly used for
machine learning research.

Each labeling task asked crowdworkers to label each item in a
dataset as belonging or not belonging to a given concept. We
used target concepts of Cars and Cats for our image datasets
and Travel and Gardening for our webpage datasets to show
that interpretations can vary for even seemingly simple and
generally familiar concepts (Table 1). For our Cars and Cats
image datsets, we collected images from ImageNet [17] by
first collecting all images that corresponded to WordNet [42]
concepts containing the keyword “car” or “cat”, and then
sub-sampling the set down to approximately 600 images per
dataset while ensuring no sub-concept (such as sports car or
cable car) was overrepresented (>10%) in the final set. We
obtained our Travel and Gardening webpage datasets from
[33] which has approximately 100 webpages for each concept
obtained from the Open Directory Project by selecting half
from each category, “travel” or “gardening”, and then selecting
the remainder randomly from the database.

For each dataset, we generated two sets of gold-standard labels
and corresponding guidelines (making eith datasets total) rep-
resenting two different interpretations of the same concept in
the following way: Independently, each author first manually
labeled the datasets using a structured labeling process [33]
2https://www.dmoz.org/

Figure 6. Accuracy of different approeaches as a function of post-hoc
requester effort (i.e., number of clusters) for the Car1 dataset.

where they would categorize items as they examined them
and then assign final labels at the end. This resulted in gold-
standard labels and guidelines describing those labels (defined
by rules each author would write down describing their cate-
gorizations and final label assignments) for that dataset. These
guidelines can be considered comprehensive given that each
item was examined during labeling. In realistic tasks with
potentially large or complex datasets, it is often infeasible for
label requesters to manually examine each item in order to
create a set of guidelines (instead they typically examine a
subset). Table 1 summarizes our datasets. To give some in-
sights into the level of ambiguity that existed in each datasets,
we report the proportions of items that received conflicting
labels under the NoGuidelines conditions as µ . The average
proportion of items being assigned the positive labels in each
dataset is 0.41 (σ = 0.12).

RESULTS
In this section, we present our experimental results in terms
of accuracy and cost of labels produced by each of our condi-
tions. Final labels for the NoGuidelines, WithGuidelines, and
Revote condition are assigned using simple majority voting.
The Revolt, RevoltAsync, Solo, and SoloClusterAll conditions
produce labels for unanimously voted items and categories (or
clusters) for uncertain items. To simulate post-hoc requester
judgments and measure accuracy of these conditions, we as-
sign each uncertain category the label corresponding to the
majority label of its items as defined by the gold-standards.
As an example, in Table 2 we show the top eleven categories
generated by Revolt for uncertain items in the Cars datasets
and the proportion of the corresponding majority labels in two
sets of gold-standard labels (e.g., 95% of the items in the train
car category were labeled as not car in the gold-standard for
both Car1 and Car2). This simulation allows us to produce
final labels for all items which we can then compare directly to
the gold-standard to compute accuracy. It is important to note
that the gold-standard labels are only being used to simulate
the post-hoc requester input and none of our approaches use
gold-standard labels in their workflows.

In addition to presenting crowd-generated categories, Revolt
(and its variant conditions) can also algorithmically produce
clusters of uncertain items at various levels of granularity for

requesters to review (see the Revolt Section). As a result,
requesters can vary the amount of effort they are willing to
provide to produce final label decision boundaries in these
conditions. Therefore, for these conditions, we also report on
accuracy achieved at various levels of post-hoc requester effort.
As an example, Figure 6 shows how the accuracy of Revolt
changes for different amounts of requester effort required to
assign labels (estimated by number of clusters needing labels)
on the Car1 dataset. For this example, receiving requester
input for 32 categories produced by Revolt (see vertical line in
Figure 6) achieved an accuracy higher than the upper bound
WithGuidelines baseline, while other conditions did not.

We compare the accuracies of different conditions in two ways.
In Table 1, we compare conditions at a fixed amount of post-
hoc requester effort (i.e., the number of clusters needing ex-
amination by the requester). We fix effort to be the number
of categories generated by the crowd under the Revolt condi-
tion for each dataset. For example, for the Cars1 dataset, we
compute accuracy at the point where 32 clusters would need
to be examined. The accuracy results presented in the Cars1
row in Table 1 therefore corresponds to a vertical cut of Fig-
ure 6 at the 32 number of clusters mark. To compare different
conditions and baselines, we fit one generalized linear model
per baseline, predicting correctness as a function of condition,
with dataset as an additional factor to account for item vari-
ation. Both models significantly improve fit over a simpler
model with dataset as the only variable (X2(5)=160.1, p<0.01,
and X2(5)=180.9, p<0.01). Using the models, we ran general
linear hypothesis tests for pairwise comparisons between con-
ditions, and used Tukey’s honestly significant difference as the
test statistic. The models showed both Revolt and RevoltA-
sync to be significantly more accurate than the lower bound
NoGuidelines condition (B=0.56 and 0.38, both p<0.01) while
no significant differences were found when comparing to the
upper bound WithGuidelines condition (B=0.05 and -0.13,
p=0.99 and 0.63).

In addition to using a fixed numbers of clusters, Figure 7 shows
the of accuracy improvement rate of each condition under
different levels of requester effort relative to the NoGuidelines
baseline. Since the smaller datasets only had less than 30
uncertain items, for conditions that generate rich structures
(Revolt, RevoltAsync, Solo, and SoloClusterAll) we show the
accuracy improvement rate for 10, 15, 20, and 25 post-hoc
judgments for the smaller webpage datasets, and 10, 20, 30
for the larger image datasets. We also report the accuracy
improvement for the WithGuidelines and Revote conditions
that do not require post-hoc judgments.

In our experiments, $3 were paid to each worker for partic-
ipating in a batch of Revolt, Revote, Solo, SoloClusterAll
conditions, where $1 was paid as base payment for completing
the first stage, and $2 bonuses were added for completing the
rest of the stages. For the RevoltAsync condition, $1 was paid
for each Vote and Explain task. We adjusted the number of
items in each batch so that crowdworkers could finish batches
under 20 minutes including time spent waiting for other crowd-
workers. Each batch in the image datasets contained around
60 items while each batch in the webpage datasets contained

Dataset Type N µ NoGdlns. WithGdlns. Revote Revolt Solo SoloAll RevoltAsync #Categories
Cars1 image 612 .27 .843 .887 .820 .904 .863 .884 .882 32
Cars2 image 612 .27 .756 .804 .775 .827 .794 .807 .820 32
Cats1 image 572 .12 .844 .939 .845 .916 .720 .900 .902 14
Cats2 image 572 .12 .920 .962 .904 .935 .787 .916 .918 14

Travel1 webpage 108 .24 .759 .870 .787 .880 .815 .806 .870 22
Travel2 webpage 108 .24 .769 .870 .759 .889 .796 .796 .870 22

Garden1 webpage 108 .12 .806 .843 .787 .889 .861 .759 .852 8
Garden2 webpage 108 .12 .778 .833 .787 .843 .815 .787 .787 8

Table 1. Accuracy of different labeling conditions. The number of clusters of the Solo, SoloClusterAll, and RevoltAsync conditions were fixed to the
number of categories observed under the Revolt condition. Bold numbers indicate the best performing condition for each dataset.

Category Size Car1GdStdLabel Cars2GdStdLabel
train car 19 95% not car 95% not car

train 19 100% not car 100% not car
military vehicle 16 100% not car 100% not car

car 15 73% car 53% not car
vehicle mirror 14 100% car 100% not car

bumper car 12 100% not car 100% not car
tow truck 11 91% car 91% car

wheel 8 100% car 88% not car
truck 8 100% car 75% car

trolley 7 86% car 86% car
vehicle interior 6 100% car 100% not car

Table 2. Revolt categories for the Car datasets and the corresponding
gold-standard label determined with majority voting for each category.

around 27 items. For the baseline conditions, we paid $0.05
for labeling one image, and $0.15 for labeling one webpage.

We also compared cost of each condition in terms of crowd-
worker work duration (Figure 8). For our Revolt, Revote,
Solo and SoloClusterAll, we measure work duration directly
by tracking crowdworker behaviors using our external HIT
interface, tracking mouse movements to identify the exact
time crowdworkers started working after accepting the HIT.
Our NoGuidelines, WithGuidelines, and RevoltAsync condi-
tions were implemented via the Mechanical Turk form builder
feature. While Mechanical Turk does report work duration,
crowdworkers often do not start work immediately after ac-
cepting a HIT. To correct for this, we approximate the work
duration for these interfaces in the following way. We approx-
imate the work time of the NoGuidelines and WithGuidelines
conditions (our baseline conditions) using the timing statistics
collected from the Vote Stage of the Revolt workflow, as the
crowdwork involved in these baselines are of the same nature
as the Vote stage. We similarly approximate the total work du-
ration for the RevoltAsync condition by using the timestamps
from the Solo condition (where crowdworkers provided expla-
nations for each item), and multiplying the average duration
with the number of uncertain items identified for each dataset
in this condition.

DISCUSSION

Revolt vs Traditional Crowdsourced Labeling
In both traditional crowd-based labeling and Revolt, requesters
examine uncertain items to refine the label boundaries. How-
ever, in Revolt, this is done at the category level in a post-
processing step as opposed to reviewing items, refining in-

structions, and launching more tasks in a loop. The latter may
lead to wasted work, particularly when refinements require
workers to relabel the same items. In Revolt, structures cap-
tured from crowdworkers during labeling allow requestors
to refine label boundaries post-hoc without having to launch
more tasks.

When compared against the NoGuidelines condition (the lower
bound of traditional crowdsourced labeling), Revolt was able
to produce higher accuracy labels across all eight datasets
(Table 1). The generalized linear models also showed both
Revolt and RevoltAsync to be significantly more accurate than
the NoGuidelines condition. The comparison of the NoGuide-
lines and WithGuidelines conditions shows that comprehen-
sive guidelines indeed increase labeling accuracy across all
eight datasets (Figure 7), but at the cost of the effort needed
to create comprehensive guidelines in advance. In contrast,
Revolt was able to produce comparable accuracy without any
guidelines. In fact, in 6 out of the 8 datasets we tested, Re-
volt was able to produce labeling accuracies slightly higher
than the upper bound baseline (Table 1). The generalized lin-
ear models also showed that neither Revolt nor RevoltAsync
were significantly different than the upper bound condition
(B=0.05 and -0.13, p=0.99 and 0.63). This suggests that Re-
volt can outperform current best practices for crowdsourcing
training labels where guidelines provided by the requesters are
likely to be less comprehensive than the ones provided in the
WithGuidelines condition. That is, Revolt shows promise to
improve the quality of labeled data collection while removing
the burden of comprehensive guideline generation by making
use of collaborative crowdsourcing approaches.

Forcing Crowdworkers to Revote
An alternative way of explaining why we see uncertain items
with conflicting labels in Revolt’s Vote Stage is that crowd-
workers could converge on true concepts for all items but they
are simply making mistakes while labeling. To test this, the
Revote condition allowed crowdworkers to reconsider their
labels after seeing explanations from others, providing the op-
portunity to correct mistakes. While previous work has shown
accuracy improvement using this strategy under a scenario
where clear guidelines were given to pre-trained crowdworkers
[21], results from our study showed that the Revote condition
did not improve labeling accuracy compared to the NoGuide-
lines lower bound baseline (B=0.03, p>0.99), with near zero
median accuracy improvement (Figure 7). This suggest that
in scenarios where it is infeasible to generate comprehensive

Figure 7. Accuracy improvement of different conditions over the NoGuidelines baseline as a function of requester effort.

Figure 8. Work duration of each crowdworker under different conditions, normalized by the number of item in each batch.

guidelines to guide workers towards a single correct answer,
accuracy cannot simply be improved by quality control on
individual workers; instead allowing crowdworkers to inform
the requesters about their confusions and discoveries may be a
better strategy than forcing them to make arbitrary decisions
and then performing post-hoc quality control.

Benefits of Collaborative Crowdsourcing
Traditionally, crowdsourcing techniques require independent
crowdworker judgments and do not permit knowledge shar-
ing. In this work, we investigated the benefits of collaborative
crowdsourcing by allowing limited and structured communi-
cations between crowdworkers. Our collaborative conditions
(Revolt, RevoltAsync, Revote) presented crowdworkers with
different combinations of conflicting judgements, justifica-
tions for the conflicting judgements, and proposed structures
(i.e., category names) from other crowdworkers, either syn-
chronously or asynchronously. On the other hand, in NoGu-
idelines, WithGuidelines, Solo, and SoloClusterAll conditions,
workers were not presented with any judgments from others.

Comparing Revolt to RevoltAsync, Revolt with synchronous
stages performed slightly better than RevoltAsync at the cost
of slightly higher worktime (Figure 8), but the difference was
not significant (B=0.18, p=0.28). Comparing collaborative and
non-collaborative conditions, results show that both Revolt
and RevoltAsync outperformed the non-collaborative Solo
condition for each dataset we tested (Figure 7). Based on
the generalized linear models, the real-time collaborative Re-
volt condition achieved significantly higher accuracies than

the non-collaborative Solo condition, while the RevoltAsync
variant did not (B=0.24 and 0.06, p=0.04 and 0.97). Interest-
ingly, we initially expected the RevoltAsync condition would
yield poorer results compared to the non-collaborative Solo
condition due to cognitive dissonance (i.e., asking one crowd-
worker to explain the label of another). However, the results
showed no significant difference between the two conditions.
On the other hand, the non-collaborative SoloClusterAll condi-
tion, where explanations were collected for all items to cluster
both certain and uncertain items, performed worse than the
lower bound baseline. These results suggest that identifying
and presenting disagreements is an important factor for elic-
iting meaningful explanations, even when the disagreements
were presented to different crowdworkers in an asynchronous
setting (Figure 7).

Cost Analysis
In general, items in the webpage datasets took longer to label
compared to items in the image datasets. This is to be expected
since webpages typically contain both text and images and
therefore often require more effort to comprehend (Figure 8).
Comparing different conditions, traditional labeling (With-
Guidelines, NoGuidelines) that only required crowdworkers
to label each item had the lowest work times, and the real-time
collaborative conditions, Revote and Revolt, had similar and
higher work times. This suggests categorizing or re-labeling
items has similar costs, but creating rich structures for post-
hoc requester judgments can lead to better accuracies. The
RevoltAsync condition showed lower work time compared

to the Revolt condition. This is also to be expected since
crowdworkers did not need to wait for others during the task
for progress synchronization. The non-collaborative workflow
conditions Solo and SoloClusterAll has the highest work time
since it required explanation of all certain and uncertain items.
Therefore, using the voting stage to identify uncertain items
and guide efforts on structure generation can improve accuracy
while also lowering cost.

One concern for synchronous collaborative crowdsourcing is
crowdworkers idling or returning the HIT before the task is
competed. This was especially important since we did not
include a method for using labels from groups with missing
labels. In sessions with drop-outs, we paid the crowdwork-
ers and discarded their labels. In fact, the first prototype of
Revolt had a high dropout rate of around 50% (i.e., half of
the crowdworkers did not complete the three stages), making
it infeasible for practical use. Through an iterative task de-
sign process, we observed the following mechanisms being
effective for reducing drop-outs: Explaining the collabora-
tive nature of the task, providing time estimates in the task
instructions, adding example items in the preview screen so
crowdworkers knew what to expect if they accepted the HIT,
sending desktop and audio notifications to help coordinate
workers, and giving clear progress indicators throughout the
tasks (e.g., current bonus amount, number of remaining stages,
and the amount of bonus for completing each stage). In the
final version of the task with these mechanisms, the dropout
rate was lowered to an average of around 5% for the eight
datasets presented in this paper.

FUTURE WORK
In this work we focused on designing Revolt’s collaborative
crowdsourcing workflow and evaluating whether the generated
structures contain information with enough richness for label
requesters to define accurate label decision boundaries. While
we believe the proposed mechanisms of identifying uncertainty
with disagreements and creating structures with explanations
can generalize to multi-class scenarios, the added complexity
to both the crowdworkers and the interfaces should be studied
further. Research is also needed to design a requester-facing
interface depicting these structures and to compare requester
effort in post-hoc analysis with guideline creation.

To gain insights into these future directions, we conducted
a small follow up experiment where we ran Revolt on data
needed by a group of practitioners from a large technology
company for a real machine learning research problem. This
group required 300 items from the publicly available 20 News-
group Dataset [1] to be labeled as being about “Autos” or “Not
Autos”. Prior to our study, the group of three practitioners
already spent approximately 2-3 hours each to browse through
some of the data and then about 1-2 hours to generate and
iterate over the guidelines. This is a typical process for guide-
lines creation analogous to previous work [54], and should
represent a realistic scenario somewhere between our lower
bound NoGuidelines and upper bound WithGuidelines con-
ditions. Because the practitioners already had some idea of
how they wanted the dataset labeled, we ran Revolt with their
guidelines.

We presented Revolt’s results to one member of the research
group and asked them to examine the resulting structures. In-
terestingly, 93 out of the 300 items (31%) were inconsistent
even though we gave crowdworkers guidelines about how to
label, underscoring the difficulty of creating comprehensive
guidelines covering the subtleties in a dataset. These items
surfaced 23 unique categories and, to the practitioner’s sur-
prise, 70% were not covered in the original guidelines (e.g.,
auto accessories, insurance, intoxication). 7 of the categories
were mentioned in the guidelines with explicit instructions
about how to label (e.g., driving, buying/selling, auto repair),
indicating either failure of some workers to learn the guide-
lines or failure of the guidelines to capture the complexity of
these categories. For example, one of the items categorized
as driving was about which side of the road people should
drive on. While this could be considered about auto driving, it
could also be about driving other types of vehicles. Reading
crowdworker explanations helped the practitioner to better
understand this ambiguity, and led them to second guess their
original guideline about labeling driving related items as au-
tos. The practitioner we interviewed also suggested additional
ways they wanted to use Revolt’s results, such as removing
ambiguous items or certain categories before training a model,
or creating features around categories that surfaced. Further
research is necessary to examine the potential for Revolt’s rich
structures to support these tasks.

The practitioner also made several suggestions with respect to
how one might design the presentation of Revolt’s structures.
First, an indicator of category quality or confidence based on
the distribution of labels assigned by individual workers would
have helped the practitioner prioritize which categories to look
at first and how much to examine each category before making
a decision (e.g., by reading individual explanations or viewing
a few of the individual items within a category). Other sug-
gestions included blacklisting certain items from the category
list (e.g., “autos” surfaced as a category), presenting structures
within hierarchical categories, and searching explanations for
to find related items under different categories. Future re-
search should consider these insights in determining how to
efficiently present Revolt’s structures to label requesters.

CONCLUSIONS
In this paper, we presented Revolt, a new approach for gener-
ating labeled datasets for machine learning via collaborative
crowdsourcing. Our experimental results comparing Revolt
to traditional crowd labeling techniques demonstrates Revolt
can shift the efforts of label requesters from a priori label
guideline creation to post-hoc analysis of crowd-generated
conceptual structures. This has several benefits including po-
tentially surfacing new or ambiguous concepts unanticipated
by label requesters, reducing the amount of crowdworker train-
ing and effort required to learn label guidelines, and allowing
label requesters to change their minds about label decision
boundaries without having to re-collect new data.

ACKNOWLEDGMENTS
The authors would like to thank Andrew Mao and Walter S.
Lasecki for the insightful discussions, and Joel Chan for the
assistance in analyzing the evaluation results.

REFERENCES
1. 1995. The 20 Newsgroups Dataset. (1995).
http://people.csail.mit.edu/jrennie/20Newsgroups/

2. Eugene Agichtein, Eric Brill, and Susan Dumais. 2006.
Improving web search ranking by incorporating user
behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval. ACM, 19–26.

3. Omar Alonso, Catherine C Marshall, and Marc Najork.
2013. Are some tweets more interesting than others?#
hardquestion. In Proceedings of the Symposium on
Human-Computer Interaction and Information Retrieval.
ACM, 2.

4. Paul André, Aniket Kittur, and Steven P Dow. 2014.
Crowd synthesis: Extracting categories and clusters from
complex data. In Proceedings of the 17th ACM
conference on Computer supported cooperative work &
social computing. ACM, 989–998.

5. Yoram Bachrach, Thore Graepel, Tom Minka, and John
Guiver. 2012. How to grade a test without knowing the
answers—A Bayesian graphical model for adaptive
crowdsourcing and aptitude testing. The proceedings of
the International Conference on Machine Learning
(2012).

6. Michael S. Bernstein, Joel Brandt, Robert C. Miller, and
David R. Karger. 2011. Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces. In
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’11). ACM,
New York, NY, USA, 33–42. DOI:
http://dx.doi.org/10.1145/2047196.2047201

7. Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg
Little, Andrew Miller, Robert C Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White, and
others. 2010. VizWiz: nearly real-time answers to visual
questions. In Proceedings of the 23nd annual ACM
symposium on User interface software and technology.
ACM, 333–342.

8. Jonathan Bragg, Daniel S Weld, and others. 2013.
Crowdsourcing multi-label classification for taxonomy
creation. In First AAAI conference on human computation
and crowdsourcing.

9. Michele A. Burton, Erin Brady, Robin Brewer, Callie
Neylan, Jeffrey P. Bigham, and Amy Hurst. 2012.
Crowdsourcing Subjective Fashion Advice Using VizWiz:
Challenges and Opportunities. In Proceedings of the 14th
International ACM SIGACCESS Conference on
Computers and Accessibility (ASSETS ’12). ACM, New
York, NY, USA, 135–142. DOI:
http://dx.doi.org/10.1145/2384916.2384941

10. Chris Callison-Burch and Mark Dredze. 2010. Creating
speech and language data with Amazon’s Mechanical
Turk. In Proceedings of the NAACL HLT 2010 Workshop
on Creating Speech and Language Data with Amazon’s
Mechanical Turk. Association for Computational
Linguistics, 1–12.

11. Joel Chan, Steven Dang, and Steven P Dow. 2016.
Improving crowd innovation with expert facilitation. In
Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing. ACM, 1223–1235.

12. Joseph Chee Chang, Aniket Kittur, and Nathan Hahn.
2016. Alloy: Clustering with Crowds and Computation.
In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems. ACM, 3180–3191.

13. Joseph Z. Chang, Jason S. Chang, and Jyh-Shing Roger
Jang. 2012. Learning to Find Translations and
Transliterations on the Web. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics (ACL ’12). Association for Computational
Linguistics, 130–134.

14. Lydia B Chilton, Juho Kim, Paul André, Felicia Cordeiro,
James A Landay, Daniel S Weld, Steven P Dow, Robert C
Miller, and Haoqi Zhang. 2014. Frenzy: collaborative
data organization for creating conference sessions. In
Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 1255–1264.

15. Lydia B Chilton, Greg Little, Darren Edge, Daniel S
Weld, and James A Landay. 2013. Cascade:
Crowdsourcing taxonomy creation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1999–2008.

16. Gianluca Demartini, Djellel Eddine Difallah, and
Philippe Cudré-Mauroux. 2012. ZenCrowd: Leveraging
Probabilistic Reasoning and Crowdsourcing Techniques
for Large-scale Entity Linking. In Proceedings of the 21st
International Conference on World Wide Web (WWW
’12). ACM, New York, NY, USA, 469–478. DOI:
http://dx.doi.org/10.1145/2187836.2187900

17. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale
hierarchical image database. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. IEEE, 248–255.

18. Djellel Eddine Difallah, Gianluca Demartini, and
Philippe Cudré-Mauroux. 2013. Pick-a-crowd: Tell Me
What You Like, and I’Ll Tell You What to Do. In
Proceedings of the 22Nd International Conference on
World Wide Web (WWW ’13). ACM, New York, NY,
USA, 367–374. DOI:
http://dx.doi.org/10.1145/2488388.2488421

19. Shayan Doroudi, Ece Kamar, Emma Brunskill, and Eric
Horvitz. 2016. Toward a Learning Science for Complex
Crowdsourcing Tasks. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 2623–2634.

20. Steven Dow, Anand Kulkarni, Scott Klemmer, and Björn
Hartmann. 2012. Shepherding the crowd yields better
work. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work. ACM,
1013–1022.

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://dx.doi.org/10.1145/2047196.2047201
http://dx.doi.org/10.1145/2384916.2384941
http://dx.doi.org/10.1145/2187836.2187900
http://dx.doi.org/10.1145/2488388.2488421

21. Ryan Drapeau, Lydia B Chilton, Jonathan Bragg, and
Daniel S Weld. 2016. MicroTalk: Using Argumentation
to Improve Crowdsourcing Accuracy. (2016).

22. Derek L Hansen, Patrick J Schone, Douglas Corey,
Matthew Reid, and Jake Gehring. 2013. Quality control
mechanisms for crowdsourcing: peer review, arbitration,
& expertise at familysearch indexing. In Proceedings of
the 2013 conference on Computer supported cooperative
work. ACM, 649–660.

23. Google Inc. 2016. Google Search Quality Evaluator
Guidelines. (2016). http://static.googleusercontent.
com/media/google.com/en//insidesearch/howsearchworks/

assets/searchqualityevaluatorguidelines.pdf

24. Oana Inel, Khalid Khamkham, Tatiana Cristea, Anca
Dumitrache, Arne Rutjes, Jelle van der Ploeg, Lukasz
Romaszko, Lora Aroyo, and Robert-Jan Sips. 2014.
Crowdtruth: Machine-human computation framework for
harnessing disagreement in gathering annotated data. In
International Semantic Web Conference. Springer,
486–504.

25. Panagiotis G Ipeirotis, Foster Provost, and Jing Wang.
2010. Quality management on amazon mechanical turk.
In Proceedings of the ACM SIGKDD workshop on human
computation. ACM, 64–67.

26. Sanjay Kairam and Jeffrey Heer. 2016. Parting Crowds:
Characterizing Divergent Interpretations in
Crowdsourced Annotation Tasks. In Proceedings of the
19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing. ACM,
1637–1648.

27. Ece Kamar, Severin Hacker, and Eric Horvitz. 2012.
Combining human and machine intelligence in
large-scale crowdsourcing. In Proceedings of the 11th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 1. International Foundation
for Autonomous Agents and Multiagent Systems,
467–474.

28. Joy Kim, Justin Cheng, and Michael S Bernstein. 2014.
Ensemble: exploring complementary strengths of leaders
and crowds in creative collaboration. In Proceedings of
the 17th ACM conference on Computer supported
cooperative work & social computing. ACM, 745–755.

29. Aniket Kittur, Jeffrey V Nickerson, Michael Bernstein,
Elizabeth Gerber, Aaron Shaw, John Zimmerman, Matt
Lease, and John Horton. 2013. The future of crowd work.
In Proceedings of the 2013 conference on Computer
supported cooperative work. ACM, 1301–1318.

30. James Q Knowlton. 1966. On the definition of “picture”.
AV Communication Review 14, 2 (1966), 157–183.

31. Ranjay A. Krishna, Kenji Hata, Stephanie Chen, Joshua
Kravitz, David A. Shamma, Li Fei-Fei, and Michael S.
Bernstein. 2016. Embracing Error to Enable Rapid
Crowdsourcing. In Proceedings of the 2016 CHI

Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3167–3179. DOI:
http://dx.doi.org/10.1145/2858036.2858115

32. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems. 1097–1105.

33. Todd Kulesza, Saleema Amershi, Rich Caruana, Danyel
Fisher, and Denis Charles. 2014. Structured labeling for
facilitating concept evolution in machine learning. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 3075–3084.

34. Gierad Laput, Walter S Lasecki, Jason Wiese, Robert
Xiao, Jeffrey P Bigham, and Chris Harrison. 2015.
Zensors: Adaptive, rapidly deployable, human-intelligent
sensor feeds. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems.
ACM, 1935–1944.

35. Walter S Lasecki, Mitchell Gordon, Danai Koutra,
Malte F Jung, Steven P Dow, and Jeffrey P Bigham. 2014.
Glance: Rapidly coding behavioral video with the crowd.
In Proceedings of the 27th annual ACM symposium on
User interface software and technology. ACM, 551–562.

36. Walter S Lasecki, Rachel Wesley, Jeffrey Nichols, Anand
Kulkarni, James F Allen, and Jeffrey P Bigham. 2013.
Chorus: a crowd-powered conversational assistant. In
Proceedings of the 26th annual ACM symposium on User
interface software and technology. ACM, 151–162.

37. Kathleen M MacQueen, Eleanor McLellan, Kelly Kay,
and Bobby Milstein. 1998. Codebook development for
team-based qualitative analysis. Cultural anthropology
methods 10, 2 (1998), 31–36.

38. A. Mao, Y. Chen, K.Z. Gajos, D.C. Parkes, A.D.
Procaccia, and H. Zhang. 2012. TurkServer: Enabling
Synchronous and Longitudinal Online Experiments. In
Proceedings of HCOMP’12.

39. Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computational
linguistics 19, 2 (1993), 313–330.

40. Matt McGee. 2012. Yes, Bing Has Human Search Quality
Raters and Here’s How They Judge Web Pages. (2012).
http://searchengineland.com/

bing-search-quality-rating-guidelines-130592

41. Brian McInnis, Dan Cosley, Chaebong Nam, and Gilly
Leshed. 2016. Taking a HIT: Designing around Rejection,
Mistrust, Risk, and WorkersâĂŹ Experiences in Amazon
Mechanical Turk. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
ACM, 2271–2282.

42. George A Miller. 1995. WordNet: a lexical database for
English. Commun. ACM 38, 11 (1995), 39–41.

http://static.googleusercontent.com/media/google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
http://static.googleusercontent.com/media/google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
http://static.googleusercontent.com/media/google.com/en//insidesearch/howsearchworks/assets/searchqualityevaluatorguidelines.pdf
http://dx.doi.org/10.1145/2858036.2858115
http://searchengineland.com/bing-search-quality-rating-guidelines-130592
http://searchengineland.com/bing-search-quality-rating-guidelines-130592

43. Tanushree Mitra, Clayton J Hutto, and Eric Gilbert. 2015.
Comparing person-and process-centric strategies for
obtaining quality data on amazon mechanical turk. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. ACM,
1345–1354.

44. Barbara Plank, Dirk Hovy, and Anders Søgaard. 2014.
Linguistically debatable or just plain wrong?. In ACL (2).
507–511.

45. Matt Post, Chris Callison-Burch, and Miles Osborne.
2012. Constructing parallel corpora for six indian
languages via crowdsourcing. In Proceedings of the
Seventh Workshop on Statistical Machine Translation.
Association for Computational Linguistics, 401–409.

46. Philip Resnik and Noah A. Smith. 2003. The Web As a
Parallel Corpus. Comput. Linguist. 29, 3 (Sept. 2003),
349–380. DOI:
http://dx.doi.org/10.1162/089120103322711578

47. Jakob Rogstadius, Vassilis Kostakos, Aniket Kittur, Boris
Smus, Jim Laredo, and Maja Vukovic. 2011. An
assessment of intrinsic and extrinsic motivation on task
performance in crowdsourcing markets. ICWSM 11
(2011), 17–21.

48. Jeffrey Rzeszotarski and Aniket Kittur. 2012.
CrowdScape: interactively visualizing user behavior and
output. In Proceedings of the 25th annual ACM
symposium on User interface software and technology.
ACM, 55–62.

49. Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and Fast—but is It Good?:

Evaluating Non-expert Annotations for Natural Language
Tasks. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP ’08).
Association for Computational Linguistics, 254–263.
http://dl.acm.org/citation.cfm?id=1613715.1613751

50. Anselm Strauss and Juliet Corbin. 1998. Basics of
qualitative research: Techniques and procedures for
developing grounded theory . Sage Publications, Inc.

51. Ann Taylor, Mitchell Marcus, and Beatrice Santorini.
2003. The Penn treebank: an overview. In Treebanks.
Springer, 5–22.

52. Long Tran-Thanh, Trung Dong Huynh, Avi Rosenfeld,
Sarvapali D. Ramchurn, and Nicholas R. Jennings. 2014.
BudgetFix: Budget Limited Crowdsourcing for
Interdependent Task Allocation with Quality Guarantees.
In Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS
’14). International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 477–484.
http://dl.acm.org/citation.cfm?id=2615731.2615809

53. Cynthia Weston, Terry Gandell, Jacinthe Beauchamp,
Lynn McAlpine, Carol Wiseman, and Cathy Beauchamp.
2001. Analyzing interview data: The development and
evolution of a coding system. Qualitative sociology 24, 3
(2001), 381–400.

54. Janyce M Wiebe, Rebecca F Bruce, and Thomas P
O’Hara. 1999. Development and use of a gold-standard
data set for subjectivity classifications. In Proceedings of
the 37th annual meeting of the Association for
Computational Linguistics on Computational Linguistics.
Association for Computational Linguistics, 246–253.

http://dx.doi.org/10.1162/089120103322711578
http://dl.acm.org/citation.cfm?id=1613715.1613751
http://dl.acm.org/citation.cfm?id=2615731.2615809

	Introduction
	Related Work
	Data Labeling Techniques
	Improving the Quality of Crowdsourced Labels
	Harnessing the Diversity of Crowdsourcing
	Structuring Unlabeled Data with the Crowd
	Real-time Crowdsourcing

	Revolt
	The Vote Stage
	The Explain Stage
	The Categorize Stage
	Post Processing of Crowdworker Responses
	RevoltAsync

	Evaluation
	Baselines and Conditions
	Datasets and Guidelines

	Results
	Discussion
	Revolt vs Traditional Crowdsourced Labeling
	Forcing Crowdworkers to Revote
	Benefits of Collaborative Crowdsourcing
	Cost Analysis

	Future Work
	Conclusions
	Acknowledgments
	REFERENCES

