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Abstract—Voice Activity Detectors (VAD) are important com-
ponents in audio processing algorithms. In general, VADs are two
way classifiers, flagging the audio frames where we have voice
activity. Most of them are based on the signal energy and build
statistical models of the noise background and the speech signal.
In the process of derivation, we are limited to simplified statistical
models and this limits the accuracy of the classification. Using
more precise, but also more complex, statistical models makes
the analytical derivation of the solution practically impossible.
In this paper, we propose using deep neural network (DNN) to
learn the relationship between the noisy speech features and the
correct VAD decision. In most of the cases we need a causal
algorithm, i.e. working in real time and using only current and
past audio samples. This is why we use audio segments that
consist only of current and previous audio frames, thus making
possible real-time implementations. The proposed algorithm and
DNN structure exceeds the classic, statistical model based VAD
for both seen and unseen noises.

Index Terms—voice activity detection, deep neural networks,
speech statistical model, noise statistical model.

I. INTRODUCTION

Voice Activity Detectors (VAD) are algorithms for detecting
the presence of speech signal in the mixture of speech and
noise. They are part of noise suppressors, double talk detectors,
codecs, and automatic gain control blocks, to mention a
few. The VAD output can vary from simple binary decision
(yes/no), to soft decision (probability of speech presence in the
current audio frame), to probability of speech presence in each
frequency bin of each audio frame. The commonly used VAD
algorithms are based on the assumption of quasi-stationary
noise, i.e. the noise spectrum changes much slower than the
speech signal. A classic VAD algorithm works in real time
and makes the decisions based on the current and previous
samples, i.e. it is causal. Most of these algorithms work in
frequency domain for better integration in the audio processing
chain and provide estimation for each frequency bin separately.
One of the approaches frequently used as a baseline VAD
algorithm is standardized as ITU-T Recommendation G.729-
Annex B [1]. An improved and generalized VAD is described
in [2], where authors create a soft decision VAD assuming
Gaussian distribution of the noise and speech signals. A simple
HMM is added to create a hangover scheme in [3] and to
finalize the decision utilizing the timing of switching the states.
This algorithm can be generalized and optimized for better
performance as described in [4].

Most of the VAD algorithms assume Gaussian distribution
of the noise and speech signals. It is well known that while
the distribution of noise amplitudes in time domain is well
modelled with the Gaussian distribution, the distribution of the
amplitudes of the speech signal has higher kurtosis than the
Gaussian distribution. Gazor and Zhang [5] published a study
for the speech signal distribution in time domain, later in [6]
this study was extended with models of the Probability Density
Functions (PDF) of the speech signal magnitudes in frequency
domain. Several attempts are published in the literature to
utilize the non-Gaussianity of the speech signal for better noise
suppression rules [7], [8] and [9], or for better VAD [10]
and [11]. In most of the cases it is very difficult to find
analytical form of the suppression rules, or speech presence
probability, and the proposed solutions are either approximate
or computationally expensive.

The statistical audio signal processing also assumes that the
frequency bins in one audio frame are statistically independent,
which allows processing these bins individually. The same
assumption is in force for the consecutive audio frames, which
allows processing of the audio signal frame–by–frame. In
reality there are noise signals that change faster than the speech
signal (clapping, clanks, etc.), the consecutive audio frames
are highly correlated, and the frequency bins in the same
frame contain information that can be utilized by processing
them together. Still, the assumptions above led to working
VAD algorithms, which serve well in pretty much every audio
processing system.

In this paper we propose an algorithm for causal VAD
based on deep neural networks (DNN). The DNN is trained
on segments of several consecutive audio frames, and with all
frequency bins together to utilize the correlation between the
frames and bins. We do not assume any prior distribution of
the noise and speech signals and expect the DNN to learn the
dependency between the input features and the VAD decision.
In Section II, we formulate the problem and present the
statistical model-based VAD. Sections III and IV describe the
proposed neural network structure and the evaluation dataset.
In Section V, we describe the experimental results and we
conclude in VI.
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Fig. 1. Noisy signal in time domain with SNR=10 dB.
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Fig. 2. Noisy signal in frequency domain with SNR=10 dB.

II. PROBLEM DEFINITION

A. Modelling

We have a limited discrete signal in time domain x (lT )
where l ∈ [0, L− 1], xmin ≤ x (lT ) ≤ xmax,∀l, and T is
the sampling period. An example of such signal is shown in
Figure 1. This signal is a mixture of two limited, discrete, and
uncorrelated signals x (lT ) = n (lT ) + s (lT ), noise n (lT )
and speech s (lT ), respectively. After framing, windowing, and
converting to frequency domain we have X(n)

k = N
(n)
k +S

(n)
k ,

where k ∈ [0,K − 1] is the frequency bin, K is the number
of frequency bins, n ∈ [0, N − 1] is the frame number, and
N is the number of audio frames. The same can be written
in matrix form X = N + S, where all are K × N complex
matrices representing the spectra of the signal, the noise, and
the speech components. This representation is visualized in
Figure 2, where the magnitudes are in decibel scale.

In each frame and/or frequency bin we consider two hy-
potheses:

H0: speech is absent, X = N
H1: speech is present, X = N + S.

The goal of the VAD algorithm is to produce the presence
probability P (n)

k (H1) for each frequency bin, and P (n) (H1)
for each frame (column in the above matrices above). An
example of the expected VAD decision per frame is shown
in Figure 1.

B. Voice Activity Detectors

Let us assume that noise and speech signals are zero mean
and fully characterized by their respective variances σ2

n and
σ2
s , and we have a prior knowledge of the PDFs of these two

signals, pn
(
a
∣∣σ2
n

)
and ps

(
a
∣∣σ2
s

)
respectively. The PDF of

a mix of two uncorrelated signals is the convolution of the
PDFs of the two signals:

px
(
a
∣∣σ2
n, σ

2
s

)
= pn

(
a
∣∣σ2
n

)
∗ ps

(
a
∣∣σ2
s

)
. (1)

Note that this equation has analytical solution for a small
number of distribution pairs, it has to be solved numerically
for most of the cases.

The probability P (H1 |a ) of signal with amplitude a to
contain speech is derived after directly applying the Bayesian
rule:

P (H1 |a ) =
p (a |H1 )P (H1)

p (a |H1 )P (H1) + p (a |H0 )P (H0)
. (2)

Here P (H1) and P (H0) = 1−P (H1) are the prior probabil-
ities for speech and noise presence respectively. After dividing
by p (a |H0 )P (H0) we have:

P (H1 |a ) =
εΛ

1 + εΛ
, (3)

where ε = P (H1)/P (H0), and Λ is the likelihood ratio:

Λ =
px
(
a
∣∣σ2
n, σ

2
s

)
pn (a |σ2

n )
. (4)

The proportion of the prior probabilities for speech and noise ε
can be assumed constant and known. Then if we can estimate
the noise and speech variances - we can estimate the speech
presence probability in each frame and/or frequency bin.

Under the assumption of zero mean Gaussian distribution
of both speech and noise signals, [3] provides analytical
solution of (4) for the likelihood for speech signal presence in
frequency bin k of audio frame n:

Λk =
1

1 + ξk
exp

(
γkξk

1 + ξk

)
, (5)

where ξk = λS(k)
λN (k) and γk = |Xk|2

λN (k) are the prior and posterior
SNRs respectively, λS (k) = σ2

s (k) and λN (k) = σ2
n (k). The

decision directed approach [12] is used for estimation of the
prior SNR:

ξ
(n)
k = α

λ̃
(n−1)
S

λ
(n−1)
N

+ (1− α) .max
[
0,
(
γ
(n)
k − 1

)]
. (6)



Note that this approach utilises partially the fact that the
consecutive speech frames are correlated. Here α is a constant
typically in the range of 0.95− 0.98.

In [3] is also proposed smoothing of the estimated likelihood
using a first order HMM. After the derivation the smoothed
likelihood for speech presence in the current frequency bin is
estimated as:

Λ̃
(n)
k =

a01 + a11Λ̃
(n−1)
k

a00 + a10Λ̃
(n−1)
k

Λ
(n)
k , (7)

where a01 and a10 are the prior probabilities for changing the
state. Then the probability for speech presence in the current
frequency bin is:

P
(n)
k

(
H1|X(n)

k

)
=

Λ̃
(n)
k

1 + Λ̃
(n)
k

. (8)

Note that ε from equation (3) conveniently cancels out.
To combine the likelihoods from all frequency bins to

compute the likelihood for speech signal presence in the entire
frame we can use geometric mean or arithmetic mean. The
geometric mean assumes the speech signal has energy in
all frequency bins, i.e. reflects the fact that the speech is a
wideband signal, but speech is also a sparse signal and absence
of speech in several frequency bins will drive the likelihood
very low. On the other hand the arithmetic mean will have
high likelihood even if we have high energy only in a few
frequency bins, which is definitely not speech. In [10] authors
propose using a weighted sum to combine the likelihoods from
the frequency bins:

Λ(n) = β exp

(
1

(kend−kbeg)

kend∑
k=kbeg

log
(

Λ
(n)
k

))
+ (1− β) 1

(kend−kbeg)

kend∑
k=kbeg

Λ
(n)
k .

(9)

Here the parameter β is adjusted for achieving best accuracy.
Also note the implicit bandpass filtering by processing only
the frequency bins between kbeg and kend.

We can apply likelihood smoothing in the same way as
in equation (7) by introducing b01 and b10, which are the
prior probabilities for switching the state on frame level. We
can compute the speech presence probability P (n) after using
equation (8).

The binary flag V (n) for speech presence (1) or absence
(0) can be obtained by comparing the likelihood Λ(n) or the
speech presence probability P (n) with fixed threshold η:

V (n) =

∣∣∣∣ 1 if P (n) (H1) > η
0 if P (n) (H1) ≤ η (10)

For practical purposes a small hysteresis is added to prevent
”ringing” of the flag when the probability is close to the
threshold.

At the end of processing of each frame we can update the
noise model:

λ
(n)
N (k) = λ

(n−1)
N (k) +

Pk

(
H0|X(n)

k

)
T
τp

(∣∣∣X(n)
k

∣∣∣2 − λ(n−1)N (k)

)
(11)

where Pk

(
H0|X(n)

k

)
= 1 − Pk

(
H1|X(n)

k

)
is the speech

absence probability, T is the frame shift time, and τp is the
time constant for updating the model.

The introduced VAD parameters (time constants, prior prob-
abilities, etc.) can be optimized for given dataset using the
approach described in [4].

III. DEEP LEARNING APPROACH

The challenges for VAD increase with the proliferation of
mobile devices and infotainment systems in cars. In both cases
the noise levels are higher and SNRs are lower. Far field sound
capture also adds higher reverberation, compared to close
talking microphones in smartphone devices. The consumer of
the enhanced speech shifts from telecommunications to speech
recognition. While taking a phone call, people try to find a
quieter place simply because there are limitations of how much
power we can put in the headphone, before starting to harm
the users’ hearing. In the case of speech enabled dialog system
for a mobile device, the user speaks and the system typically
responds by showing the results on the screen. This lifts the
limits at how noisy conditions the system should work – the
user will be happy if the system can understand when asking
with a normal tone in a noisy stadium.

In general the speech presence probability is a function of
the magnitudes of the frequency bins in the current and several
previous audio frames. The question is can a neural network
learn that function, without assumptions for the statistical
distribution of the speech and noise signals, without explicitly
handling the temporal and spectral contexts, and with adding
the capability for distinguishing between speech and fast
varying non-stationary noises.

In this paper, we propose to use a fully connected deep neu-
ral network (DNN) as shown in Figure 3. The input features
are the magnitudes of all frequency bins in the current and
several previous audio frames, forming the current segment.
The output is the probabilities for speech presence in each
frequency bin and the probability for speech presence in the
entire frame. The performance of the DNN will be evaluated
both against seen noise (i.e. this type of noise is presented in
the training set) and unseen noise (this type of noise has not
been presented in the training set).

IV. DATASET AND EVALUATION

A. Dataset

A multi-condition training corpus with different noise types,
signal-to-noise ratios (SNRs), and reverberant properties was
created based on the TIMIT training set [13]. We used a
collection of 100 different noise signals from [14], which
includes a variety of different noise types (crowd noise, traffic
and car noise, etc.). We also used a set of 60 different room



Fig. 3. Proposed DNN-based VAD.

impulse responses (RIRs) recorded at multiple distances (from
1 to 4 meters) in a room with reverberation time (T60) of
approximately 300 ms.

The training corpus was created as follows: speech and
noise sound pressure levels (SPL) in a room were assumed
to be normally distributed with means µs = 60 dBA SPL and
µn = 55 dBA SPL, and standard deviations σs = 8 dB and
σs = 10 dB respectively. An utterance is randomly selected
from the TIMIT training set, and scaled to a level that is
randomly selected according to the assumed distribution for
speech levels. Similarly, a randomly selected signal from the
noise dataset is scaled to a level chosen from the noise power
distribution. Correction for the Lombard effect is performed
on speech signal level. The scaled speech signal is convolved
with a randomly selected RIR, and the scaled noise is added
to the result. This noisy signal is then synchronized with the
clean speech signal to remove the delay introduced by the RIR.
Such a temporal alignment of the noisy and clean reference
signals is necessary so that the subsequent framing and feature
extraction steps will produce feature pairs which correspond
to the same section of the speech signal. The final SNRs were
limited to [−5, 30] dB.

This procedure is used to create a dataset of clean/noisy
pairs for training. In a similar fashion, we generated two
different test datasets based on the TIMIT test set, each
containing 200 utterances. The first test dataset uses noise
signals from the noise corpus used to generate the training
dataset, and the second uses a completely disjoint set of noise
samples from NOISEX-92 corpus [15]. We call these seen and
unseen test datasets, respectively.

B. Labeling and Evaluation

The ground truth is binary (speech signal presented or
absent) and was obtained by running a simple threshold-based
VAD on the clean speech utterances. TIMIT utterances are

TABLE I
VAD CLASSIFICATION ERRORS

Dataset Per bin Per frame
Baseline, average 0.46328 0.68949

Development 0.32068 0.24669
Test 0.31418 0.41633

Test, unseen 0.32560 0.44601

recorded with very high quality and simple comparison with
given threshold provides a flag for presence or absence of
speech signal for both per-bin and per-frame labels.

The evaluation criterion is the root-mean-squared (RMS)
error between the VAD output and the ground truth obtained
above:

Ef =

√
1

N

∑
n

(
P (n) (H1)−G(n) (H1)

)
. (12)

Here G(n) (H1) is the ground truth.

V. EXPERIMENTAL RESULTS

All of the voice and noise files were converted to 16 kHz
sampling rate. To convert from absolute sound pressure levels
to the signal on the output of the ADC convertor the clipping
levels of the microphone was assumed 120 dB SPL – typical
for most of the widely used MEMS microphones. We have
generated 400 files for training, 200 files for testing, and
200 files for testing with unseen noises. The total duration
of the dataset was 2 hours.

The frame size was 512 samples, weighted with Hann
window before converting to frequency domain. This results
in 256 frequency bins for each audio frame. Frame shift was
256 samples (50%). Overlap and add procedure was used to
synthesize the signal back to time domain as described in [16].

Each segment consisted of seven frames, which means input
feature vector of 1792 magnitudes. The neural network had
four hidden layers of 512 nodes each. The output layer had
257 neurons: one for the speech presence probability for the
entire frame and 256 for each frequency bin. For training and
evaluation we used CNTK toolkit [17].

The VAD classification errors, according to equation (12)
are shown in Table I. Note that this is the RMS of the error,
compared with a binary classifier. This means that a well
working VAD with output probability of 0.1 when speech is
not present and 0.9 when speech is present will have error
of 0.2. The baseline is the VAD, described in Section II. As
expected the results against the test dataset degrade. There also
noticeable degradation, but less than expected in the results
against the test dataset with unseen noise. The classification
error as function of the SNR is shown in Figure 4. The trends
are consistent with the numerical results.

VI. CONCLUSIONS

In this paper, we proposed using a deep neural network to
overcome shortages in the models used by the statistical VAD.
We achieved substantial reduction of the classification error for



Fig. 4. VAD error per frame.

both seen and unseen noises. The reduction of the performance
against unseen noises was less than expected. As a reasonable
next step, we consider experimenting with different neural
networks, for example RNN with LSTM for preserving the
state and reducing the size of the input vector.
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