
RobustFill: Neural Program Learning under Noisy I/O

Jacob Devlin * 1 Jonathan Uesato * 2 Surya Bhupatiraju * 2 Rishabh Singh 1 Abdel-rahman Mohamed 1

Pushmeet Kohli 1

Abstract
The problem of automatically generating a com-
puter program from some specification has been
studied since the early days of AI. Recently, two
competing approaches for automatic program
learning have received significant attention: (1)
neural program synthesis, where a neural net-
work is conditioned on input/output (I/O) exam-
ples and learns to generate a program, and (2)
neural program induction, where a neural net-
work generates new outputs directly using a la-
tent program representation.

Here, for the first time, we directly compare both
approaches on a large-scale, real-world learning
task. We additionally contrast to rule-based pro-
gram synthesis, which uses hand-crafted seman-
tics to guide the program generation. Our neural
models use a modified attention RNN to allow
encoding of variable-sized sets of I/O pairs. Our
best synthesis model achieves 92% accuracy on
a real-world test set, compared to the 34% ac-
curacy of the previous best neural synthesis ap-
proach. The synthesis model also outperforms a
comparable induction model on this task, but we
more importantly demonstrate that the strength
of each approach is highly dependent on the eval-
uation metric and end-user application. Finally,
we show that we can train our neural models to
remain very robust to the type of noise expected
in real-world data (e.g., typos), while a highly-
engineered rule-based system fails entirely.

1. Introduction
The problem of program learning, i.e. generating a pro-
gram consistent with some specification, is one of the old-
est problems in machine learning and artificial intelligence

*Equal contribution 1Microsoft Research, Redmond, Washing-
ton, USA 2MIT, New London, Cambridge, Massachusetts, USA.
Correspondence to: Jacob Devlin <jdevlin@microsoft.com>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, 2017. JMLR: W&CP. Copyright
2017 by the author(s).

Input String Output String
john Smith Smith, Jhn
DOUG Q. Macklin Macklin, Doug
Frank Lee (123) LEe, Frank
Laura Jane Jones Jones, Laura
Steve P. Green (9) ?

Program
GetToken(Alpha, -1) | ‘,’ | ‘ ’ |
ToCase(Proper, GetToken(Alpha, 1))

Figure 1. An anonymized example from FlashFillTest with noise
(typos). The goal of the task is to fill in the blank (i.e., ‘?’ =
‘Green, Steve’). Synthesis approaches achieve this by generating
a program like the one shown. Induction approaches generate the
new output string directly, conditioned on the the other examples.

Waldinger & Lee (1969); Manna & Waldinger (1975). The
classical approach has been that of rule-based program
synthesis (Manna & Waldinger, 1980), where a formal
grammar is used to derive a program from a well-defined
specification. Providing a formal specification is often
more difficult than writing the program itself, so modern
program synthesis methods generally rely on input/output
examples (I/O examples) to act as an approximate specifi-
cation. Modern rule-based synthesis methods are typically
centered around hand-crafted function semantics and prun-
ing rules to search for programs consistent with the I/O ex-
amples (Gulwani et al., 2012; Alur et al., 2013).

These hand-engineered systems are often difficult to extend
and fragile to noise, so statistical program learning meth-
ods have recently gained popularity, with a particular fo-
cus on neural network models. This work has fallen into
two overarching categories: (1) neural program synthesis,
where the program is generated by a neural network con-
ditioned on the I/O examples (Balog et al., 2016; Parisotto
et al., 2017; Gaunt et al., 2016; Riedel et al., 2016), and (2)
neural program induction, where network learns to gener-
ate the output directly using a latent program representation
(Graves et al., 2014; 2016; Kurach et al., 2016; Kaiser &
Sutskever, 2015; Joulin & Mikolov, 2015; Reed & de Fre-
itas, 2016; Neelakantan et al., 2016). Although many of
these papers have achieved impressive results on a vari-
ety of tasks, none have thoroughly compared induction and
synthesis approaches on a real-world test set. In this work,
we not only demonstrate strong empirical results compared

ar
X

iv
:1

70
3.

07
46

9v
1

 [
cs

.A
I]

 2
1

M
ar

 2
01

7

RobustFill: Neural Program Learning under Noisy I/O

to past work, we also directly contrast the strengths and
weaknesses of both neural program learning approaches
for the first time.

The primary task evaluated for this work is a Program-
ming By Example (PBE) system for string transformations
similar to FlashFill (Gulwani et al., 2012; Gulwani, 2011).
FlashFill allows Microsoft Excel end-users to perform reg-
ular expression-based string transformations using exam-
ples without having to write complex macros. For example,
a user may want to extract zip codes from a text field con-
taining addresses, or transform a timestamp to a different
format. An example is shown in Figure 1. A user man-
ually provides a small number of example output strings
to convey the desired intent and the goal of FlashFill is to
generalize the examples to automatically generate the cor-
responding outputs for the remaining input strings. Since
the end goal is to emit the correct output strings, and not a
program, the task itself is agnostic to whether a synthesis
or induction approach is taken.

For modeling, we develop novel variants of the atten-
tional RNN architecture (Bahdanau et al., 2014) to en-
code a variable-length unordered set of input-output ex-
amples. For program representation, we have developed
a domain-specific language (DSL), similar to that of Gul-
wani et al. (2012), that defines an expressive class of reg-
ular expression-based string transformations. The neural
network is then used to generate a program in the DSL (for
synthesis) or an output string (for induction). Both systems
are trained end-to-end using a large set of input-output ex-
amples and programs uniformly sampled from the DSL.

We compare our neural induction model, neural synthesis
model, and the rule-based architecture of Gulwani et al.
(2012) on a real-world FlashFill test set. We also inject
varying amounts of noise (i.e., simulated typos) into the
FlashFill test examples to model the robustness of different
learning approaches. While the manual approaches work
reasonably well for well-formed I/O examples, we show
that its performance degrades dramatically in presence of
even small amounts of noise. We show that our neural
architectures are significantly more robust in presence of
noise and moreover obtain an accuracy comparable to man-
ual approaches even for non-noisy examples.

This paper makes the following key contributions:

• We present a novel variant of the attentional RNN ar-
chitecture, which allows for encoding of a variable-
size set of input-output examples.

• We evaluate the architecture on 205 real-world Flash-
Fill instances and significantly outperform the previ-
ous best statistical system (92% vs. 34% accuracy).

• We compare the model to a hand-crafted synthesis
algorithm and show that while both systems achieve

similar performance on clean test data, our model is
significantly more robust to realistic noise (with noise,
80% accuracy vs. 6% accuracy).

• We compare our neural synthesis architecture with
a neural induction architecture, and demonstrate that
each approach has its own strengths under different
evaluation metrics and decoding constraints.

2. Related Work
There has been an abundance of recent work on neural pro-
gram induction and synthesis.

Neural Program Induction: Neural Turing Machine
(NTM) (Graves et al., 2014) uses a neural controller to read
and write to an external memory tape using soft attention
and is able to learn simple algorithmic tasks such as ar-
ray copying and sorting. Stack-RNNs (Joulin & Mikolov,
2015) augment a neural controller with an external stack-
structured memory and is able to learn algorithmic pat-
terns of small description length. Neural GPU (Kaiser &
Sutskever, 2015) presents a Turing-complete model simi-
lar to NTM, but with a parallel and shallow design similar
to that of GPUs, and is able to learn complex algorithms
such as long binary multiplication. Neural Programmer-
Interpreters (Reed & de Freitas, 2016) teach a controller
to learn algorithms from program traces as opposed to ex-
amples. Neural Random-Access Machines (Kurach et al.,
2016) uses a continuous representation of 14 high-level
modules consisting of simple arithmetic functions and
reading/writing to a variable-size random-access memory
to learn algorithmic tasks requiring pointer manipulation
and dereferencing to memory. The domain of string trans-
formations is different than the domains handled by these
approaches and moreover, unlike RobustFill, these ap-
proaches need to be re-trained per problem instance.

Neural Program Synthesis: The most closely related
work to ours uses a Recursive-Reverse-Recursive neural
network (R3NN) to learn string transformation programs
from examples (Parisotto et al., 2017), and is directly com-
pared in Section 5.1. DeepCoder (Balog et al., 2016) trains
a neural network to predict a distribution over possible
functions useful for a given task from input-output exam-
ples, which is used to augment an external search algo-
rithm. Unlike DeepCoder, RobustFill performs an end-to-
end synthesis of programs from examples. Terpret (Gaunt
et al., 2016) and Neural Forth (Riedel et al., 2016) allow
programmers to write sketches of partial programs to ex-
press prior procedural knowledge, which are then com-
pleted by training neural networks on examples.

DSL-based synthesis: Non-statistical DSL-based syn-
thesis approaches (Gulwani et al., 2012) exploit indepen-
dence properties of DSL operators to develop a divide-and-

RobustFill: Neural Program Learning under Noisy I/O

conquer based search algorithm with several hand-crafted
pruning and ranking heuristics (Polozov & Gulwani, 2015).
In this work, we present a neural architecture to automat-
ically learn an efficient synthesis algorithm. There is also
some work on using learnt clues to guide the search in DSL
expansions (Menon et al., 2013), but this requires hand-
coded textual features of examples.

3. Problem Overview
We now formally define the problem setting and the
domain-specific language of string transformations.

3.1. Problem Formulation

Given a set of input-output (I/O) string examples
(I1, O1), ..., (In, On), and a set of unpaired input strings
Iy1 , ..., I

y
m, the goal of of this task is to generate the cor-

responding output strings, Oy
1 , ..., O

y
m. For each exam-

ple set, we assume there exists at least one program P
that will correctly transform all of these examples, i.e.,
P (I1) → O1, ..., P (I

y
1) → Oy

1 , ... Throughout this work,
we refer to (Ij , Oj) as observed examples and (Iyj , O

y
j)

as assessment examples. We use InStr and OutStr to
generically refer to I/O examples that may be observed or
assessment. We refer to this complete set of information as
an instance:

I1 = January O1 = jan
I2 = February O2 = feb
I3 = March O3 = mar
Iy1 = April Oy

1 = apr
Iy2 = May Oy

2 = may
P = ToCase(Lower, SubStr(1,3))

Intuitively, imagine that a (non-programmer) user has a
large list of InStr which they wish to process in some
way. The goal is to only require the user to manually create
a small number of corresponding OutStr, and the system
will generate the remaining OutStr automatically.

In the program synthesis approach, we train a neural model
which takes (I1, O1), ..., (In, On) as input and generates P
as output, token-by-token. It is trained fully supervised on
a large corpus of synthetic I/O Example + Program pairs. It
is not conditioned on the assessment input strings Iyj , but it
could be in future work. At test time, the model is provided
with new set of observed I/O examples and attempts to gen-
erate the corresponding P which it (maybe) has never seen
in training. Crucially, the system can actually execute the
generated P on each observed input string Ij and check
if it produces Oj .1 If not, it knows that P cannot be the
correct program, and it can search for a different P . Of
course, even if P is consistent on all observed examples,

1This execution is deterministic, not neural.

there is no guarantee that it will generalize to new exam-
ples (i.e., assessment examples). We can think of consis-
tency as a necessary, but not sufficient, condition. The ac-
tual success metric is whether this program generalizes to
the corresponding assessment examples, i.e., P (Iyj) = Oy

j .
There also may be multiple valid programs.

In the program induction approach, we train a neural model
which takes (I1, O1), ..., (In, On) and Iy as input and gen-
erates Oy as output, character-by-character. Our current
model decodes each assessment example independently.
Crucially, the induction model makes no explicit use use
of program P at training or test time. Instead, we say that
it induces a latent representation of the program. If we
had a large corpus of real-world I/O examples, we could
in fact train an induction model without any explicit pro-
gram representation. Since such a corpus is not available,
it is trained on the same synthesized I/O Examples as the
synthesis model. Note that since the program representa-
tion is latent, there is no way to measure consistency.

We can comparably evaluate both approaches by measur-
ing generalization accuracy, which is the percent of test in-
stances for which the system has successfully produced the
correct OutStr for all assessment examples. For synthe-
sis this means P (Iyj) = Oy

j ∀(I
y
j , O

y
j). For induction this

means all Oy generated by the system are exactly correct.
We typically use four observed examples and six assess-
ment examples per test instance. All six must be exactly
correct for the model to get credit.

3.2. The Domain Specific Language

The Domain Specific Language (DSL) used here to rep-
resent P models a rich set of string transformations based
on substring extractions, string conversions, and constant
strings. The DSL is similar to the DSL described in
Parisotto et al. (2017), but is extended to include nested ex-
pressions, arbitrary constant strings, and a powerful regex-
based substring extraction function. The syntax of the DSL
is shown in Figure 2 and the formal semantics are presented
in the supplementary material.

A program P : string ⇒ string in the DSL takes as
input a string and returns another string as output. The
top-level operator in the DSL is the Concat operator
that concatenates a finite list of string expressions ei. A
string expression e can either be a substring expression
f , a nesting expression n, or a constant string expres-
sion. A substring expression can either be defined us-
ing two constant positions indices k1 and k2 (where neg-
ative indices denote positions from the right), or using the
GetSpan(r1, ii, y1, r2, i2, y2) construct that returns the
substring between the ith1 occurrence of regex r1 and the
ith2 occurrence of regex r2, where y1 and y2 denotes either
the start or end of the corresponding regex matches. The

RobustFill: Neural Program Learning under Noisy I/O

Program p := Concat(e1, e2, e3, ...)

Expression e := f | n | n1(n2) | n(f) | ConstStr(c)
Substring f := SubStr(k1, k2)

| GetSpan(r1, i1, y1, r2, i2, y2)

Nesting n := GetToken(t, i) | ToCase(s)
| Replace(δ1, δ2) | Trim()
| GetUpto(r) | GetFrom(r)
| GetFirst(t, i) | GetAll(t)

Regex r := t1 | · · · | tn | δ1 | · · · | δm
Type t := Number | Word | Alphanum

| AllCaps | PropCase | Lower
| Digit | Char

Case s := Proper | AllCaps | Lower
Position k := −100,−99, ..., 1, 2, ..., 100

Index i := −5,−4,−3,−2, 1, 2, 3, 4, 5
Character c := A− Z, a− z, 0− 9, !?,@...

Delimiter δ := &, .?!@()[]%{}/ :; $#”′

Boundary y := Start | End

Figure 2. Syntax of the string transformation DSL.

nesting expressions allow for further nested string trans-
formations on top of the substring expressions allowing
to extract kth occurrence of certain regex, perform cas-
ing transformations, and replacing a delimiter with another
delimiter. The notation e1 | e2 | ... is sometimes used as
a shorthand for Concat(e1, e2, ...). The nesting and sub-
string expressions take a string as input (implicitly as a
lambda parameter). We sometimes refer expressions such
as ToCase(Lower)(v) as ToCase(Lower,v).

There are approximately 30 million unique string expres-
sions e, which can be concatenated to create arbitrarily
long programs. Any search method that does not encode
inverse function semantics (either by hand or with a statis-
tical model) cannot prune partial expressions. Thus, even
efficient techniques like dynamic programming (DP) with
black-box expression evaluation would still have to search
over many millions of candidates.

3.3. Training Data and Test Sets

Since there are only a few hundred real-world FlashFill in-
stances, the data used to train the neural networks was syn-
thesized automatically. To do this, we use a strategy of ran-
dom sampling and generation. First, we randomly sample
programs from our DSL, up to a maximum length (10 ex-
pressions). Given a sampled program, we compute a sim-
ple set of heuristic requirements on the InStr such that
the program can be executed without throwing an excep-
tion. For example, if an expression in the program retrieves
the 4th number, the InStr must have at least 4 numbers.
Then, each InStr is generated as a random sequence of
ASCII characters, constrained to satisfy the requirements.
The corresponding OutStr is generated by executing the

program on the InStr.

For evaluating the trained models, we use FlashFillTest, a
set of 205 real-world examples collected from Microsoft
Excel spreadsheets, and provided to us by the authors of
Gulwani et al. (2012) and Parisotto et al. (2017). Each
FlashFillTest instance has ten I/O examples, of which the
first four are used as observed examples and the remaining
six are used as assessment examples.2 Some examples of
FlashFillTest instances are provided in the supplementary
material. Intuitively, it is possible to generalize to a real-
word test set using randomly synthesized training because
the model is learning function semantics, rather than a par-
ticular data distribution.

4. Program Synthesis Model Architecture
We model program synthesis as a sequence-to-sequence
generation task, along the lines of past work in machine
translation (Bahdanau et al., 2014), image captioning (Xu
et al., 2015), and program induction (Zaremba & Sutskever,
2014). In the most general description, we encode the
observed I/O using a series of recurrent neural networks
(RNN), and generate P using another RNN one token at a
time. The key challenge here is that in typical sequence-
to-sequence modeling, the input to the model is a single
sequence. In this case, the input is a variable-length, un-
ordered set of sequence pairs, where each pair (i.e., an
I/O example) has an internal conditional dependency. We
describe and evaluate several multi-attentional variants of
the attentional RNN architecture (Bahdanau et al., 2014) to
model this scenario.

4.1. Single-Example Representation

We first consider a model which only takes a single ob-
served example (I,O) as input, and produces a program P
as output. Note that this model is not conditioned on the as-
sessment input Iy . In all models described here, P is gen-
erated using a sequential RNN, rather than a hierarchical
RNN (Parisotto et al., 2017; Tai et al., 2015).3 As demon-
strated in Vinyals et al. (2015), sequential RNNs can be
surprisingly strong at representing hierarchical structures.

We explore four increasingly complex model architectures,
shown visually in Figure 3:

• Basic Seq-to-Seq: Each sequence is encoded with a
non-attentional LSTM, and the final hidden state is
used as the initial hidden state of the next LSTM.
• Attention-A:O and P are attentional LSTMs, withO
2In cases where less than 4 observed examples are used, only

the 6 assessment examples are used to measure generalization.
3Even though the DSL does allow limited hierarchy, prelim-

inary experiments indicated that using a hierarchical representa-
tion did not add enough value to justify the computational cost.

RobustFill: Neural Program Learning under Noisy I/O

attending to I and P attending to O.4

• Attention-B: Same as Attention-A, but P uses a dou-
ble attention architecture, attending to both O and I
simultaneously.

• Attention-C: Same as Attention-B, but I and O are
bidirectional LSTMs.

In all cases, the InStr and OutStr are processed at
the character level, so the input to I and O are character
embeddings. The vocabulary consists of all 95 printable
ASCII tokens.

The inputs and targets for the P layer is the source-code-
order linearization of the program. The vocabulary con-
sists of 430 total program tokens, which includes all func-
tion names and parameter values, as well as special tokens
for concatenation and end-of-sequence. Note that numeri-
cal parameters are also represented with embedding tokens.
The model is trained to maximize the log-likelihood of the
reference program P .

4.2. Double Attention

Double attention is a straightforward extension to the stan-
dard attentional architecture, similar to the multimodal at-
tention described in Huang et al. (2016). A typical atten-
tional layer takes the following form:

si = Attention(hi−1, xi, S)

hi = LSTM(hi−1, xi, si)

Where S is the set of vectors being attended to, hi−1 is
the previous recurrent state, and xi is the current input.
The Attention() function takes the form of the “general”
model from Luong et al. (2015). Double attention takes the
form:

sAi = Attention(hi−1, xi, S
A)

sBi = Attention(hi−1, xi, s
A
i , S

B)

hi = LSTM(hi−1, xi, s
A
i , s

B
i)

Note that sAi is concatenated to hi−1 when computing at-
tention on SB , so there is a directed dependence between
the two attentions. Here, SA is O and SB is I . In the
LSTM, sAi and sBi are concatenated.

4.3. Multi-Example Pooling

The previous section only describes an architecture for en-
coding a single I/O example. However, in general we as-
sume the input to consist of multiple I/O examples. The
number of I/O examples can be variable between test in-
stances, and the examples are unordered, which suggests
a pooling-based approach. Previous work (Parisotto et al.,
2017) has pooled on the final encoder hidden states, but this

4A variant where O and I are reversed performs significantly
worse.

Figure 3. The network architectures used for program synthesis.
A dotted line from x to y means that x attends to y.

approach cannot be used for attentional models.

Instead, we take an approach which we refer to as late pool-
ing. Here, each I/O example has its own layers for I , O,
and P (with shared weights across examples), but the hid-
den states of P1, ..., Pn are pooled at each timestep before
being fed into a single output softmax layer. The architec-
ture is shown at the bottom of Figure 3. We did not find it
beneficial to add another fully-connected layer or recurrent
layer after pooling.

Formally, the layers labeled “FC” and “MaxPool” perform
the operation mi = MaxPoolj∈n(tanh(Whji)), where i
is the current timestep, n is the number of observed ex-
amples, hji ∈ Rd is the output of Pj at the timestep i,
and W ∈ Rd×d is a set of learned weights. The layer de-
noted as “Output Softmax” performs the operation yi =
Softmax(V mi), where V ∈ Rd×v is the output weight
matrix, and v is the number of tokens in the program vocab-
ulary. The model is trained to maximize the log-softmax of
the reference program sequence, as is standard.

4.4. Hyperparameters and Training

In all experiments, the size of the recurrent and fully con-
nected layers is 512, and the size of the embeddings is
128. Models were trained with plain SGD + gradient clip-
ping. All models were trained for 2 million minibatch
updates, where each minibatch contained 128 training in-
stances (i.e., 128 programs with four I/O examples each).
Each minibatch was re-sampled, so the model saw 256 mil-
lion random programs and 1024 million random I/O exam-
ples during training. Training took approximately 24 hours
of 2 Titan X GPUs, using an in-house toolkit. A small

RobustFill: Neural Program Learning under Noisy I/O

amount of hyperparameter tuning was done on a synthetic
validation set that was generated like the training.

5. Program Synthesis Results
Once training is complete, the synthesis models can be de-
coded with a beam search decoder (Sutskever et al., 2014).
Unlike a typical sequence generation task, where the model
is decoded with a beam k and then only the 1-best output is
taken, here all k-best candidates are executed one-by-one to
determine consistency. If multiple program candidates are
consistent with all observed examples, the program with
the highest model score is taken as the output.5 This pro-
gram is referred to as P ∗.

In addition to standard beam search, we also propose a
variant referred to as “DP-Beam,” which adds a search
constraint similar to the dynamic programming algorithm
mentioned in Section 3.3. Here, each time an expres-
sion is completed during the search, the partial program
is executed in a black-box manner. If any resulting partial
OutStr is not a string prefix of the observed OutStr, the
partial program is removed from the beam. This technique
is effective because our DSL is largely concatenative.

Figure 4. Generalization results for program synthesis using sev-
eral network architectures.

Generalization accuracy is computed by applying P ∗ to all
six assessment examples. The percentage score reported
in the figures represents the proportion of test instances for
which a consistent program was found and it resulted in
the exact correct output for all six assessment examples.
Consistency is evaluated in Section 5.2.

Results are shown in Figure 4. The most evident result
is that all attentional variants outperform the basic seq-to-
seq model by a very large margin – roughly 25% abso-
lute improvement. The difference between the three vari-
ants is smaller, but there is a clear improvement in accu-
racy as the models progress in complexity. Both Attention-
B and Attention-C each add roughly 2-5% absolute accu-

5We tried several alternative heuristics, such as taking the
shortest program, but these did not perform better.

racy, and this improvement appears even for a large beam.
The DP-Beam variant also improves accuracy by roughly
5%. Overall, the best absolute accuracy achieved is 92%
by Attention-C-DP w/ Beam=1000. Although we have not
optimized our decoder for speed, the amortized end-to-end
cost of decoding is roughly 0.3 seconds per test instance for
Attention-C-DP w/ Beam=100 and four observed examples
(89% accuracy), on a Titan X GPU.

5.1. Comparison to Past Work

Prior to this work, the strongest statistical model for solv-
ing FlashFillTest was Parisotto et al. (2017). The general-
ization accuracy is shown below:

System Beam
100 1000

Parisotto et al. (2017) 23% 34%
Basic Seq-to-Seq 51% 56%
Attention-C 83% 86%
Attention-C-DP 89% 92%

We believe that this improvement in accuracy is due to
several reasons. First, late pooling allows us to effec-
tively incorporate powerful attention mechanisms into our
model. Because the architecture in Parisotto et al. (2017)
performed pooling at the I/O encoding level, it could not
exploit the attention mechanisms which we show our criti-
cal to achieving high accuracy. Second, the DSL used here
is more expressive, especially the GetSpan() function,
which was required to solve approximately 20% of the test
instances. 6

Comparison to the FlashFill implementation currently de-
ployed in Microsoft Excel is given in Section 7.

5.2. Consistency vs. Generalization Results

Figure 5. Results were obtained using Attention-C.
The conceptual difference between consistency and gener-
alization is detailed in Section 3.1. Results for different
beam sizes and different number of observed IO examples
are presented in Figure 5. As expected, the generalization
accuracy increases with the number of observed examples

6However, this increased the search space of the DSL by 10x.

RobustFill: Neural Program Learning under Noisy I/O

for both beam sizes, although this is significantly more pro-
nounced for a Beam=100. Interestingly, the consistency is
relatively constant when the number of observed examples
increases. There was no a priori expectation about whether
consistency would increase or decrease, since more exam-
ples are consistent with fewer total programs, but also give
the network a stronger input signal. Finally, we can see
that the Beam=1 decoding only generates consistent out-
put roughly 50% of the time, which implies that the latent
function semantics learned by the model are still far from
perfect.

6. Program Induction Results
An alternative approach to solving the FlashFill problem
is program induction, where the output string is generated
directly by the neural network without the need for a DSL.
More concretely, we can train a neural network which takes
as input a set of n observed examples (I1, O1), ...(In, On)
as well an unpaired InStr, Iy , and generates the corre-
sponding OutStr, Oy . As an example, from Figure 1,
I1 = “john Smith”, O1 = “Smith, Jhn”, I2 = “DOUG
Q. Macklin”, ... , Iy = “Steve P. Green”, Oy =
“Green, Steve”. Both approaches have the same end
goal – determine the Oy corresponding to Iy – but have
several important conceptual differences.

The first major difference is that the induction model does
not use the program P anywhere. The synthesis model gen-
erates P , which is executed by the DSL to produced Oy .
The induction model generates Oy directly by sequentially
predicting each character. In fact, in cases where it is possi-
ble to obtain a very large amount of real-world I/O example
sets, induction is a very appealing approach since it does
not require an explicit DSL.7 The core idea is the model
learns some latent program representation which can gen-
eralize beyond a specific DSL. It also eliminates the need
to hand-design the DSL, unless the DSL is needed to syn-
thesize training data.

The second major difference is that program induction has
no concept of consistency. As described previously, in pro-
gram synthesis, a k-best list of program candidates is ex-
ecuted one-by-one, and the first program consistent with
all observed examples is taken as the output. As shown
in Section 5.2, if a consistent program can be found, it is
likely to generalize to new inputs. Program induction, on
the other hand, is essentially a standard sequence genera-
tion task akin to neural machine translation or image cap-
tioning – we directly decode Oy with a beam search and
take the highest-scoring candidate as our output.

7In the results shown here, the induction model is trained on
data synthesized with the DSL, but the model training is agnostic
to this fact.

6.1. Comparison of Induction and Synthesis Models

Despite these differences, it is possible to model both ap-
proaches using nearly-identical network architectures. The
induction model evaluated here is identical to synthesis
Attention-A with late pooling, except for the following two
modifications:

1. Instead of generating P , the system generates the new
OutStr Oy character-by-character.

2. There is an additional LSTM to encode Iy . The de-
coder layer Oy uses double attention on Oj and Iy .

The induction network diagram is given in the supplemen-
tary material. Each (Iy, Oy) pair is decoded independently,
but conditioned on all observed examples. The attention,
pooling, hidden sizes, training details, and decoder are oth-
erwise identical to synthesis. The induction model was
trained on the same synthetic data as the synthesis models.

Figure 6. The synthesis model uses Attention-A + standard beam
search.

Results are shown in Figure 6. The induction model is com-
pared to synthesis Attention-A using the same measure of
generalization accuracy as previous sections – all six as-
sessment examples must be exactly correct. Induction per-
forms similarly to synthesis w/ beam=1, but both are sig-
nificantly outperformed by synthesis w/ beam=100. The
generalization accuracy achieved by the induction model is
53%, compared to 81% for the synthesis model. The induc-
tion model uses a beam of 3, and does not improve with a
larger search because there is no way to evaluate candidates
after decoding.

6.2. Average-Example Accuracy

All previous sections have used a strict definition of “gener-
alization accuracy,” requiring all six assessment examples
to be exactly correct. We refer to this as all-example accu-
racy. However, another useful metric is to measure the total
percent of correct assessment examples, averaged over all
instances.8 With this metric, generalizing on 5-out-of-6 as-
sessment examples accumulates more credit than 0. We

8The example still must be exactly correct – character edit rate
is not measured here.

RobustFill: Neural Program Learning under Noisy I/O

refer to this as average-example accuracy.

Figure 7. All experiments use four observed examples.
Average-example results are presented in Figure 7. The
outcome matches our intuitions: Synthesis models tend to
be “all or nothing,” since it must find a single program that
is jointly consistent with all observed examples. For both
synthesis conditions, less than 10% of the test instances are
partially correct. Induction models, on the other hand, have
a much higher chance of getting some of the assessment
examples correct, since they are decoded independently.
Here, 33% of the test instances are partially correct. Ex-
amining the right side of the figure, the induction model
shows relative strength under the average-example accu-
racy metric. However, in terms of absolute performance,
the synthesis model still bests the induction model by 10%.

It is difficult to suggest which metric should be given more
credence, since the utility depends on the downstream ap-
plication. For example, if a user wanted to automatically
fill in an entire column in a spreadsheet, they may priori-
tize all-example accuracy – If the system proposes a solu-
tion, they can be confident it will be correct for all rows.
However, if the application instead offered auto-complete
suggestions on a per-cell basis, then a model with higher
average-example accuracy might be preferred.

7. Handling Noisy I/O Examples
For the FlashFill task, real-world I/O examples are typi-
cally manually composed by the user, so noise (e.g., typos)
is expected and should be well-handled. An example is
given in Figure 1.

Because neural network methods (1) are inherently prob-
abilistic, and (2) operate in a continuous space represen-
tation, it is reasonable to believe that they can learn to be
robust to this type of noise. In order to explicitly account
for noise, we only made two small modifications. First,
noise was synthetically injected into the training data using
random character transformations.9 Second, the best pro-
gram P ∗ was selected by using character edit rate (CER)
(Marzal & Vidal, 1993) to the observed examples, rather

9This did not degrade the results on the noise-free test set.

than exact match.10

Since the FlashFillTest set does not contain any noisy ex-
amples, noise was synthetically injected into the observed
examples. All noise was applied with uniform random
probability into the InStr or OutStr using character in-
sertions, deletions, or substitutions. Noise is not applied
to the assessment examples, as this would make evaluation
impossible.

We compare the models in this paper to the actual Flash-
Fill implementation found in Microsoft Excel, as described
in Gulwani et al. (2012). An overview of this model is
described in Section 2. The results were obtained using a
macro in Microsoft Excel 2016.

Figure 8. All results use four observed examples, and all synthesis
models use beam=100.

The noise results are shown in Figure 8. The neural mod-
els behave very similarly, each degrading approximately
2% absolute accuracy for each noise character introduced.
The behavior of Excel FlashFill is quite different. Without
noise, it achieves 92% accuracy,11 matching the best result
reported earlier in this paper. However, with just one or
two characters of noise, Excel FlashFill is effectively “bro-
ken.” This result is expected, since the efficiency of their
algorithm is critically centered around exact string match-
ing (Gulwani et al., 2012). We believe that this robustness
to noise is one of the strongest attributes of DNN-based ap-
proaches to program synthesis.

8. Conclusions
We have presented a novel variant of an attentional RNN ar-
chitecture for program synthesis which achieves 92% accu-
racy on a real-world Programming By Example task. This
matches the performance of a hand-engineered system and
outperforms the previous-best neural synthesis model by
58%. Moreover, we have demonstrated that our model re-
mains robust to moderate levels of noise in the I/O exam-
ples, while the hand-engineered system fails for even small
amounts of noise. Additionally, we carefully contrasted our

10Standard beam is also used instead of DP-Beam.
11FlashFill was manually developed on this exact set.

RobustFill: Neural Program Learning under Noisy I/O

neural program synthesis system with a neural program in-
duction system, and showed that even though the synthesis
system performs better on this task, both approaches have
their own strength under certain evaluation conditions. In
particular, synthesis systems have an advantage when eval-
uating if all outputs are correct, while induction systems
have strength when evaluating which system has the most
correct outputs.

References
Alur, Rajeev, Bodik, Rastislav, Juniwal, Garvit, Martin,

Milo MK, Raghothaman, Mukund, Seshia, Sanjit A,
Singh, Rishabh, Solar-Lezama, Armando, Torlak, Em-
ina, and Udupa, Abhishek. Syntax-guided synthesis.
IEEE, 2013.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,
Yoshua. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Balog, Matej, Gaunt, Alexander L., Brockschmidt, Marc,
Nowozin, Sebastian, and Tarlow, Daniel. Deep-
coder: Learning to write programs. arXiv preprint
arXiv:1611.01989, 2016.

Gaunt, Alexander L., Brockschmidt, Marc, Singh,
Rishabh, Kushman, Nate, Kohli, Pushmeet, Taylor,
Jonathan, and Tarlow, Daniel. Terpret: A probabilistic
programming language for program induction. CoRR,
abs/1608.04428, 2016.

Graves, Alex, Wayne, Greg, and Danihelka, Ivo. Neural
turing machines. arXiv preprint arXiv:1410.5401, 2014.

Graves, Alex, Wayne, Greg, M, Reynolds, T, Harley, I,
Danihelka, A, Grabska-Barwiska, SG, Colmenarejo, E,
Grefenstette, T, Ramalho, J, Agapiou, and AP, Badia.
Hybrid computing using a neural network with dynamic
external memory. Nature, 538(7626):471–476, 2016.

Gulwani, Sumit. Automating string processing in spread-
sheets using input-output examples. In ACM SIGPLAN
Notices. ACM, 2011.

Gulwani, Sumit, Harris, William R, and Singh, Rishabh.
Spreadsheet data manipulation using examples. Com-
munications of the ACM, 2012.

Huang, Po-Yao, Liu, Frederick, Shiang, Sz-Rung, Oh,
Jean, and Dyer, Chris. Attention-based multimodal neu-
ral machine translation. In Proceedings of the First Con-
ference on Machine Translation, Berlin, Germany, 2016.

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic
patterns with stack-augmented recurrent nets. In NIPS,
pp. 190–198, 2015.

Kaiser, Lukasz and Sutskever, Ilya. Neural gpus learn al-
gorithms. CoRR, abs/1511.08228, 2015.

Kurach, Karol, Andrychowicz, Marcin, and Sutskever,
Ilya. Neural random-access machines. ICLR, 2016.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christo-
pher D. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025,
2015.

Manna, Zohar and Waldinger, Richard. Knowledge and
reasoning in program synthesis. Artificial intelligence, 6
(2):175–208, 1975.

Manna, Zohar and Waldinger, Richard. A deductive ap-
proach to program synthesis. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 2(1):90–
121, 1980.

Marzal, Andres and Vidal, Enrique. Computation of nor-
malized edit distance and applications. IEEE transac-
tions on pattern analysis and machine intelligence, 1993.

Menon, Aditya Krishna, Tamuz, Omer, Gulwani, Sumit,
Lampson, Butler W., and Kalai, Adam. A machine learn-
ing framework for programming by example. In ICML,
pp. 187–195, 2013.

Neelakantan, Arvind, Le, Quov V., and Sutskever, Ilya.
Neural programmer: Inducing latent programs with gra-
dient descent. ICLR, 2016.

Parisotto, Emilio, Mohamed, Abdel-rahman, Singh,
Rishabh, Li, Lihong, Zhou, Dengyong, and Kohli, Push-
meet. Neuro-symbolic program synthesis. ICLR, 2017.

Polozov, Oleksandr and Gulwani, Sumit. Flashmeta: a
framework for inductive program synthesis. In OOP-
SLA, pp. 107–126, 2015.

Reed, Scott and de Freitas, Nando. Neural programmer-
interpreters. ICLR, 2016.

Riedel, Sebastian, Bosnjak, Matko, and Rocktäschel, Tim.
Programming with a differentiable forth interpreter.
CoRR, abs/1605.06640, 2016.

Sutskever, Ilya, Vinyals, Oriol, and Le, Quoc V. Sequence
to sequence learning with neural networks. In NIPS,
2014.

Tai, Kai Sheng, Socher, Richard, and Manning, Christo-
pher D. Improved semantic representations from tree-
structured long short-term memory networks. arXiv
preprint arXiv:1503.00075, 2015.

Vinyals, Oriol, Kaiser, Łukasz, Koo, Terry, Petrov, Slav,
Sutskever, Ilya, and Hinton, Geoffrey. Grammar as a
foreign language. In NIPS, 2015.

RobustFill: Neural Program Learning under Noisy I/O

Waldinger, Richard J. and Lee, Richard C. T. Prow: A step
toward automatic program writing. In IJCAI, 1969.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun,
Courville, Aaron C, Salakhutdinov, Ruslan, Zemel,
Richard S, and Bengio, Yoshua. Show, attend and tell:
Neural image caption generation with visual attention.
In ICML, 2015.

Zaremba, Wojciech and Sutskever, Ilya. Learning to exe-
cute. arXiv preprint arXiv:1410.4615, 2014.

RobustFill: Neural Program Learning under Noisy I/O

Supplementary Material
A. DSL Extended Description
Section 3.2 of the paper provides the grammar of our domain specific language, which both defines the space of possible
programs, and allows us to easily sample programs. The formal semantics of this language are defined below in Figure 9.
The program takes as input a string v and produces a string as output (result of Concat operator).

As an implementational detail, we note that after sampling a program from the grammar, we flatten calls to nesting functions
(as defined in Figure 2 of the paper) into a single token. For example, the function GetToken(t, i)would be tokenized
as a single token GetTokent,i rather than 3 separate tokens. This is possible because for nesting functions, the size of the
total parameter space is small. For all other functions, the parameter space is too large for us to flatten function calls
without dramatically increasing the vocabulary size, so we treat parameters as separate tokens.

JConcat(e1, e2, e3, ...)Kv = Concat(Je1Kv, Je2Kv, Je3Kv, ...)
Jn1(n2)Kv = Jn1Kv1 , where v1 = Jn2Kv

Jn(f)Kv = JnKv1 , where v1 = JfKv
JConstStr(c)Kv = c

JSubStr(k1, k2)Kv = v[p1..p2], where
p1 = k1 > 0 ? k1 : len(v)+ k1

p2 = k2 > 0 ? k2 : len(v)+ k2

JGetSpan(r1, i1, y1, r2, i2, y2)Kv = v[p1..p2] ,where

p1 = y1(Start or End) of |i1|th match of r1 in v from beginning (end if ii < 0)

p2 = y2(Start or End) of |i2|th match of r2 in v from beginning (end if i2 < 0)

JGetToken(t, i)Kv = |i|th match of t in v from beginning (end if i < 0)
JGetUpto(r)Kv = v[0..i], where i is the index of end of first match of r in v from beginning
JGetFrom(r)Kv = v[j..len(v)], where j is the end of last match of r in v from end

JGetFirst(t, i)Kv = Concat(s1, · · · , si), where sj denotes the jth match of t in v

JGetAll(t)Kv = Concat(s1, · · · , sm), where si denotes the ith match of t in v and m denotes the total matches
JToCase(s)Kv = ToCase(s, v)

JTrim()Kv = Trim(v)

JReplace(δ1, δ2)Kv = Replace(v, δ1, δ2)

Figure 9. The semantics of the DSL for string transformations.

B. Synthetic Evaluation Details
Results on synthetically generated examples are largely omitted from the paper since, in a vacuum, the synthetic dataset can
be made arbitrarily easy or difficult via different generation procedures, making summary statistics difficult to interpret.
We instead report results on an external real-world dataset to verify that the model has learned function semantics which
are at least as expressive as programs observed in real data.

Nevertheless, we include additional details about our experiments on synthetically generated programs for readers inter-
ested in the details of our approach. As described in the paper, programs were randomly generated from the DSL by first
determining a program length up to a maximum of 10 expressions, and then independently sampling each expression. We
used a simple set of heuristics to restrict potential inputs to strings which will produce non-empty outputs (e.g. any program
which references the third occurrence of a number will cause us to sample strings containing at least three numbers). We
rejected any degenerate samples e.g. those resulting in empty outputs, or outputs longer than 100 characters.

Figure 12 shows several random synthetically generated samples.

RobustFill: Neural Program Learning under Noisy I/O

Figure 10 shows the accuracy of each model on the synthetically generated validation set. Model accuracy on the synthetic
validation set is generally consistent with accuracy on the FlashFill dataset, with stronger models on the synthetic dataset
also demonstrating stronger performance on the real-world data.

Figure 10. Generalization accuracy for different models on the synthetic validation set

C. Examples of Synthesized Programs
Figure 13 shows several randomly sampled (anonymized) examples from the FlashFill test set, along with their predicted
programs outputted by the synthesis model.

Figure 14 shows several examples which were hand-selected to demonstrate interesting limitations of the model. In the
case of the first example, the task is to reformat international telephone numbers. Here, the task is underconstrained given
the observed input-output examples, because there are many different programs which are consistent with the observed
examples. Note that to extract the first two digits, there are many other possible functions which would produce the correct
output in the observed examples, some of which would generalize and some which would not: for exampling, getting the
second and third characters, getting the first two digits, or getting the first number. In this case, the predicted program
extracts the country code by taking the first two digits, a strategy which fails to generalize to examples with different
country codes. The third example demonstrates a difficulty of using real world data. Because examples can come from a
variety of sources, they may be irregularly formatted. In this case, although the program is consistent with the observed
examples, it does not generalize when the second space in the address is removed. In the final example, the synthesis model
completely fails, and none of the 100 highest scoring programs from the model were consistent with the observed output
examples. The selected program is the closest program scored by character edit distance.

D. Induction Network Architecture
The network architecture used in the program induction setting is described in Section 6.1 of the paper. The network
structure is a modification of synthesis Attention-A, using double attention to jointly attend to Ix andOj , and an additional
LSTM to encode Ix. We include a complete diagram below in Figure 11.

RobustFill: Neural Program Learning under Noisy I/O

Figure 11. The network architecture used for program induction. A dotted line from x to y means that x attends to y.

RobustFill: Neural Program Learning under Noisy I/O

Reference program: GetToken_Alphanum_3 | GetFrom_Colon | GetFirst_Char_4
Ud 9:25,JV3 Obb 2525,JV3 ObbUd92
zLny xmHg 8:43 A44q 843 A44qzLny
A6 g45P 10:63 Jf 1063 JfA6g4
cuL.zF.dDX,12:31 dDX31cuLz
ZiG OE bj3u 7:11 bj3u11ZiGO

Reference program: Get_Word_-1(GetSpan(Word, 1, Start, ‘(’, 5,
Start)) | GetToken_Number_-5 | GetAll_Proper | SubStr(-24, -14) |
GetToken_Alphanum_-2 | EOS
4 Kw ()SrK (11 (3 CHA xVf)4)8 Qagimg) (
)(vs

Qagimg4Kw Sr Vf QagimgVf)4
)8 QaQagimg

iY))hspA.5 ()8,ZsLL (nZk.6 (E4w)2(Hpprsqr
)2(Z

Hpgjprsqr8Zs Zk Hpprsqrk.6
(E4w)22

Cqg)) ((1005 (()VCE hz) (10 Hadj)zg
Tqwpaxft-7 5 6

hz10005Cqg Hadj Tqwpaxft
Hadj)zg T5

JvY) (Ihitux)) ((6 SFl (7 XLTD sfs)
)11,lU7 (6 9

lU7Jv Ihitux Frl XLTD sfs)6

NjtT(D7QV (4 (yPuY)8.sa ())6 aX 4)DXR (
@6) Ztje

DXR4Njt Pu Ztje)6 aX 4)DX6

Reference program: GetToken_AllCaps_-2(GetSpan(AllCaps, 1, Start,
AllCaps, 5, Start)) | EOS
YDXJZ @ZYUD Wc-YKT GTIL BNX W
JUGRB.MPKA.MTHV,tEczT-GZJ.MFT MTHV
VXO.OMQDK.JC-OAR,HZGH-DJKC JC
HCUD-WDOC,RTTRQ-KVETK-whx-DIKDI RTTRQ
JFNB.Avj,ODZBT-XHV,KYB @,RHVVW ODZBT

Reference program: SubStr(-20, -8) | GetToken_AllCaps_-3 | SubStr(11,
19) | GetToken_Alphanum_-5 | EOS
DvD 6X xkd6 OZQIN ZZUK,nCF aQR IOHR IN ZZUK,nCF aCFv OZQIN

ZOZQIN
BHP-euSZ,yy,44-CRCUC,ONFZA.mgOJ.Hwm CRCUC,ONFZA.mONFZAy,44-CRCU44

NGM-8nay,xrL.GmOc.PFLH,CMFEX-JPFA,iIcj,329 ,CMFEX-JPFA,iCMFEXrL.GmOc.PPFLH

hU TQFLD Lycb NCPYJ oo FS TUM l6F NCPSYJ oo FS FScb NCPYJ
NCPYJ

OHHS NNDQ XKQRN KDL 8Ucj dUqh Cpk Kafj L 8Ucj dUqh CUXKQRN KDLKDL

Figure 12. Randomly sampled programs and corresponding input-output examples, drawn from training data. Multi-line examples are
all broken into lines on spaces.

RobustFill: Neural Program Learning under Noisy I/O

Model prediction: GetSpan(‘[’, 1, Start, Number, 1, End) | Const(]) |
EOS
[CPT-101 [CPT-101] [CPT-101]
[CPT-101 [CPT-101] [CPT-101]
[CPT-11] [CPT-11] [CPT-11]
[CPT-1011] [CPT-1011] [CPT-1011]
[CPT-1011 [CPT-1011] [CPT-1011]
[CPT-1012 [CPT-1012] [CPT-1012]
[CPT-101] [CPT-101] [CPT-101]
[CPT-111] [CPT-111] [CPT-111]
[CPT-1011] [CPT-1011] [CPT-1011]
[CPT-101] [CPT-101] [CPT-101]

Model prediction: Replace_Space_Comma(GetSpan(Proper, 1, Start, Proper,
4, End) | Const(.) | GetToken_Proper_-1 | EOS
Jacob Ethan James
Alexander Michael

Jacob,Ethan,James,Alexander.-
Michael

Jacob,Ethan,James,Alexander.-
Michael

Elijah Daniel Aiden
Matthew Lucas

Elijah,Daniel,Aiden,Matthew.-
Lucas

Elijah,Daniel,Aiden,Matthew.-
Lucas

Jackson Oliver
Jayden Chris Kevin

Jackson,Oliver,Jayden,Chris.-
Kevin

Jackson,Oliver,Jayden,Chris.-
Kevin

Earth Fire Wind
Water Sun

Earth,Fire,Wind,Water.Sun Earth,Fire,Wind,Water.Sun

Tom Mickey Minnie
Donald Daffy

Tom,Mickey,Minnie,Donald.DaffyTom,Mickey,Minnie,Donald.Daffy

Jacob Mickey Minnie
Donald Daffy

Jacob,Mickey,Minnie,Donald.-
Daffy

Jacob,Mickey,Minnie,Donald.-
Daffy

Gabriel Ethan James
Alexander Michael

Gabriel,Ethan,James,Alexander-
.Michael

Gabriel,Ethan,James,Alexander.-
Michael

Rahul Daniel Aiden
Matthew Lucas

Rahul,Daniel,Aiden,Matthew.-
Lucas

Rahul,Daniel,Aiden,Matthew.-
Lucas

Steph Oliver Jayden
Chris Kevin

Steph,Oliver,Jayden,Chris.KevinSteph,Oliver,Jayden,Chris.Kevin

Pluto Fire Wind
Water Sun

Pluto,Fire,Wind,Water.Sun Pluto,Fire,Wind,Water.Sun

Model prediction: GetAll_Proper | EOS
Emma Anders Emma Anders Emma Anders
Olivia Berglun Olivia Berglun Olivia Berglun
Madison Ashworth Madison Ashworth Madison Ashworth
Ava Truillo Ava Truillo Ava Truillo
Isabella Isabella Isabella
Mia Mia Mia
Emma Stevens Emma Stevens Emma Stevens
Chris Charles Chris Charles Chris Charles
Liam Lewis Liam Lewis Liam Lewis
Abigail Jones Abigail Jones Abigail Jones

Figure 13. Random samples from the FlashFill test set. The first two columns are InStr and OutStr respectively, and the third column
is the execution result of the predicted program. Example strings which do not fit on a single line are broken on spaces, or hyphenated
when necessary. All line-ending hyphens are inserted for readability, and are not part of the example.

RobustFill: Neural Program Learning under Noisy I/O

Model prediction: GetToken_Proper_1 | Const(.) |
GetToken_Char_1(GetToken_Proper_-1) | Const(@) | EOS
Mason Smith Mason.S@ Mason.S@
Lucas Janckle Lucas.J@ Lucas.J@
Emily Jacobnette Emily.B@ Emily.B@
Charlotte Ford Charlotte.F@ Charlotte.F@
Harper Underwood Harper.U@ Harper.U@
Emma Stevens Emma.S@ Emma.S@
Chris Charles Chris.C@ Chris.C@
Liam Lewis Liam.L@ Liam.L@
Olivia Berglun Olivia.B@ Olivia.B@
Abigail Jones Abigail.J@ Abigail.J@

Figure 13. Random samples from the FlashFill test set. The first two columns are InStr and OutStr respectively, and the third column
is the execution result of the predicted program. Example strings which do not fit on a single line are broken on spaces, or hyphenated
when necessary. All line-ending hyphens are inserted for readability, and are not part of the example.

RobustFill: Neural Program Learning under Noisy I/O

Model prediction: GetFirst_Digit_2 | Const(.) | GetToken_Number_2 |
Const(.) | GetToken_Number_3 | Const(.) | GetToken_Alpha_-1 | EOS
+32-2-704-33 32.2.704.33 32.2.704.33
+44-118-909-3574 44.118.909.3574 44.118.909.3574
+90-212-326 5264 90.212.326.5264 90.212.326.5264
+44 118 909 3843 44.118.909.3843 44.118.909.3843
+386 1 5800 839 386.1.5800.839 38.1.5800.839
+1 617 225 2121 1.617.225.2121 16.617.225.2121
+91-2-704-33 91.2.704.33 91.2.704.33
+44-101-909-3574 44.101.909.3574 44.101.909.3574
+90-212-326 2586 90.212.326.2586 90.212.326.2586
+44 118 212 3843 44.118.212.3843 44.118.212.3843

Model prediction: GetFirst_Char_1 | Const(.) | GetFirst_Char_1(
GetToken_Proper_4) | Const(.) | EOS
Milk 4, Yoghurt 12, Juice 2 Lassi 5 M.L. M.L.
Alpha 10 Beta 20 Charlie 40 60
Epsilon

A.E. A.E.

Sumit 7 Rico 12 Wolfram 15 Rick 19 S.R. S.R.
Us 38 China 35 Russia 27 India 1 U.I. U.I.
10 Apple 2 Oranges 13 Bananas 40
Pears

A.P. 1.P.

10 Bpple 2 Oranges 13 Bananas 40
Pears

B.P. 1.P.

Milk 4, Yoghurt 12, Juice 2 Massi 5 M.M. M.M.
Alpha 10 Beta 20 Charlie 40 60 Delta A.D. A.D.

Parul 7 Rico 12 Wolfram 15 Rick 19 P.R. P.R.
Us 38 China 35 Russia 27 America 1 U.A. U.A.

Model prediction: Replace_Space_Dash(GetSpan(AlphaNum, 1, Start, Proper,
1, End)) | EOS
212 2nd Avenue 212-2nd-Avenue 212-2nd-Avenue
124 3rd Avenue 124-3rd-Avenue 124-3rd-Avenue
123 4th Avenue 123-4th-Avenue 123-4th-Avenue
999 5th Avenue 999-5th-Avenue 999-5th-Avenue
123 1st Avenue 123-1st-Avenue 123-1st-Avenue
223 1stAvenue 223-1st-Avenue 223-1stAvenue
112 2nd Avenue 112-2nd-Avenue 112-2nd-Avenue
224 3rd Avenue 224-3rd-Avenue 224-3rd-Avenue
123 5th Avenue 123-5th-Avenue 123-5th-Avenue
99 5th Avenue 99-5th-Avenue 99-5th-Avenue

Figure 14. Selected samples of incorrect model predictions on the Flashfill test set. These include both inconsistent programs, and
consistent programs which failed to generalize.

RobustFill: Neural Program Learning under Noisy I/O

Model prediction: GetToken_Word_1 | Const(-) | GetToken_Proper_1(GetSpan(‘;’,
-5, Start, ‘#’, 5, Start)) | GetUpto_Comma Replace_Space_Dash
| GetToken_Word_1(GetSpan(Proper, 4, End, ‘$’, 5, End)) |
GetToken_Number_-5 | GetSpan(‘#’, 5, End, ‘$’, 5, Start) | EOS
28;#DSI;#139;#ApplicationVirt-
ualization;#148;#BPOS;#138;#Mi-
crosoft PowerPoint

DSI-ApplicationVirtualization-B-
POS-Microsoft PowerPoint

DSI-Application

102;#Excel;#14;#Meetings;#55;-
#OneNote;#155;#Word

Excel-Meetings-OneNote-Word Excel-Meetings

19;#SP Workflow
Solutions;#102;#Excel;#194;-
#Excel Services;#46;#BI

SP Workflow Solut-
ions-Excel-Excel
Services-BI

SP Workflow
Solutions-Excel

37;#PowerPoint;#141;#Meetings;-
#55;#OneNote;#155;#Word

PowerPoint-Meetings-OneNote-WordPowerPoint-Meetings

148;#Access;#102;#Excel;#194-
;#Excel Services;#46;#BI

Access-Excel-Excel
Services-BI

Access-Excel

248;#Bccess;#102;#Excel;#194;-
#Excel Services;#46;#BI

Bccess-Excel-Excel
Services-BI

Bccess-Excel

28;#DCI;#139;#ApplicationVirt-
ualization;#148;#BPOS;#138;#-
Microsoft PowerPoint

DCI-ApplicationVirtualizat-
ion-BPOS-Microsoft
PowerPoint

DCI-Application

12;#Word;#141;#Meetings;#55;#O-
neNote;#155;#Word

Word-Meetings-OneNote-Word Word-Meetings

99;#AP Workflow Solutions;-
#102;#Excel;#194;#Excel
Services;#46;#BI

AP Workflow Solutions-Ex-
cel-Excel Services-BI

AP Workflow
Solutions-Excel

137;#PowerPoint;#141;#Meetings;-
#55;#OneNote;#155;#Excel

PowerPoint-Meetings-OneNo-
te-Excel

PowerPoint-Meetings

Figure 14. Selected samples of incorrect model predictions on the Flashfill test set. These include both inconsistent programs, and
consistent programs which failed to generalize.

