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ABSTRACT

Reverberation time, or T60, is a key parameter used for characteriz-
ing acoustic spaces. Blind T60 estimation is useful for many appli-
cations including speech intelligibility estimation, acoustic scene
analysis and dereverberation. In our previous work, a single-
channel blind T60 estimator was proposed employing spectral anal-
ysis in the modulation frequency domain. It was shown that the es-
timation accuracy is crucially affected by the window lengths used
for transformation to the modulation domain. In this work, we pro-
pose the use of a sliding window length that is dynamically updated
depending on the length of the detected decay region. Experimental
results demonstrated that in the presence of noise, estimation accu-
racy was improved over our previous work for T60 up to 700 ms.
When compared against two alternative algorithms from the litera-
ture, the proposed approach demonstrated higher accuracy for T60

between 500 ms and 1 s. Finally, the proposed approach was shown
to be more computationally efficient compared to two of the three
alternative algorithms.

Index Terms— blind reverberation time estimation

1. INTRODUCTION

Introduced by Sabine in the late 1890s [1], reverberation time is de-
fined as the time taken for the energy of a steady-state sound field to
decay by 60 dB after the excitation source signal has been switched
off [1]. The reverberation time, also common referred to as T60, is
a function of the room geometry and the reflectivity of all surfaces
within, but is independent of the source-receiver geometry. Knowl-
edge of this acoustic parameter is interesting for many acoustic ap-
plications such as speech intelligibility estimation, robust automatic
speech recognition, acoustic scene analysis and dereverberation. If
a room’s acoustic impulse response (AIR) is available, its T60 can
be measured using Schroeder’s backward integration method [2].
This method calculates the energy decay curve [3] of the AIR and
applies a linear fit to the region of free decay, typically selected to
be between −5 and −35 dB, depending on the noise floor.

In practical scenarios, measured AIRs are not always easily ob-
tainable and therefore it is desirable to estimate T60 directly from
the reverberant, and often noisy, signals captured at the micro-
phone(s). In [4, 5], neural network approaches were developed
using samples of the time domain reverberant signal and speech
envelope power spectral densities respectively while in [6], gaps
in the speech signal were identified to track the decay curve. An-
other time domain approach employs maximum likelihood (ML) es-
timation [7] and was improved upon in [8] to reduce computational
complexity and increase robustness to background noise. In the fre-

quency domain, the spectral decay distribution (SDD) method was
proposed in [9] and improved in [10], where frequency-dependent
decay rates of reverberant speech are estimated and the negative-
side variance of its histogram is mapped to T60. In the modula-
tion frequency domain, the speech-to-reverberation modulation ra-
tio (SRMR) method was proposed based on the smearing of rever-
berant energy in the modulation domain and its inverse was shown
to be highly correlated with T60 [11]. More recently, the reverbera-
tion problem was investigated as an image blurring problem in [12]
and the T60 was derived from the estimation of the blur kernel’s
parameters, also in the modulation domain.

A comparative evaluation of [8, 9, 11] was conducted in [13],
where it can be seen that, even in the noise-free case, there is room
for improvement in estimation accuracies, especially at higher T60.
In [12], it was shown that the proposed blur kernel estimation ap-
proach was able to improve accuracy for larger T60. However,
its cascade approach to estimating high and low T60 values sep-
arately results in large estimation errors in the cross-over region.
Futhermore, the algorithm requires multiple iterations over the same
speech segment, which is computationally expensive.

This work builds upon [12] and proposes the use of a sliding
window length for detecting decay regions in the speech signal.
This removes the need for a cascade approach previously adopted,
which significantly reduces computational complexity. Experimen-
tal results demonstrated an improvement in estimation accuracy in
the presence of noise for T60 <≈ 700 ms compared to [12].

The remainder of the paper is organized as follows. In Sec-
tion 2, the reverberation problem is introduced as an image blurring
problem and in Section 3, an overview of the blur kernel estimation
algorithm from [12] is provided. The proposed modification is then
presented in Section 4 and experimental results are given in Sec-
tion 5. Finally, some conclusions are drawn in Section 6.

2. ACOUSTIC BLUR KERNEL

A reverberant signal is obtained as the linear convolution between
clean speech s[n] and an AIR h[n], given as

x[n] = s[n] ∗ h[n], (1)

where n ≥ 0 is the discrete time index and the sampling frequency
is denoted fs. The late reverberant tail of the AIR can be modelled
as a non-stationary stochastic process [14]

h[n] = b[n]e−αn, (2)

where b[n] is a zero-mean stationary Gaussian noise and the decay
rate is related to the T60 by

α = 3 log(10)/T60. (3)
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The short time Fourier transform (STFT) of s[n] is given as

S[m, k] =

∞∑
n=−∞

s[n]wa[n− pm]e−2πikn/L, (4)

where m is the STFT frame index, k is the frequency bin, wa[n] is
a causal window function of support L samples and p is the frame
increment in samples. The STFT of reverberant speech, X[m, k],
can be obtained in a similar manner. This work is concerned only
with the magnitude spectra of S[m, k] and X[m, k] and therefore
the signals of interest are real. Their log magnitudes are plotted in
Fig. 1, where it can be seen that the exponential reverberant tail has
the effect of smearing energy into subsequent time frames. This
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Figure 1: Spectrograms of clean and reverberant speech signals,
where the T60 of the reverberant signal is 620 ms.

effect is analogous to motion blur in images, which may be mod-
elled in a similar way to (1), where s[n] would denote the original
high resolution image and h[n] is usually termed the blur kernel in
2D. In image processing, the topic of blur kernel estimation is well-
studied for deblurring [15, 16, 17]. In acoustic signal processing,
and particularly for blind T60 estimation, such an estimated blur
kernel is interesting as an estimated T60 can be derived from it as
T60 = 3 log(10)/α.

3. BLUR KERNEL ESTIMATION

A common method of blur kernel estimation in image processing is
through inspection of the blur kernel’s Fourier transform to deter-
mine its direction and magnitude. In acoustic reverberation, the di-
rection is known to always be along the time axis towards n = +∞.
Therefore, spectral analysis can be applied by simply taking the
STFT of a reverberant signal in one direction across time.

Consider a simplified model of the AIR as e−αn and the case
when s[n] is an impulse δ[n], i.e. x[n] = δ[n] ∗ e−αn. The STFT
magnitude spectrum of x[n] can be approximated as

|X[m, k]| ≈ e−αpm, (5)

since the discrete Fourier transform (DFT) of δ[n] is unity at each
frequency.

In order to examine the behaviour of |X[m, k]| as a function of
time, a second STFT is applied with respect to m as

X̃[m′, k′, k] =

∞∑
m=−∞

|X[m, k]|wmod[m− p′m′]e−2πik′m/L′
,

(6)
where m′ is the discrete time index in the modulation domain, k′

is the modulation frequency, wmod is the causal window function of
support L′ samples and p′ is the frame increment in the acoustic
frequency domain.

It is expected that the spectral analysis will yield the DFT of
e−αpm with respect to the STFT time index m, denoted Hα[k

′].
This can be shown by considering the case where L′ ≥ T60fs such
that the signal decay in the region of interest for T60 estimation
is captured within the first frame m′ = 0. Therefore, (6) can be
simplified to

X̃[0, k′, k] =

∞∑
m=−∞

|X[m, k]|wmod[m]e−2πik′m/L′

≃
L′−1∑
m=0

e−αpme−2πik′m/L′
= Hα[k

′], (7)

which is the DFT of e−αpm.
The blur kernel estimator [12] then estimates the decay rate by

finding an α that results in a best fit of the magnitudes |Hα[k
′]| to

|X̃[m′, k′, k]| in the least-squares sense. For broadband T60 esti-
mation, |X̃[m′, k′, k]| is first averaged over all acoustic frequencies
k to yield |X̃[m′, k′]|. Then, α is estimated as

α̂ = argmin
α

 1

L′

L′−1∑
k′=0

∣∣∣Hα[k
′]− X̃[m′, k′]

∣∣∣2
 (8)

and used to derive the T60 estimate, denoted T̂60, for frame m′.

4. VARIABLE WINDOW LENGTH

For practical implementation, it was shown in [12] that the choice
of window lengths L and L′ is crucial to the accuracy of T60 es-
timation, where longer window lengths are desirable for high T60

while shorter window lengths are desirable for low T60. A cascade
approach was therefore adopted in [12] where two sets of longer
window lengths were first used for high T60 estimation, followed
by a set of shorter window lengths if the estimated T60 was smaller
than a given expected range. This approach requires up to 3 iter-
ations over the microphone signal, which is computionally expen-
sive. Additionally, in real-world scenarios, both speech and AIRs
contain spectral components that cause deviation of |X̃[m′, k′]|
from the ideal |Hα[k

′]|. To mitigate this, [12] employed a sig-
nal pre-selection stage that attemps to determine if signal decay is
present over the entire duration of a fixed-length frame m′. Mis-
classification can occur if signal decay only occurs in the first part
of the frame and therefore a more flexible approach is desirable.

In this work, the use of sliding window lengths for both the
decay detection stage and L′ is proposed. Let L′

max denote the em-
pirical maximum length allowed for L′ such that the m′-th frame is
constructed as

Xm′,k =
[
X[p′m′, k] . . . X[p′m′ + L′

max − 1, k]
]T

. (9)
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We wish to extract the region of x[n] corresponding to Xm′,k in or-
der to determine if the signal is decaying within this frame. Firstly,
consider X[m, k], which is computed from

xm = [x[mp] x[mp+ 1] . . . x[mp+ L− 1]] . (10)

Then, the region of x[n] corresponding to Xm′,k can be found as

xm′ =
[
[x[pp′m′] x[pp′m′ + 1] . . .

x[p(p′m′ + L′
max − 1) + L− 1]

]
. (11)

A dynamic decay detector is then applied to xm′ by firstly di-
viding the frame into Q subframes of length Lq. The subframed
signals are denoted as xq,m′ , for q = 0, . . . , Q − 1. The variance,
maximum and minimum values were subsequently computed for
each subframe. In a similar fashion to [8, 12], the consecutive sub-
frames xq,m′ and xq+1,m′ are classified as decaying regions if the
following are true

var{xq,m′} > var{xq+1,m′}, (12a)

max{xq,m′} > max{xq+1,m′}, (12b)

min{xq,m′} < min{xq+1,m′}. (12c)

If a non-decaying subframe xq+1,m′ is detected, and q ≥ qmin,
where qmin is a pre-defined minimum number of subframes, then
the signal up to the q-th frame is extracted as a decaying frame,
where its length in the time domain is N = (q + 1)Lq − 1.

We now want to find a value for L′ that is sufficiently long
to capture only the detected decaying region of Xm′,k. Since L′

denotes the number of frames in the acoustic frequency domain, it
can be found as the largest L′ ∈ Z+ that satisfies

L′p+ L− 1 < N, (13)

and the corresponding decaying region in the acoustic frequency
domain is obtained as

X̌m′,k =
[
X[p′m′, k] . . . X[p′m′ + L′ − 1, k]

]T
. (14)

Equation (6) can now be applied, followed by estimation of α using
(8) and computation of its corresponding T60 for the m′-th frame.
In this manner, a variable L′ allows a more flexible decay detector
to be implemented and eliminates the need for a cascade approach
employing multiple combinations of different L and L′.

After all decaying frames have been processed, the T60 esti-
mates are averaged across all frames, yielding the final estimate. A
summary of the algorithm is provided in Algorithm 1.

5. EVALUATION

The proposed blur kernel with sliding window was evaluated
against the blur kernel approach [12] and two additional algorithms
from the literature: 1) ML [8], and 2) SRMRinv [11]. Reverber-
ant signals were obtained by convolving 10 clean speech files from
the TIMIT database with 21 measured AIRs from the AACHEN
database, yielding 210 signals. Noise was added as white Gaussian
noise (WGN) with signal-to-noise ratios (SNRs) ∈ {20, 10} dB.
The ground truth T60 values were measured from the AIRs using
Schroeder’s backward integral, where the free decay regions were
fitted by hand. The parameters in the proposed algorithm were de-
termined empirically as follows. The length L was fixed at 128 ms
and L′

max was set to 350 ms to capture the longer decays for high

Algorithm 1 Blur kernel with sliding window
1: Compute X[m, k].
2: for all frames m′ do
3: Compute Xm′,k using L′

max as in (9).
4: Find the corresponding time domain region, xm′ , as in (11).
5: Divide xm′ into Q subframes.
6: Detect possible sound decay within xm′ according to (12).
7: if decaying region is found then
8: Find the largest L′ ∈ Z+ that satisfies (13).
9: Compute (6).

10: Find α that minimizes (8).
11: Compute and store the corresponding T̂60.
12: end if
13: end for

14: Average T̂60 over all frames to find the final estimate.

Algorithm Averaged real time
factors

ML 0.02

SRMRinv 0.32

Blur Kernel 6.66

Blur Kernel with Sliding Window 0.23

Table 1: Averaged real time factors.

T60. The window function used for wa[n] and wmod[m] was the
square-root of a periodic Hann window and the frame increments
were arbitrarily chosen as p = L/4 and p′ = 1. In the decay
detection algorithm, qmin = 4 and Lsf = 34 ms were used. The
estimation error was calculated as

ε = T̂60 − T60, (15)

and the results are given in Fig. 2.
When comparing the proposed approach against the blur ker-

nel, it can be seen that the proposed approach demonstrated smaller
variances in general. In the case of no noise (SNR = ∞ dB) , the
proposed algorithm improves the estimation accuracy for T60 in the
range of approximately 500 to 700 ms, but slightly reduced median
estimation errors at lower T60 with differences of ≤ 100 ms. In
the presence of noise, the proposed algorithm maintained similar
or improved T60 estimation up to ≈ 700 ms, with the improve-
ment becoming more significant as the SNR decreases. However,
it demonstrated reduced accuracy for higher T60 >≈ 800 ms over
all SNRs. These inaccuracies appear to arise from inaccurate decay
detection and therefore this remains an area of open research. When
comparing against ML and SRMRinv, it can be seen that the pro-
posed approach achieved smaller estimation errors for T60 >≈ 500
over all SNRs but was not as robust for smaller T60, especially at
lower SNR.

Additionally, the computational complexity of all algorithms
were evaluated by computing their real time factors, given in Ta-
ble 1. The proposed method demonstrated a smaller real time factor
compared to SRMRinv and blur kernel, while ML is the least com-
putationally expensive algorithm.
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Figure 2: Estimation errors for the four algorithms compared, as a function of T60 and for different SNRs. The black dots denote the median,
the thick vertical lines show the interquartile ranges and the thin vertical lines indicate the range up to 1.5 times the interquartile range.

6. CONCLUSIONS

This work extends the blur kernel algorithm [12] where the blind
T60 estimation problem was approached from an image processing
perspective and spectral analysis was employed in the modulation
frequency domain. It was shown in [12] that careful selection of
window lengths used for transforming the microphone signal into
the modulation frequency domain was crucial for estimation accu-
racy. We now propose the use of a sliding window length that is
dependent on the length of detected decay regions in the noisy and
reverberant signals. Evaluation was carried out on noisy reverber-
ant signals, and it is shown that the proposed algorithm was able to
improve estimation accuracy for T60 up to ≈ 700 ms. However, it
suffers from larger estimation errors at high T60 and it was noted

that imperfect signal decay detection contributed to these errors.
Additional evaluation against two other algorithms from the litera-
ture showed that the proposed approach achieved smaller estimation
errors at high T60 but were not as robust to noise at lower T60. Fi-
nally, it was demonstrated that the proposed algorithm significantly
reduced the real time factor of the blur kernel algorithm [12] and
was additionally computationally faster than SRMRinv [11].
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[8] H. W. Löllmann, E. Yilmaz, M. Jeub, and P. Vary, “An im-
proved algorithm for blind reverberation time estimation,” in
Proc. Intl. Workshop Acoust. Echo Noise Control (IWAENC),
Tel-Aviv, Israel, Aug. 2010.

[9] J. Y. C. Wen, E. A. P. Habets, and P. A. Naylor, “Blind estima-
tion of reverberation time based on the distribution of signal
decay rates,” in Proc. IEEE Intl. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), Las Vegas, USA, Apr. 2008.

[10] J. Eaton, N. D. Gaubitch, and P. A. Naylor, “Noise-robust re-
verberation time estimation using spectral decay distributions
with reduced computational cost,” in Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), Van-
couver, Canada, May 2013, pp. 161–165.

[11] T. H. Falk, C. Zheng, and W.-Y. Chan, “A non-intrusive qual-
ity and intelligibility measure of reverberant and dereverber-
ated speech,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 18, no. 7, pp. 1766–1774, Sept. 2010.

[12] F. Lim, M. R. P. Thomas, and I. J. Tashev, “Blur kernel estima-
tion approach to blind reverberation time estimation,” in Proc.
IEEE Intl. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), Brisbane, Australia, Apr. 2015.
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