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Abstract

List comprehensions provide a powerful abstraction mecha-

nism for expressing computations over ordered collections of

data declaratively without having to use explicit iteration con-

structs. This paper puts forth effectful comprehensions as an

elegant way to describe list comprehensions that incorporate

loop-carried state. This is motivated by operations such as

compression/decompression and serialization/deserialization

that are common in log/data processing pipelines and require

loop-carried state when processing an input stream of data.

We build on the underlying theory of symbolic transducers

to fuse pipelines of effectful comprehensions into a single

representation, from which efficient code can be generated.

Using background theory reasoning with an SMT solver, our

fusion and subsequent reachability based branch elimina-

tion algorithms can significantly reduce the complexity of

the fused pipelines. Our implementation shows significant

speedups over reasonable hand-written code (3.4×, on aver-

age) and traditionally fused version of the pipeline (2.6×, on

average) for a variety of examples, including scenarios for

extracting fields with regular expressions, processing XML

with XPath, and running queries over encoded data.

CCS Concepts •Theory of computation → Transduc-

ers; Streaming models; Program analysis; •General and

reference → Evaluation; Performance; •Software and

its engineering → Abstraction, modeling and modularity;

Source code generation; Domain specific languages

Keywords symbolic transducer, symbolic automaton, com-

prehension, fusion, deforestation, reachability analysis

1. Introduction

List comprehensions provide a powerful mechanism for

declaratively specifying a pipeline of computations on col-

lections of data. Programmers specify the various stages of

the pipeline concisely and modularly without using explicit

iteration constructs, while the runtime ameliorates the cost of

the abstraction by performing various optimizations such as

fusion/deforestation [36, 45].

This paper extends this idea to effectful comprehensions,

an elegant way to describe list comprehensions that incorpo-

rate loop-carried state. As a motivation, consider the problem

of analyzing logs as shown in Figure 1. The log on the disk

(or coming across the network from a file server) is com-

pressed, and thus the user has to first decompress the input

stream of bits into bytes which are then deserialized into

objects in a higher-level language, such as Java. In this ex-

ample, the application selects stock prices from each object

and looks for price dips — decreases followed by increases.

The output is then serialized and compressed before being

written back to disk. Such processing from input stream of

bits to output stream of bits is not uncommon today. For in-

stance, the processing in a single node of a data-processing

system [4, 9, 19, 47], is similar to the one shown in Figure 1.

Note that the stages in the pipeline include both “func-

tional” computations that operate on each input indepen-

dently, such as SelectPrice, and “effectful” computations

that iterate over the input list while maintaining loop-carried

state, such as Decompress, Deserialize, and FindPriceDips.

The goal of this paper is to allow such pipelines to be declar-

atively and modularly specified as shown at the bottom of the

figure, then fuse them to a single representation for which ef-

ficient code can be generated. We use a variation of symbolic

transducers [43] as our program representation.

In order to provide some intuition we consider a concrete

but simplified example scenario of such a pipeline, consisting

of two symbolic transducers. The situation that we consider

is a fairly typical one when the raw input data is unstructured

text, for example when parsing CSV files. Raw text is most

commonly assumed to be UTF8 encoded. Suppose that

the task is to parse and extract a nonnegative integer from
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ϬϬϭϬϭϬϭϭϬϭϬϬϭϬϭϬϭϬϭϭϬϬϬϭϭϭϬϭϬϭϭϭϭϭϬϬϭϬϭϭ…

[DecϭϮ, “PY, ϱϬ.ϭϯ] [Decϭϯ, “PY, ϰϵ.ϰϰ] [Decϭϰ, …
Deserialize (chars -> objects)

ϱϬ.ϭϯ, ϰϵ.ϰϰ, ϰϴ.ϭϯ, ϱϭ.ϯϮ, ϱϯ.ϱϯ, ϰϵ.ϭϮ, ϰϴ.ϭϰ, … 
SelectPrice (objects -> floats)

Ϭ, Ϭ, Ϭ, Ϭ, ϱ, Ϭ, Ϭ, ϯ, Ϭ, Ϭ, Ϭ, Ϭ, Ϭ, Ϭ, ϳ, …
FindPriceDips (floats -> ints)

b1 a9 86 a8 70 7d a3 66 01 05 3a 0f d4 51 af 83...

Serialize (ints -> bytes)

Compress (bytes -> bits)

111000100100010000101111011111101101000...

75 49 95 7d 2e 98 80 e4 3e 76 0b 3b 2e 92 18 5e...

Decompress (bits -> bytes)

͞ϭϮ/ϭϮ/ϭϮ “PY ϱϬ.ϭϯ\n 12/13/12 SPY 49.44\n …͟
UTF8Decode (bytes -> chars)

Data from 

disk/network

Data to 

disk/network

output =

input.Decompress(. . .).Decode(. . .).Deserialize(. . .)

.SelectPrice(. . .).FindPriceDips(. . .)

.Serialize(. . .).Compress(. . .);

Figure 1. Motivating example of a log processing pipeline

where an input stream of bits goes through various stages

to an output stream of bits. This paper allows programmers

to declaratively specify this pipeline as a composition of

symbolic transducers, as shown at the bottom.

x ∈ [0xC2− 0xDF]/[]; (x&0x3F)<<6

x ∈ [0x80− 0xBF]/[r|(x&0x3F)]; 0
q1q0

0

x ∈ [0− 0x7F]/[x]; 0

(a) Utf8Decode

x ∈ [0x30− 0x39]/[]; x− 0x30

x ∈ [0x30− 0x39]/[]; (10 ∗ r) + x − 0x30

0 p0 p1
true/[x]

(b) ToInt

Figure 2. Symbolic transducers

the text, assuming a decimal encoding with ASCII digits,

i.e., matching the regex ^[0-9]+$. Suppose our sample

pipeline is as follows: it first UTF8 decodes (Utf8Decode)

and then parses an integer (ToInt). Utf8Decode takes as input

a sequence of bytes and produces a sequence of integers

that are the decoded Unicode character codes. For simplicity

assume that only up to 2-byte encodings are allowed.1

The following paragraphs serve as an informal introduc-

tion to symbolic transducers. Utf8Decode is illustrated in

Figure 2(a)2. Utf8Decode uses two control states q0 and q1,

where q0 is both the initial and the final state. The variables

x and r are used for the current input and current register

values, respectively. A transition p
x∈α/s;g
−−−−−→ q has the fol-

lowing meaning: if the current state is p and the current byte

x is in the range α then enter state q, yield the elements in

1 UTF8 encodings up to two bytes cover the full range of characters in

extended ASCII. In general, UTF8 encodings of up to four bytes cover all

Unicode characters.
2 The operation ‘&’ denotes bitwise-and, the operation ‘|’ denotes bitwise-or,

and the operation ‘«k’ denotes shift-left by k bits.

the sequence s and update the register r to the value g. Ini-

tially r has the value 0. For example, if the input sequence

of bytes is [0x61, 0xC5, 0x93] then the output sequence of

character codes is [0x61, ((0xC5&0x3F)«6)|(0x93&0x3F)]
that is equal to [0x61, 0x153] or the string "aœ".

ToInt is illustrated in Figure 2(b). In addition to normal

transitions, ToInt also uses a finalizer (drawn as a dashed

arrow), that upon reaching the end of the input outputs the

value of its register in the singleton sequence [r]. In a finalizer,

the elements in the output sequence may only depend on the

register value and there is no register update.

Symbolic transducers can be fused into a single symbolic

transducer that preserves the semantics of function composi-

tion. Consider the fusion of Utf8Decode with ToInt, which

ends up being identical to ToInt due to ToInt only accept-

ing ASCII digits which in turn have a single byte UTF8

encoding. We will now work through the steps of the fu-

sion, which builds a product of the reachable control states

starting from the initial pair state (q0, p0). For example, fu-

sion of the transition q0
x∈[0−0x7F]/[x];0
−−−−−−−−−−→ q0 with the transi-

tion p0
x∈[0x30−0x39]/[];x−0x30
−−−−−−−−−−−−−−−→ p1 produces the transition

(q0, p0)
x∈[0x30−0x39]/[];(0,x−0x30)
−−−−−−−−−−−−−−−−−→ (q0, p1)

where the fused register is a pair representing the registers

of Utf8Decode and ToInt and the output x from Utf8Decode

has been consumed as the input of ToInt. When the producer

(here Utf8Decode) outputs nothing, the consumer (here ToInt)

remains in the same state. So in the fusion of Utf8Decode

and ToInt there is a product transition

(q0, p1)
x∈[0xC2−0xDF]/[];(x&0x3F)«6,π2(r))
−−−−−−−−−−−−−−−−−−−−−−→ (q1, p1)

π1 and π2 project the first and second element of a pair,

respectively. The only possible fusion of transitions from

(q1, p1) is

(q1, p1)

x∈ [0x80 − 0xBF]∧

(π1(r)|(x&0x3F))∈ [0x30 − 0x39]/[];

(0, (10 ∗ π2(r)) + (π1(r)|(x&0x3F)) − 0x30)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (q0, p1).

However, the state (q1, p1) is associated with the register

constraint ∃x (x ∈ [0xC2−0xDF]∧π1(r) = ((x&0x3F)«6))
which together with the guard of the transition from (q1, p1)
becomes unsatisfiable. Thus the transition can be removed

from the fused transducer, which in turn implies that the state

(q1, p1) has become a dead-end and the transitions to it can

be eliminated, since any execution ending up in (q1, p1) is

guaranteed to finally reject. Similar reasoning allows us to

remove (q1, p0). The fusion ends up being identical to ToInt.

Observe that the story would be quite different if ToInt

accepted non-ASCII digits. Often fusion eliminates a lot of

the complexity in the early stages in the pipeline by back-

propagating the particular constraints required by the later

stages, such as, the only accepted input characters being digits.

As data moves to later stages in the pipeline the data-types

tend to become become more structured and filtered.
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IEnumerable<int> Utf8ToInt(IEnumerable<byte> input) {

int r1 = 0; bool multiByte = false;

var endState = input.SelectMany(x => { // Utf8Decode

if (!multiByte) {

if (0 <= x && x <= 0x7F) yield return x;

else if (0xC2 <= x && x <= 0xDF) {

r1 = (x & 0x3F) << 6; multiByte = true;

} else throw new Exception();

} else {

if (0x80 <= x && x <= 0xBF) {

yield return r1 | (x & 0x3F); multiByte = false;

} else throw new Exception();

}

}).Aggregate(new { r2 = 0, defined = false },

(s, x) => { // ToInt

if (0x30 <= x && x <= 0x39)

return new { r2 = (10 * s.r2) + x - 0x30,

defined = true };

else throw new Exception();

});

if (!endState.defined) // ToInt’s finalizer

throw new Exception();

yield return endState.r2;

}

Figure 3. Utf8Decode and ToInt in LINQ.3

The scenario that we have just illustrated gives some

insight as to what kind of analysis is used in our fusion

engine. It uses an SMT solver [18] to decide satisfiability

of constraints over the element domains and uses forward

and backward reachability techniques to prune unreachable

transitions. Such analysis goes far beyond what compilers can

do today, techniques that are used in stream fusion [16, 28]

or in composition of symbolic finite state transducers [43].

For our techniques to be widely applicable to real world

programs there must be an accessible way to specify effectful

comprehensions. One possibility is using existing libraries

for writing list comprehensions. Figure 3 presents a function

implementing a pipeline of the Utf8Decode and ToInt compre-

hensions using C#’s LINQ [30] library4. Utf8Decode is rep-

resented as a SelectMany, which allows producing variable

amounts of output. Since SelectMany does not encapsulate

state usage, Utf8Decode uses ad-hoc state in the form of local

variables, which complicates analyses by potentially allow-

ing different stages in the pipeline to communicate through

shared state. Because ToInt’s Update does not produce output

it can be represented with Aggregate, which does encapsu-

late state. However, writing effectful comprehensions that do

partial state updates with Aggregate is cumbersome, since

returning the new state disallows specifying only the parts

that change.

To address these concerns we present a C# interface (Sec-

tion 5.1) for specifying effectful comprehensions that encap-

sulates state usage. The interface is similar to ones found

in existing streaming libraries (Section 7). We translate pro-

3 We ignore C#’s limitation that yield is not allowed in lambda functions.
4 The code for other list comprehension libraries, such as Java 8’s Streams

API, is largely similar.

grams that implement this interface into symbolic transducers.

Additionally, we provide specialized frontends for parsing

scenarios based on regex and XPath matching.

We evaluate the efficacy of our approach on a variety of

data processing pipelines that decode, parse, compute, and

then serialize back to disk. These pipelines exhibit common

real-world scenarios of extracting data with regexes, querying

XML files with XPath, and working with encoded data. On

average, our fused code is 3.4× faster than reasonable hand-

written code and 2.6× faster than versions fused with method

calls. We further demonstrate that our conservative reacha-

bility analysis and subsequent pruning based on background

theory reasoning can significantly reduce the complexity of

these fused pipelines. The contributions of this paper are:

• A variation of symbolic transducers with branching rules,

which simplify analysis and code generation.

• An algorithm for fusing symbolic transducers.

• A branch elimination algorithm based on reachability

analysis which complements the satisfiability based branch

elimination built into the fusion algorithm.

• A frontend for specifying effectful comprehensions and

a strategy for translating these into symbolic transducers.

Additionally, we provide frontends for regex and XPath based

parsing scenarios.

• A comprehensive evaluation demonstrating the efficacy

of our approach.

2. Symbolic Transducers

This section formally introduces branching symbolic trans-

ducers or BSTs, as a generalization of deterministic symbolic

finite transducers or deterministic SFTs [43] by incorporating

registers. At the same time the definition is a specialization

of nondeterministic symbolic transducers [43] since nonde-

terminism is disallowed. The specialization is reflected in the

way individual transitions are defined. Rather than using flat

transitions from a single source state to a single target state,

we use branching transitions called rules that may have multi-

ple target states. The two main reasons for this specialization

are: 1) it makes determinism an integral part of the definition

rather than a property; 2) it preserves the original program’s

structure and supports more efficient serial code generation.

Generating good serial code from flat symbolic transitions

would be challenging as a short-circuiting evaluation scheme

for shared subformulas would have to be selected from a

potentially large search space. Moreover, the choices may

be data-dependent, and ultimately depend on the domain

knowledge from the user. The following example exhibits an

instance of such a choice.

To concretely illustrate branching transitions or rules, con-

sider the example transducer Utf8Decode from Figure 2(a).

Instead of two flat transitions from state q0 (one looping back

to state q0 and one transitioning to state q1) the BST has a sin-

gle rule from each state, as illustrated in Figure 4(a), where ⊥
corresponds to an implicit rejecting state that would be added
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q0 x ∈ [0− 0x7F] x ∈ [0xC2− 0xDF]

[x]; 0 false case

q1 true case

[]; (x&0x3F)<<6

0

x ∈ [0x80− 0xBF]
[r|(x&0x3F)]; 0

⊥

⊥

(a) Utf8Decode

p0 x ∈ [0x30− 0x39]

[]; x− 0x30

p1
0

⊥x ∈ [0x30− 0x39]

⊥
[]; (10 ∗ r) + x− 0x30

[r]

⊥

(b) ToInt

Figure 4. BSTs.

to Figure 2(a) after completion.5 In Utf8Decode the order of

the two input byte conditions from state q0 is important if we

suppose that ASCII characters are most frequent. If the two

conditions in the branching rule from state q0 were reordered

so that the test x ∈ [0xC2− 0xDF] is applied first, then that

test would be failing for most of the input characters.

The initial register value is 0. The basic rules are the leaf

transitions of the branches and are labeled s; g where s is the

output sequence and g the updated register value. Figure 4(b)

illustrates the ToInt transducer with branching transitions.

Here the finalizers are represented as rules, since the one

from p1 outputs the value stored in the register. In general

also finalizers could have branching rules.

Before formally defining rules we introduce some general

notations. Given types τ and σ, τ×σ and τ → σ stand for the

standard Cartesian product and function types, respectively.6

The type for Booleans is bool with truth values true and

false. Let T (τ) denote a given predefined set of terms t that

denote values [[t]] of type τ . In our implementation we use

Z3 [18] expressions for T (τ) but the general definition is not

restricted to any fixed representation. Further, our implemen-

tation constructs no terms of the form T ((τ → σ) → ρ), for

which there is no direct representation or decision procedures

in Z3. In general our theory and algorithms work with any

decidable theory. A term in T (τ → bool) is a τ -predicate.

Let [τ ] denote the type of finite-length lists of elements of

type τ . A list of type [τ ] is denoted by [t1, . . . , tn] or [ti]
n
i=1

where n ≥ 0 and each ti is a term or value of type τ . We

assume that if τ is a Cartesian product type τ1 × τ2 then

there are projection functions π1 : τ → τ1 and π2 : τ → τ2
and a pairing function 〈·, ·〉 : τ1 → τ2 → τ1 × τ2 with

the intended semantics that [[〈t1, t2〉]] = ([[t1]], [[t2]]), and

[[π1〈t1, t2〉]] = [[t1]], and [[π2〈t1, t2〉]] = [[t2]]. Observe that if

t1 ∈ T (τ1) and t2 ∈ T (τ2), then 〈t1, t2〉 ∈ T (τ1 × τ2), and

5 Completeness of a flat ST means that the disjunction of all the guards of

transitions from any given state is equivalent to true.
6 As usual, → is right-associative. We assume that × is also right-associative

and has higher precedence than →.

if t ∈ T (τ1 × τ2) then π1(t) ∈ T (τ1), and π2(t) ∈ T (τ2).
Every type τ denotes a nonempty set and has a default

element _τ (or _). We write τ both for a type and the denoted

set and we write π1 for [[π1]] when this is clear from the

context.

A branching symbolic transducer or BST is a tuple

(ι, o, ρ,Q, q0, r0, δ, $), where ι, o and ρ are the input, out-

put and register types; Q is the finite set of control states;

s0
def

= (q0, r0) is the initial state of state type σ
def

= Q× ρ;

δ : Q → R(ι× ρ, o,Q, ρ), $ : Q → R(ρ, o,Q, ρ)

are, respectively, the transition function and the finalizer,

where elements of R(τ, o,Q, ρ) are called rules. A rule is, in

effect, a tree structure, where every interior node is an Ite (“if-

then-else”) choice and every leaf is either a Base case that

performs a state transition or an Undef case that represents

a transition to an implicit rejecting state ⊥. Such a tree is

interpreted as a function of type τ → ([o] × σ) ∪ {⊥} or a

partial function of type τ → [o]×σ, where σ = Q×ρ. A rule

for the transition function has τ = ι × ρ because it makes

decisions based on both the input symbol and the register

value; while a rule for the finalizer has τ = ρ because it

makes decisions based solely on the register value. Formally,

a rule in R(τ, o,Q, ρ) has one of the following three forms:

• Ite(ϕ, t, f), where ϕ ∈ T (τ → bool) and t, f are rules.

• Base([fi]
n
i=1, q, g), where n ≥ 0, {fi}

n
i=1 ⊆ T (τ → o),

q ∈ Q, and g ∈ T (τ → ρ).

• Undef.

A rule r is interpreted as a function [[r]] in this manner:

[[Ite(ϕ, t, f)]] v =

{

[[t]] v, if [[ϕ]] v = true

[[f ]] v, otherwise

[[Base([fi]
n
i=1, q, g)]] v = ([[[fi]] v]

n
i=1, q, [[g]] v)

[[Undef]] v = ⊥

The finalizer is used to produce a final output list upon

reaching the end of the input list. It is a generalization of a

final state. Intuitively one may think of the finalizer as being

a special case of the transition function that is triggered by a

unique end-of-input symbol. However, unlike in the classical

setting, formally such a symbol cannot in general be treated

as an element of type ι. Instead of lifting every input type ι
to a sum type of ι and an end-of-input symbol, end-of-input

is handled separately by the finalizer.

We use the following variable naming conventions of

terms occurring in rules. In a term t occurring in a rule,

variable x is of type ι and refers to the input element and vari-

able r is of type ρ and refers to the register. To disambiguate

between variables and functions that appear in formulas from

those used in our definitions, proofs and algorithms, we use a

mono-space font for the former. For example in (x = t) the

x is a literal part of the formula, while t refers to some term.
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Simultaneous substitution of variables yi by terms ui in t is

denoted t{u1/y1, . . . , un/yn}.

In Utf8Decode, in Figure 4(a), the finalizer is depicted as

q0 being accepting and q1 being non-accepting in the classical

sense, meaning that the finalizer is the function:

$Utf8Decode = {q0 7→ Base([], q0, 0), q1 7→ Undef}

The finalizer of ToInt, in Figure 4(b), that is shown as the

dashed arrow, is the function:

$ToInt = {p0 7→ Undef, p1 7→ Base([r], p1, 0)},

where the final value of the register r is output upon reaching

the end of the input list in the control state p1, whereas the

initial control state p0 is not valid as a final state and the input

would be rejected if the input list terminates in this state.

A BST A denotes a transduction [[A]] that is a partial

function of type [ι] → [o]. First, we define the partial

functions δ̂ : ι → σ → [o] × σ and $̂ : σ → [o] × σ
that enable us to provide a declarative definition of [[A]]:

δ̂ a (q, b)
def

= [[δ q]](a, b); $̂ (q, b)
def

= [[$ q]] b.

Let ā = [ai]
k
i=1 be a given input list. Then

[[A]] ā
def

= π1(((δ̂ a1)⊕ · · · ⊕ (δ̂ ak)⊕ $̂)s0) (1)

where ⊕ is a left-associative operator that composes single-

input transduction steps into multi-input transduction steps:

⊕ : (σ → [o]× σ)× (σ → [o]× σ) → (σ → [o]× σ)

F1 ⊕ F2
def

= λs. let (u1, s1) = (F1 s) in

let (u2, s2) = (F2 s1) in (u1 ++ u2, s2)

where ++ is list concatenation, ⊕ is called step composition.

If we depict (δ̂A a sin) = (u, sout) and ($̂A sfin) = (u, _) by

a

↓

sin → A → sout

↓

u

and sfin → A

↓

u

respectively, then

a1 a2 ak
↓ ↓ ↓

s0→ A →s1→ A →s2 · · · sk−1→ A →sk→ A

↓ ↓ ↓ ↓

u1 u2 uk ufin

depicts Equation (1), where ‘↓’ shows list comprehension,
similar to for example SelectMany list comprehension in
LINQ, and ‘→’ shows state evolution. For example let
ā = [a1, a2] = [0xC5, 0x93] and A=Utf8Decode. Then

a1 a2
↓ ↓

(q0, 0)→ A →(q1,

r
︷ ︸︸ ︷

(a1&0x3F)«6)→ A → (q0, 0) → A

↓ ↓ ↓

[] [r|(a2&0x3F)] []

a

As s′

[b1, · · · , bm]

Bt

u1

B

um

t′

a

A⊗B(s, t) (s′, t′)

u1 ++ · · ·++um

Figure 5. Fusion.

The result is [] ++ [((a1&0x3F)«6)|(a2&0x3F)] ++ [] that

equals [0x153] and represents the string "œ".

When the transition function or the finalizer maps to ⊥
then the transduction is considered to be undefined for the

corresponding input. Alternatively, one may choose to work

with total functions and use a designated rejecting control

state q⊥ such that δ̂ q⊥ = Undef and $̂ q⊥ = Undef and,

for all v, [[Undef]]v = ([], q⊥, _). In this case the definition

of [[A]]ā has to be modified so that [[A]]ā is undefined or ⊥

whenever π1(π2(((δ̂ a1) ⊕ · · · ⊕ (δ̂ ak) ⊕ $̂)s0)) = q⊥ in

order to distinguish the accepted inputs from the rejected

inputs.

3. Fusion of BSTs

Consider two BSTs A and B such that oA = ιB . We want to

fuse A and B into a single BST A ⊗ B such that [[A ⊗ B]]
is equivalent to [[A]] ◦ [[B]], i.e., λx.[[B]]([[A]](x)). We first ex-

plain the main idea behind the construction. We then explain

the incremental algorithm that makes the composition scale

in practice. The control-state complexity of the algorithm is

|Q|2. The worst-case complexity with respect to the size of

the rules is also quadratic, even when the number of control

states is small. It is therefore instrumental to prune unreach-

able states early and to develop incremental algorithms.

3.1 Main Idea

At a high level, the fusion algorithm of A⊗B can be described

as follows. A ⊗ B has the following components: ι = ιA,

o = oB , ρ = ρA × ρB , Q ⊆ QA × QB , r0 = (r0A, r
0
B),

q0 = (q0A, q
0
B). The goal of the fusion algorithm is to

construct δA⊗B and $A⊗B . See Figure 5.

For each pair (p, q) of control states in QA ×QB build a

fused rule that, given the rule δA p, symbolically runs δB
repeatedly, starting from q, over each of the output lists

[vi]
n
i=1 that occur in the Base-subrules of δA p as symbolic

values. The symbolic values are substituted into the register

update and output functions of (δ̂Bv1)⊕ · · · ⊕ (δ̂Bvn), that

is partially evaluated with respect to the control state q,

and finally normalized into a rule in R(ι × ρ, o,Q, ρ). The

finalizer is constructed similarly.

While such brute force approach will terminate in theory,

because the output lists have a fixed length that is indepen-

dent of the input element, it is highly impractical for several

reasons. One problem is control state space size, because

|Q| = |QA||QB |. Another problem is output-branch explo-
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sion. Just consider self-composition of an encoder (say, with

a single control state) that may output n elements for some

input element. Then the composition may potentially output

n2 elements for some input element, but most of those cases

may be infeasible due to symbolic constraints imposed by the

output functions and their guards in A when considered as

inputs of B. For example, an HTML encoder H may output a

character with code hex(x÷32) in one of its branches, where

hex(y) = if (0 ≤ y ≤ 9) then (y + 48) else (y + 55)

if the guard γ(x) = 0x100 ≤ x ≤ 0xFFF holds for the input

character x. However, in a double-HTML encoder H ⊗H ,

the corresponding composed guard γ(hex(x ÷ 32)) ∧ γ(x)
for that element is unsatisfiable, which requires advanced

integer constraint reasoning in order to eliminate that branch.

Such pruning requires symbolic techniques outside the scope

of the brute force approach.

3.2 Incremental Fusion Algorithm

There are several key optimizations used in the construction

of composed rules, powered by the use of an SMT solver

for satisfiability checks and model generation. One technique

is to incrementally check for unsatisfiability and validity of

guards of newly formed Ite-rules and to remove branches

that are inaccessible and consequently also eliminate control

states that become inaccessible. The distinction between con-

trol states and registers is instrumental because finiteness of

control states guarantees termination and enables techniques

not directly available over infinite state spaces.

We provide a top-down view of the fusion algorithm in

Figure 6 with further helper procedures in Figure 7. Fusion is

implemented using depth first search starting from (p, q) =
(q0A, q

0
B). Only satisfiable parts of composite rules are ever

explored. The procedure FUSEδ(γ,R, q) in Figure 6 uses an

accumulating context condition γ for a branch of an Ite-rule

of A with R as the unexplored subrule in that context, and q
is a control state of B. If the condition SAT(γ ∧ R′

1 6= R′
2)

is false then for all (x, r) ∈ [[γ]], [[R′
1]](x, r) = [[R′

2]](x, r), so

the branching condition is redundant. The condition R′
1 6= R′

2

is itself, w.l.o.g., expressible as a ι×ρ-predicate. The newly

discovered states in the depth first search are added to the

Frontier in line 8 of the definition of PROD in Figure 6.

Elements of QA ×QB that are never added to Frontier are

unreachable and thus irrelevant.

To construct a rule, the mutually recursive RUN(γ, v̄, q, s)
and STEP(γ, v, rest, R, s) procedures shown in Figure 7 sym-

bolically execute the step composition operator ⊕ for B over

the symbolic value list v̄ starting from the state (q, s) of B.

The satisfiability checks in STEP on lines 5 and 8 maintain

that the constructed rules only have branches that are feasi-

ble and non-redundant. A trivial case of redundancy is when

both R′
1 and R′

2 are Undef, but more complicated conditional

cases may arise when R′
1 and R′

2 are syntactically different

but semantically equivalent in the given context γ.

A⊗B
def
=

1 let global Frontier = {(q0A, q
0
B)}

2 let global Q = {(q0A, q
0
B)}

3 let δ = $ = ∅
4 while Frontier 6= ∅
5 remove (p, q) from Frontier

6 δ(p, q) 7→ FUSEδ(true, (δA p), q)
7 $(p, q) 7→ FUSE$(true, ($A p), q)
8 return (ιA, oB , ρA×ρB , Q, (q

0
A, q

0
B), 〈r

0
A, r

0
B〉, δ, $)

FUSEδ(γ,R, q) : (T (ι×ρ→bool)×R(ι×ρA, oA, QA, ρA)

×QB) → R(ι×ρ, o,Q, ρ)
1 let θ = {π1(r:ρ)/r:ρA}
2 match R
3 case Undef: return Undef

4 case Ite(ϕ,R1, R2):
5 let R′

1 = FUSEδ(γ ∧ (ϕθ), R1, q)
6 let R′

2 = FUSEδ(γ ∧ ¬(ϕθ), R2, q)
7 if SAT(γ ∧R′

1 6= R′

2)
8 return Ite(ϕθ,R′

1, R
′

2)
9 else return R′

1

10 case Base(v̄, p, g):
11 return PROD(p, gθ,RUN(γ, v̄θ, q, π2(r:ρ)))

PROD(p, g, R)

1 match R
2 case Undef: return Undef

3 case Ite(ϕ,R1, R2):
4 return Ite(ϕ, PROD(p, g, R1), PROD(p, g, R2)
5 case Base(v̄, q, h):
6 if (p, q) /∈ Q
7 add (p, q) to Q
8 add (p, q) to Frontier

9 return Base(v̄, (p, q), (g, h))

Figure 6. Fusion A ⊗ B of BSTs A and B with oA = ιB .

Definition of RUN is given in Figure 7.

Observe how the procedure FUSEδ uses γ on lines 5–7:

γ is included as a conjunct in every solver call to SAT and

every recursive call to FUSEδ. This pattern of use allows

incremental SMT solving, where the solver is used in such a

way that subsequent solver calls can reuse previously learned

clauses. For example, on line 5 in FUSEδ this would be

implemented by pushing (ϕθ) into the solver context before

the recursive call and popping the context afterwards. In fact,

both procedures FUSEδ and STEP use the parameter γ in a

way such that γ is included as a conjunct in (i) each call to

SAT, and (ii) each γ argument in recursive calls. Furthermore

when FUSEδ calls STEP on line 11 it passes its γ as an

argument. Therefore, each call to FUSEδ can use a single

solver context incrementally for all satisfiability checks. The

structure of pushing and popping follows the structure of the

Ite-rules. From our experience using the solver incrementally

may decrease the fusion time by an order of magnitude.
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RUN(γ, v̄, q, s) : (T (ι×ρ→bool)× [T (ι×ρ→ιB)]×QB×

T (ι×ρ→ρB)) → R(ι×ρ, o,QB , ρB)
1 match v̄
2 case []: return Base([], q, s)
3 case [v|rest]: return STEP(γ, v, rest, (δB q), s)

STEP(γ, v, rest, R, s)

1 let θ = {s/r:ρB , v/x:ιB}
2 match R
3 case Undef: return Undef

4 case Ite(ϕ,R1, R2):
5 let R′

1 = if SAT(γ ∧ (ϕθ))
6 STEP(γ ∧ (ϕθ), v, rest, R1, s)
7 else Undef

8 let R′

2 = if SAT(γ ∧ ¬(ϕθ))
9 STEP(γ ∧ ¬(ϕθ), v, rest, R2, s)

10 else Undef

11 if SAT(γ ∧R′

1 6= R′

2)
12 return Ite(ϕθ,R′

1, R
′

2)
13 else return R′

1

14 case Base(ū, q, g):
15 return CONCAT(ūθ,RUN(γ, rest, q, gθ))

CONCAT(ū, R)

1 match R
2 case Undef: return Undef

3 case Ite(ϕ,R1, R2):
4 return Ite(ϕ,CONCAT(ū, R1),CONCAT(ū, R2))
5 case Base(v̄, q, h): return Base(ū ++ v̄, q, h)

Figure 7. Step composition of B over a list of symbolic

inputs v̄ in the context γ.

The fusion procedure for $A⊗B is omitted from the presen-

tation, but is similar to the construction of δA⊗B . Elements

of Q that only lead to non-final control states (control states

that only have the Undef finalizer) are also removed as “dead-

ends” using the standard dead-end elimination algorithm for

finite state automata [26].

Theorem 3.1. [[A⊗B]] = [[A]] ◦ [[B]]

The main intuition for the proof is that STEP implements a

symbolic version of a single step of ⊕ and RUN is a symbolic

version of a run (of multiple steps) of ⊕. Once this connection

is proved formally it can be used as a lemma for proving that

the transduction semantics given by Equation (1) (Section 2)

is preserved by A⊗B.

4. Reachability Based Branch Elimination

Fusing already removes many unsatisfiable branches. Still,

the resulting BSTs may have a large number of control

states and/or rules with redundant conditions. In particular

some branches may be unreachable due to state carried

constraints, i.e., even though the branch itself is satisfiable,

the conjunction of reachable register values in the source

states together with the branch is unsatisfiable. In this section

we present a reachability based branch elimination (RBBE)

algorithm, that proves the unreachability of and removes such

branches in the target BST. The algorithm is a combination

of symbolic forward reachability and backward reachability

algorithms adapted to BSTs.
The reachability algorithm reasons about transition rules

as a flattened set of Base-rules with their associated com-
bined branch constraints. Given a rule r ∈ R(τ, o,Q, ρ) let
Paths(r) be defined as follows:

Paths(Undef)
def
= ∅

Paths(Base([fi]
n
i=1, g, q))

def
= {(true, g, q)}

Paths(Ite(ϕ, u, v))
def
=

⋃
(ψ,g,q)∈Paths(u){(ϕ ∧ ψ, g, q)} ∪

⋃
(ψ,g,q)∈Paths(v){(¬ϕ ∧ ψ, g, q)}

Since outputs do not affect reachability they are dropped
from the flattened representation. Given a BST A let there be
the following:

Movesδ(A)
def
=

⋃
p∈QA

⋃
(ϕ,g,q)∈Paths(δA(p)){(p, ϕ, g, q)}

Moves$(A)
def
=

⋃
p∈QA

⋃
(ϕ,g,q)∈Paths($A(p)){(p, ϕ)}

These give a flat representation of all transitions and finalizers

(respectively) by source and target control state. We call

elements of these sets moves and final moves respectively.

The ELIMINATE procedure in Figure 8 implements the top-

level reachability algorithm. The variable w : [ιA] is used to

represent a list of inputs. To check the reachability of a (final)

move it calls ISREACHABLE with a ([ιA]×ρA)-predicate

such that the (final) move is reachable if and only if the

source control state can be reached such that the predicate

holds (lines 5 and 9). If ISREACHABLE returns false then

the branch is eliminated by simplifying the corresponding

Ite(ϕ, u, v), where u (or v) is the unreachable base rule, into

v (or u). Note that if ISREACHABLE hits the bound k then it

returns ⊥ and the branch can not be safely removed.

To minimize calls to ISREACHABLE, ELIMINATE uses

a more efficient COMPUTEUNDERAPPROXIMATION proce-

dure. It performs a breadth-first forward-reachability analysis

from the initial state and tags moves whose path conditions

from the initial state are satisfiable as reachable. Breadth-first

search increases coverage and ensures that there are poten-

tially several states in a breadth-first frontier for the same

control state, hopefully capturing different ways of entering

the control state. While more sophisticated under approx-

imations are possible, this approach was adequate for our

experiments.

The ISREACHABLE procedure in Figure 8 performs a

backward breadth-first traversal on A, exploring the states

one layer at a time. Each layer is associated with the map

Ψ from control states to reachability conditions yet to be

explored. Initially the control state qtgt is mapped to the

predicate ϕtgt. Σ maps control states to the predicates that

summarize the arguments for which exploration has already

been performed or is about to be performed.
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ELIMINATE(A)

1 let U = COMPUTEUNDERAPPROXIMATION(A)

2 let M = Movesδ(A) ∪ Moves$(A) \ U
3 let k = |QA|
4 foreach move (p, ϕ, g, q) in M
5 let ϕ′ = (w 6= []) ∧ ϕ{Head (w)/x}
6 if ISREACHABLE(A, p, ϕ′, k) = false

7 eliminate the corresponding branch in δA
8 foreach final move (p, ϕ) in M
9 let ϕ′ = (w = []) ∧ ϕ

10 if ISREACHABLE(A, p, ϕ′, k) = false

11 eliminate the corresponding branch in $A
12 remove control states with no path from q0A

ISREACHABLE(A, qtgt, ϕtgt, k) : (ST ×QA×

T ([ιA]×ρA → bool)× int) → bool

1 let layer = {qtgt}
2 let layer ′ = ∅
3 let Ψ′ = empty = {q 7→ false | q ∈ QA}
4 let Σ = Ψ = empty ⊎ {qtgt 7→ ϕtgt}
5 while layer 6= ∅
6 while layer 6= ∅
7 pop q from layer

8 let ψ = Ψ[q]
9 if q = q0A ∧ SAT(ψ{r0A/r})

10 return true

11 foreach (p, ϕ, g, q) in Movesδ(A)
12 if (ϕ depends on r ) or (g depends on x )

13 let update = g{Head (w)/x}
14 let γ = (w 6= []) ∧ ϕ{Head (w)/x}∧

ψ{Tail (w)/w, update/r}
15 else

16 let γ = ψ{g{_ιA/x}/r}
17 if SAT(γ ∧ ¬Σ[p])
18 let Σ[p] = Σ[p] ∨ γ
19 let Ψ′[p] = Ψ′[p] ∨ γ
20 add p to layer ′

21 if k = 0 ∧ layer ′ 6= ∅
22 return ⊥

23 let k = k − 1
24 let layer = layer ′

25 let layer ′ = ∅
26 let Ψ = Ψ′

27 let Ψ′ = empty

28 return false

Figure 8. Reachability based branch elimination (RBBE).

Let ∆A denote the following partial function that extends

the transition function δ̂A to input lists and omits the output:

∆A : [ιA]× σA → σA

∆A([], s)
def

= s

∆A([i|w], s)
def

= ∆A(w, π2(δ̂A i s))

A state s is k-reachable if there exists w ∈
⋃

n∈[0,k](ιA)
n

such that ∆A(w, s
0
A) = s. For example s0A is 0-reachable.

A state s is reachable if it is k-reachable for some k ≥ 0.

Given q ∈ QA and an ρA-predicate ϕ, we say that (q, ϕ) is

(k-)reachable if there exists a (k-)reachable state (q, r) such

that r ∈ [[ϕ]]

Theorem 4.1. If ISREACHABLE(A, qtgt, ϕtgt, k) equals

(a) true then (qtgt, ϕtgt) is reachable; (b) false then

(qtgt, ϕtgt) is not reachable; (c) ⊥ then (qtgt, ϕtgt) is not

k-reachable.

In this algorithm, Σ enables a crucial subsumption check-

ing for predicates (line 17) — if a reachability condition ϕ for

a control state p is subsumed by Σ[p], then any search from

ϕ is already covered, so adding ϕ to the next layer would

be redundant. A subtlety is to avoid the possible quantifier

alternation that would arise if we treat Σ[p] as the predicate

∃w (Σ[p]) (i.e. characterize the reachable set of registers inde-

pendent of inputs used to reach them). This could potentially

introduce undecidability. However, the test in line 17 works

because it is sufficient in the the else case (when we omit ϕ).

When the else case is taken, it means that ∀w,r (ϕ ⇒ Σ[p])
holds, which implies that ∀r (∃wϕ ⇒ ∃wΣ[p]) holds. The

latter condition is the necessary condition needed to preserve

all register values.

5. Specifying Effectful Comprehensions

We have explored several frontends for specifying effectful

comprehensions. In Section 5.1 we present a frontend from

imperative C# code to BSTs. This pattern matches interfaces

present in existing streaming frameworks (Section 7).

Some comprehensions can be more efficiently specified

with a specialized frontend. In Section 5.2 we translate

regexes with named captures into BSTs, while Section 5.3

presents a similar approach for XPath queries.

5.1 Effectful Comprehensions as C#

We have implemented a translation from a subset of C# to

BSTs. Users extend an abstract class Transducer<I,O> and

override methods named Update and Finish to define δ and $,

respectively. Users may opt to not override Finish, in which

case a trivial no-op finalizer is used.

Example 5.1. The following code implements the ToInt

transducer from Figure 4(b):

partial class ToInt : Transducer<char,int> {

int i = 0; bool defined = false;

override IEnumerable<int> Update(char d) {

if (0x30 <= d && d <= 0x39) {

i = (10 * i) + (d - 0x30);

} else throw new Exception();

defined = true;

yield break;

}

override IEnumerable<int> Finish() {

if (!defined) throw new Exception();

yield return i;

}

}
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Update uses instance variables i and defined for loop car-

ried state, and Finish outputs the final value with C#’s

yield return keyword. For invalid input an exception is

thrown to indicate the input is rejected. ⊠

The code is parsed using the frontend of the Roslyn com-

piler [6]. The translation to a BST employs a symbolic explo-

ration which captures the state update and outputs represented

by each feasible control flow path, while infeasible paths are

cut with satisfiability checks using Z3 [18]. The exploration

produces an execution tree that corresponds to a BST with

a single control state and a branching rule such that each

internal node is an Ite-rule and each leaf node is either an

Undef -rule (if the path ended with a throw statement) or a

Base-rule (otherwise).

The register type is the product of all the field types. For

example ρToInt = int × bool. Subsequently, the register

type is split into ρ × κ where κ is a product of all the

types with a small set of values (either enum or bool types).

An algorithm called (finite) exploration is used to partially

evaluate the transition function so that the new control state

set Q becomes a finite set of elements representing values of

type κ and the new register type becomes ρ. The algorithm is

incremental: it starts from the initial values and only considers

reachable values of type κ. It is a variant of the ST exploration

algorithm discussed in [44, Figure 4] but without grouping.

The intent here is not to attempt to completely eliminate

registers because that is undecidable, while finite exploration

is guaranteed to terminate.

The supported C# subset includes:

• Integral types, booleans and structs; and their operators.

• All control flow constructs except try-catch.

• Calls into pure and side effect free functions.

5.2 Effectful Regex Comprehensions

We use regular expressions with captures to enable scenarios

that require custom pattern matching. A typical example is to

extract some information stored in a text file using a custom

parser. Consider a regex pattern P of the form

(S1(?<cap1>P1)S2 · · ·Sn(?<capn>Pn)Sn+1)*

where Si and Pi are regular expressions such that no Pi

accepts the empty string and there is no ambiguity about

where each Si ends or where each Pi starts. In particular, if

one pattern accepts a string ending with some character then

the following pattern must reject any string starting with the

same character.

The intent is that each Si is a skip pattern and each Pi

is a parse pattern. The capture names capi are mapped

to transducers Ai that map strings matching pattern Pi to

some output of type oi. We developed an algorithm that

given P and the transducers {capi 7→ Ai}
n
i=1 constructs a

fused transducer that parses strings matching P into n-tuples

〈o1, . . . , on〉. The algorithm works as follows:

1. Parse and translate the regex into an SFA.

2. Keep track of which parts Bi of the SFA accept the

patterns Pi. The input values accepted inside Bi represents

a match of the capture group (with no ambiguity due to

our assumptions).

3. Fuse each Bi with the appropriate Ai. The start and end

of a capture group match respectively trigger initialization

and finalization of the BST.

The fusion performed in step 3 differs from that in Section 3

in that the BSTs are composed in a hierarchical manner, i.e.,

instead of all output being directed through another BST, a

part of the transduction is delegated to another BST. This

model allows subsequences of an effectful comprehension to

be specified modularly.

Example 5.2. The following regex illustrates a case that

parses each line of a csv file in such a way that the substring

in the third column (between the second and third commas)

is parsed as a non-negative integer in decimal notation and

the substring in the fourth column is parsed as a Boolean:

(([^,]*,){2}(?<int>\d+),(?<bool>\w+),[^\n]*\n)*

Here S1 is "([^,]*,){2}" (skip to the third column), S2 is

"," (skip to the next column), and S3 is ",[^\n]*\n" (skip

remaining columns until EOL). The capture int is mapped

to the transducer ToInt from Figure 4(b) and the capture bool

is mapped to a transducer ToBool, which maps the strings

“true” and “false” respectively to true and false. ⊠

5.3 Effectful XPath Comprehensions

For extracting information from XML formatted data we

use transducers constructed from XPath query expressions.

Consider an expression X of the form

st:trans(/tag1/tag2/tag3 · · · /tagn)

The tag names tagn specify a path to match in an XML

file. trans is a name that maps to a transducer A that maps

the contents of any matching elements to output of type

o. Given X and the transducer A, a fused transducer that

parses matches of X into values of o is constructed. The

matcher for the query uses counting with an integer register

to ignore arbitrarily deep nestings of non-matching elements.

Otherwise the algorithm is similar to the one for regular

expressions in Section 5.2 (i.e. for steps 2 and 3).

Example 5.3. Consider the following XML:

<cities>

<city name=’Roslyn’>

<timezone>PST</timezone>

<population>893</population>

</city>

<city name=’Santa Barbara’>

<population>88410</population>

</city>

</cities>
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Figure 9. Throughputs for various pipelines

A transducer based on the following XPath expression will

parse the populations in the dataset as non-negative integers in

decimal notation: st:int(/cities/city/population)

int again maps to the ToInt transducer from Figure 4(b). ⊠

6. Evaluation

We have implemented the techniques described above in

a tool that translates C# (and our other frontends) into

BSTs, fuses them and finally generates efficient C# code.

For each control state a labeled code block that implements

the transition rule is generated. Given a rule, a tree of if

else statements is generated, where each leaf consist of an

appropriate sequence of outputs, state updates and finally a

goto to the code block of the target control state.

We evaluate the viability of our approach with a set of

benchmark pipelines. The experiments were run on an Intel

Core i5-3570K CPU @ 3.4 GHz with 8 GB of RAM. All

reported throughputs are means of a sufficient number of

samples to obtain a confidence interval smaller than ±0.5
MB/s at a 95% confidence level. All pipelines were run

through C#’s NGen tool, which produces native code for

C# assemblies ahead-of-time.

Figure 9 presents throughputs for four variations of each

pipeline. For LINQ the pipeline stages produce output with

yield return and read input from an IEnumerable<T> of

the previous stage. For Method call the pipeline stages re-

ceive input through method parameters and produce output

by directly calling the next stage. The Hand-written pipelines

are straightforward implementations using arrays as buffers

between phases. The fused and optimized pipelines are la-

beled Fused. The pipeline stages in the LINQ and Fused

pipelines use code generated from BSTs by our implemen-

tation, while the Hand-written pipelines use Hand-written

C# and .NET system libraries where available. For the Hand-

written pipelines we did not perform any manual fusion, since

the aim of this paper is to allow pipeline stages to be specified

modularly with the fusion being handled by the compiler. The

Method call pipelines use a variation of our code generator,

which stores the control state as an int and uses a switch to

execute the appropriate rule.

The first four pipelines implement various computations:

Base64-avg calculates a running average (window of 10) for

Base64 encoded ints and re-encodes the results in Base64;

CSV-max decodes an UTF-8 encoded CSV file to UTF-16,

extracts the third column with a regular expression, finds

the maximum length of these strings and outputs it as a

single UTF-8 encoded decimal formatted integer; Base64-

delta reads Base64 encoded ints and outputs deltas of

successive inputs as UTF-8 encoded decimal integers on

separate lines; and UTF8-lines decodes an UTF-8 encoded

file to UTF-16, counts the number of newline characters

and outputs the count as a single UTF-8 encoded decimal

formatted number.

For these pipelines we measured the throughput with 100

MB of data. For the UTF8-lines pipeline we used Herman

Melville’s “Moby Dick” repeated a sufficient number of

times, while for the others we used randomly generated data.

For all pipelines except CSV-max the LINQ version has the

lowest throughput. We believe this is due to the overhead

associated with passing values through IEnumerable<T>.

The rest of the pipelines in Figure 9 present a more detailed

comparison of CSV parsing scenarios. Pipelines for three dif-

ferent datasets are compared: CHSI benchmarks use a dataset

on health indicators from the U.S. Department of Health &

Human Services, for which the three pipelines produce the

average lung cancer deaths, minimum births and maximum

total deaths for counties in the dataset; SBO benchmarks use

a dataset on business owners from the U.S. Census Bureau,

for which the three pipelines find the maximum employees,

minimum gross receipts and average payroll for businesses

in the dataset; and CC uses a dataset of consumer complaints

received by the U.S. Consumer Financial Protection Bureau,

for which the pipeline produces the maximum value for the

ID column.

Each of these pipelines apply four effectful comprehen-

sions: (i) decode UTF-8 to UTF-16, (ii) parse a column as an

int using a regular expression based parser, (iii) run a query

(maximum, minimum or average), and (iv) output the result
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Figure 10. Throughputs for XPath matching pipelines

Pipeline Rem. Left Time Pipeline Rem. Left Time

Base64-delta 0 77 35s SBO-employees 7 78 6s

CSV-max 6 65 109s SBO-receipts 11 117 8s

Base64-avg 0 163 7s SBO-payroll 10 107 8s

UTF8-lines 1 10 97s TPC-DI-SQL 238 936 121s

CC-id 1301 5274 63s PIR-proteins 198 758 37s

CHSI-cancer 113 1134 16s DBLP-oldest 104 456 8s

CHSI-births 143 1434 16s MONDIAL 162 662 10s

CHSI-deaths 144 1444 22s

Figure 11. Branches removed by RBBE and branches left;

and total time spent in fusion, RBBE and code generation.

as a sequence of bytes. The pipelines differ only in the regular

expression and query used.

Each version of the pipelines uses the same regular expres-

sion for parsing the CSV file. For example, the expression

(([ˆ,]*,){5}(?<value>\d+),[ˆ\n]*\n)* is used in the maxi-

mum employees pipeline for matching the sixth column on

each line. In the Hand-written tests the .NET framework’s

RegexOptions.Compiled option was used, which generates a

.NET assembly for doing the matching. This extra work is

not counted against the reported throughputs. Another opti-

mization we implemented for the Hand-written pipelines is

that the regular expression is matched for the whole dataset

and the values captured are then iterated. This proved to be

significantly faster than splitting the dataset into lines and

running the regular expression on each line separately.

The original SBO dataset is 744 MB, which caused the

.NET regular expression library to run out of memory. To

work around this we cut the dataset down to a 83 MB prefix.

Our fused pipelines are free of such limitations.

The regex comprehension BSTs (Section 5.2) for the

Method call pipelines employ C# delegates instead of an int

and a switch due to unacceptable performance with large

numbers of cases. This incurs some overhead, but the Method

call pipelines are still faster than their LINQ counterparts.

The fused pipelines are significantly faster for all bench-

marks, on average 2.7× faster over hand-written ones.

Figure 10 presents throughputs for XML processing sce-

narios. Four pipelines are compared: TPC-DI-SQL uses a

dataset that was generated by a tool from the TPC-DI bench-

mark [35], for which the pipeline extracts ids of accounts

from customer records and for each outputs an SQL in-

sert statement; PIR-proteins uses a protein dataset from the

U.S. based National Biomedical Research Foundation, for

which he pipeline extracts the lengths of all proteins in the

dataset and outputs the average length; DBLP-oldest uses

bibliographic information from the Digital Bibliography Li-

brary Project, for which the pipeline extracts the publication

year of each article and outputs the earliest year; and MON-

DIAL uses a dataset extracted from various geographical

Web data sources, for which the pipeline extracts the pop-

ulation of each city in the dataset and outputs the highest

population.

All of the Fused pipelines in Figure 10 use an XPath based

transducer for extracting the relevant data. The XmlDocument

pipelines use the the XPath matching implemented in C#’s

standard libraries. The throughput for the XmlDocument

version of the PIR-proteins pipeline is not reported because

the library runs out of memory with the 700 MB dataset. The

XPathReader pipelines use Microsoft’s XPathReader library,

which allows evaluating a subset of XPath in a streaming

manner and is able to process the PIR-proteins dataset.

The Fused versions have the highest throughput on all

of the XPath benchmarks, with an average speedup of 9×
over the streaming XPathReader library. The fact that in the

Fused pipelines the XPath matching code is specialized to

the query is likely to give it a significant advantage over

the XmlDocument and XPathReader versions, which do not

perform any code generation. This also holds for the Method

call pipelines, which were second on all XML benchmarks.

For queries over large XML datasets using our approach over

a general purpose XPath library makes sense, because the

speedup will make up for the compilation time.

Figure 11 presents the number of branches in rules re-

moved by RBBE (Section 4) for each pipeline. The numbers

are sums of removals after all fusions that contribute to the

complete pipeline. We can see that for most pipelines apply-

ing RBBE resulted in branches being removed. Thus RBBE is

helpful for allowing bigger pipelines to be practically fused.

The figure also presents the total running time for the

transformation from user code to fused C#. We can see that

none of the running times are excessive for retail builds. The

LINQ versions of the pipelines can be used with equivalent

semantics and negligible compilation overhead.

6.1 Comparison with Hand-Coded Fusion

This section provides a performance comparison of fused

code produced by our tool against a real-world hand-fused

version providing the same functionality, the concrete ex-

ample we look at being HTML encoding. In modern imple-

mentations of HTML encoders (as well as other anti-XSS

encoders), for robustness reasons, the input string being en-
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Figure 12. Symbolic transducers for HTML encoding

coded is also repaired by replacing any misplaced surrogates

by the Unicode replacement character �? or 0xFFFD (65533 in

decimal). For comparison we use here the built-in hand-coded

anti-XSS encoder AntiXssEncoder.HtmlEncode from .NET

4.5, which is equivalent to the fused symbolic transducer

Rep ⊗ HtmlEncode, with Rep and HtmlEncode illustrated

in Figure 12.7 Rep replaces any misplaced surrogates by �?

and HtmlEncode assumes that the input is valid Unicode and

encodes non-HTML safe characters using the appropriate

escape sequences. The input and out types of both Rep and

HtmlEncode is char.
The predicate ϕhs(x) is the high surrogate predicate de-

fined by the character range [0xD800− 0xDBFF] and ϕls(x)
is the low surrogate predicate defined by the character range
[0xDC00 − 0xDFFF]. In any correctly formatted UTF16 en-
coded string, surrogates may only occur in pairs, where a
high surrogate is immediately followed by a low surrogate.
The predicate ϕs(x) is defined as ϕhs(x) ∨ ϕls(x) and cor-
responds to the character range [0xD800 − 0xDFFF]. The
predicate ϕsafe is defined as the set:

{0x20, 0x21, 0x3D} ∪ [0x23− 0x25] ∪ [0x28− 0x3B]∪
[0x3F− 0x7E] ∪ [0xA1− 0xAC] ∪ [0xAE− 0x36F]

that are considered to be safe or whitelisted and are not

encoded. Observe that �? is not whitelisted here. Encode(c) is

a pattern for a rule defined as:

Encode(c) =

Ite(c = 0x22,Base("&quot;", q0, 0),
Ite(c = 0x26,Base("&amp;", q0, 0),
Ite(c = 0x3C,Base("&lt;", q0, 0),
Ite(c = 0x3E,Base("&gt;", q0, 0),
Ite(c < 10,Base("&#" ++ Digits(c, 1) ++ ";", q0, 0),
Ite(c < 100,Base("&#" ++ Digits(c, 2) ++ ";", q0, 0),
Ite(c < 1000,Base("&#" ++ Digits(c, 3) ++ ";", q0, 0),
Ite(c < 10000,Base("&#" ++ Digits(c, 4) ++ ";", q0, 0),
Ite(c < 100000,Base("&#" ++ Digits(c, 5) ++ ";", q0, 0),
Ite(c < 1000000,Base("&#" ++ Digits(c, 6) ++ ";", q0, 0),
Base("&#1" ++ Digits(c, 6) ++ ";", q0, 0)))))))))

7 Equivalence holds provided that AntiXssEncoder.HtmlEncode is

called with the second parameter being false to specify the decimal

encoding style. The AntiXssEncoder class is implemented in the

System.Web.Security.AntiXss namespace.
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Figure 13. Throughputs for HTML encoding

where Digits(c, n) is shorthand for a list of expressions

that give the n least significant decimal digits as characters.

For example Digits(c, 2) = [((c/10) mod 10) + 0x30, (c
mod 10) + 0x30]. HtmlEncode instantiates two versions

of the pattern as Encode(x) and Encode(CP(r, x)), where

the function CP computes a Unicode code point from a

high and a low surrogate and is defined as CP(h, l) =
(((h&0x3FF)+0x40)«10)|(l&0x3FF). Note that while both

instantiations of Encode include some unreachable branches

these are removed either by pruning in the fusion or during

RBBE. For example, in Encode(CP(r, x)) RBBE eliminates

the first eight true branches using the state carried constraint

that CP(r, x) ≥ 0xD0000.

In Figure 13 we compare the throughputs of Rep ⊗
HtmlEncode with the transducers implemented in C# and

fused with our tool, and AntiXssEncoder.HtmlEncode on

three datasets: Random is uniformly random characters,

English is Herman Melville’s “Moby Dick”, Chinese is

Guanzhong Luo’s “Romance of the Three Kingdoms” . The

throughputs are reported for the size of the input in UTF16,

where each character takes two bytes.

The throughput of the fused code generated for Rep ⊗
HtmlEncode by our tool is comparable to (and sometimes

greater than) that of AntiXssEncoder.HtmlEncode. This al-

lows Rep and HtmlEncode to be implemented modularly

without losing in performance to hand-fused code.

7. Related Work

Symbolic transducers were introduced in flat form in [43]

for analysis of string sanitizers with the main focus on

symbolic finite transducers or SFTs. The core difference

between BSTs and STs in [43] is branching structure in rules.

This causes the fusion algorithm here to be fundamentally

different and much more intricate from composition with flat

rules that [43, Proposition 1] refers to but does not define.

Another difference to [43] is explicit handling of registers.

This difference is fundamental, because SFTs are composed

for analysis such as commutativity and idempotence, which

become undecidable when registers are allowed.

Composition of SFTs in [43] is agnostic regarding deter-

minism, i.e., whether guards overlap. Rather, what matters

is single-valuedness for decidability of equivalence. Initially,

we tried to use flat rules but this attempt failed. Branches of

if-then-else programs, when represented as separate Z3 for-

mulas, get, after simplification, internalized representations

whose semantics is very difficult to recover and often depend
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on context conditions. For example bit-vector expressions of-

ten end up using 2-complement arithmetic applied to 2-bit or

3-bit bit-vectors in subexpressions, combined with 0-padding

to adjust bit-vector widths. Rediscovering the original intent

(branching structure and appropriate arithmetic operations)

becomes hopelessly error-prone, resulting in very inefficient

code, even when feasible. Code generation after composition

was not addressed in [43].

As an orthogonal approach to fusion, method-call compo-

sition B(A(x)), called lazy composition in [43], is deemed

the more efficient way to handle semi-decision problems for

symbolic transducers with registers, by using well-founded

recursive axioms over algebraic datatypes, Th(A) ∪ Th(B),
asserted as a sub-theory to Z3.

Prior work on STs has focused on register exploration

and input grouping that are orthogonal problems [17, 44].

Register exploration attempts to project the register type ρ
into a Cartesian product type ρ1 × ρ2 where ρ1 is a finite

type, the primary goal is to reduce register dependency by

migrating ρ1 into the set of control states. Input grouping

tries to take advantage of grouping characters into larger

tokens in order to avoid intermediate register usage, that has

applications in decoder analysis [17] and parallelization [44].

Streaming string transducers or SSTs [14] correspond

to 2-way deterministic finite-state transducers [21] that can

be specified through regular combinators [12] using an associ-

ated programming language called DReX [13]. Kleenex [24]

is an elegant programming language that uses nondeterminis-

tic finite state transducers [10] with embedded action seman-

tics for side effects. Kleenex programs are greedily disam-

biguated to resolve nondeterminism and compiled into SSTs.

SSTs with data values or symbolic alphabets are unfortunately

not closed under functional composition [11, Proposition 4]

and cannot therefore be fused in general.

The stream processing area has a large body of work [20,

29, 31, 33, 41]. Stream computations with internal state

have been studied before. The work in [16] defines a Stream

data-type with internal state that yields elements and allows

operations such as map, fold, and zip. These operations are

functional and operate on one element at a time with no

operation-state carried across elements. The state in the

Stream allows one to represent the current position, and

bundling in the case of generalized stream fusion [28], in the

stream. In contrast, our focus is on applying transformations

that have operation-state carried across elements (as opposed

to streams having state). This allows us to represent effectful

functions such as UTF decoding/encoding.

Some libraries for streams provide APIs for expressing

stateful operations. The Apache Flink [3] and Spark Stream-

ing [7] distributed streaming engines both provide support

for using state in stream operations and an associated frame-

work for implementing fault tolerance in the presence of state.

The Highland.js [5] and Conduit [1] are traditional stream

libraries, which both provide a way to express stateful opera-

tions. However, in these libraries the stateful operations are

treated as black boxes, as opposed to our approach that fuses

operations in compositions of BSTs. Implementing frontends

similar to the C# one (Section 5.1) for these libraries would

allow code written for them to use our backend.

Fusion is one of many optimization techniques that are

used in a variety of streaming applications, as discussed in

the survey on stream processing optimizations [25]. Fusion is

typically implemented through method call composition. Our

experiments indicate that, for BSTs, fusion provides on av-

erage 2.6× speedup over fusion by method call composition

alone.

StreamIt [42] is a language and compiler that provides

a high-level stream abstraction view designed for signal

processing applications. The two primary transformations of

the compiler are fission and fusion of filters. Fission is used for

splitting filters (and streams) to expose parallelism. Fusion is

used for merging filters (and streams) for load balancing and

synchronization removal. Typically, fusion means pipeline

fusion, where two or more filters connected in a pipeline are

fused into a single filter. The paper [8] studies fusion with a

linear state space representation, i.e., where the outputs and

the next state values are computed as linear combinations of

the inputs and the previous states. The composition retains the

linear state space representation with a linear increase in size.

In contrast, we can compose any filters with operation-state

where the state update is over any decidable (quantifier-free)

theory. To this end we use state-of-the-art SMT technology

in our compiler. The work we propose here is complimentary

to current techniques used in StreamIt: the composition

and optimization techniques for BSTs could be used as

an additional backend module in the StreamIt compiler

for filters with operation-state which are not amenable to

a linear state space representation. Other related work on

StreamIt discusses fusion followed by optimizations like

constant propagation and scalar replacement [23], and loop

unrolling [39].

Fusion trades communication cost against pipeline par-

allelism [25]. Sometimes fission can be applied to expose

parallelism, as studied for example in [38]. It is an open ques-

tion as to what fission would mean in the context of BSTs and

if it would be beneficial. Keep in mind that fusion of BSTs is

achieved through complex symbolic algebraic manipulation

of expressions, the inverse of which may not be possible or

the search space may be astronomical.

Fusion of effectful comprehensions is also related to

classical work on filter fusion [36] and deforestation [45].

Fusion of symbolic transducers can be viewed as an extended

form of filter fusion that incorporates loop carried state and

SMT based constraint satisfaction techniques.

The Steno library in [34] implements deforestation for

LINQ queries and achieves speedups from removing the

IEnumerable abstraction similar to what we report in Sec-

tion 6. In contrast with our work, Steno treats filters as black
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boxes, although the deforestation can expose some optimiza-

tion opportunities to the compiler. Additionally, some of

Steno’s optimizations assume that filters are stateless.

Filter fusion has also been extended to network fusion [22]

that uses the product of labeled transition systems, to merge a

network of interconnecting components. Synchronous prod-

uct of automata and fusion of symbolic transducers have

different semantics and properties.

The work in [40] is related to our work regarding mo-

tivation. The difference is that we use an automata based

definition of transducers with an explicit control flow graph

and use an SMT solver as an oracle in our algorithms. This

leads to a different set of algorithms and opens up a different

set of optimization techniques.

LINQ [30] uses the list monad (or list comprehen-

sion [46]) as its primary construct for query processing

and (unlike SQL) also supports nested lists. The list com-

prehension construct is in LINQ expressed with the Select

or, more generally, SelectMany extension method of the

IEnumerable<T> class. The exact relation to our transduction

semantics is that the list comprehension in LINQ corresponds

to iterating the step composition operator ⊕ (Section 2)

over the input list. Step composition handles loop carried

state. The LINQ query "Man".SelectMany(A.Update) cor-

responds to the following transduction or effectful compre-

hension, provided that we apply it to the initial state of A:

(δ̂A ‘M’)⊕ (δ̂A ‘a’)⊕ (δ̂A ‘n’). The state of the computation

(δ̂A ‘M’) is threaded through into the computation (δ̂A ‘a’),
etc. For example, if we take A to be the Base64 encoder, and

we start from the initial state (at the point when no characters

have been read so far) then the output would be the string

"TWFu". This is consistent with the existing semantics of

LINQ.

In Figure 3 in Section 1 the finalizer for ToInt can be im-

plemented as a separate piece of code after the state has been

aggregated. However, for transducers whose Update func-

tion produces output the following pattern would be natural:

SelectMany(i => Update()).Concat(Finalize()), where

Finalize returns an IEnumerable<T>. This pattern is seman-

tically correct, but relies on the fact that Concat evaluates

its parameter lazily. With eager evaluation Finalize would

access state before Update had been called for all inputs. We

feel this reliance on subtle semantics makes LINQ a poor

match for writing effectful comprehensions. This is another

concern we address with our C# frontend.

Regular expressions. Our construction of symbolic trans-

ducers from regexes is related to the work in [37]. On one

hand our algorithm only handles a special class of regexes,

but on the other hand it supports full Unicode by using the

.NET regex parser and represents guards by predicates over

16-bit bit-vectors (i.e., the char type). Regexes are very handy

for capturing custom patterns, for example for some specific

CSV file or some specific alphabet (such as the emoticon

alphabet [2]). This is reminiscent to handling hierarchical

data, such as XML, but with more relaxed rules, e.g., a line

in a custom CSV file may (or may not) end with a comma.

To handle XML data we use transducers generated from

a subset of the XPath query language. For a full automata

theoretic treatment of XPath see [15], where an approach for

evaluating and reasoning about XPath expressions (extended

with regular expressions) based on two-way weak alternating

tree automata is presented.

Monads [32, 46] can be used to give an elegant and

concise formulation of the semantics of the ⊕ and ⊗ operators

for BSTs that can be summarized as follows. Let Mσ
τ be the

type σ → Maybe(τ × σ)8 defined as the tensor product of

the state monad and the option monad [27, Theorem 10].

One can now describe F ⊕ G using the bind operator ≫=
of Mσ

[o] through F ≫= (λx.G ≫= (λy.return x + y)).
The fuse operator in A ⊗ B can be described using the

bind operator ≫= of MσA×σB

τ composed with the monad

morphisms α : MσA

τ → MσA×σB

τ and β : MσB

τ → MσA×σB

τ ,

through λx.((α(Ax)) ≫= (λy.β(B y))). In this discussion

a monad based view of a BST A sees A as having the type

[ιA] → MσA

[oA] and for A⊗B to be well-defined it is assumed

that oA = ιB . To the best of our knowledge, this is the first

formulation of transducer composition in terms of monads. In

particular, the earlier study of transducer composition in [40]

using functional programming techniques does not admit

such a formulation. We believe this to be the case because the

class of transducers studied in [40] is much more abstract.

8. Conclusion

Good abstractions let a programmer easily express their intent

as a program and at the same time let a runtime system

compile that program for efficient execution. This paper

puts forth effectful comprehensions as an abstraction for

expressing possibly-stateful data-processing pipelines. We

present fusion and branch elimination algorithms for these

effectful comprehensions, which allow us to compile large

pipelines into efficient code.

We have built a compiler that ingests pipelines written in

C# and produces fused code that runs, on average, 3.4× faster

than a hand-written baseline and 2.6× faster than code fused

with method calls on a variety of data processing programs.

In the future we will explore more extensive optimizations

that rely on background theory reasoning to prove program

properties. One such optimization we excluded from this

paper due to space constraints exploits minimization of

symbolic finite automata to simplify control flow.
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