
ATHENA: An Ontology-Driven System for Natural
Language Querying over Relational Data Stores

Diptikalyan Saha†, Avrilia Floratou?, Karthik Sankaranarayanan†, Umar Farooq Minhas?, Ashish R. Mittal†, Fatma Özcan?

†IBM Research. Bangalore, India {diptsaha, kartsank, ashishmittal}@in.ibm.com
?IBM Research. Almaden, USA {avrilia.floratou, ufminhas}@gmail.com, fozcan@us.ibm.com

ABSTRACT
In this paper, we present ATHENA, an ontology-driven system for
natural language querying of complex relational databases. Natural
language interfaces to databases enable users easy access to data,
without the need to learn a complex query language, such as SQL.
ATHENA uses domain specific ontologies, which describe the se-
mantic entities, and their relationships in a domain. We propose a
unique two-stage approach, where the input natural language query
(NLQ) is first translated into an intermediate query language over
the ontology, called OQL, and subsequently translated into SQL.
Our two-stage approach allows us to decouple the physical layout
of the data in the relational store from the semantics of the query,
providing physical independence. Moreover, ontologies provide
richer semantic information, such as inheritance and membership
relations, that are lost in a relational schema. By reasoning over the
ontologies, our NLQ engine is able to accurately capture the user
intent. We study the effectiveness of our approach using three dif-
ferent workloads on top of geographical (GEO), academic (MAS)
and financial (FIN) data. ATHENA achieves 100% precision on the
GEO and MAS workloads, and 99% precision on the FIN work-
load which operates on a complex financial ontology. Moreover,
ATHENA attains 87.2%, 88.3%, and 88.9% recall on the GEO,
MAS, and FIN workloads, respectively.

1. INTRODUCTION
Natural language interfaces to databases provide a natural way

for users to interact with the database. It is gaining further traction
with the advent of mobile devices, equipped with strong speech
recognition capabilities. A natural language interface is desirable
for two reasons: First, it does not require the users to learn a com-
plex query language, such as SQL. Second, the user does not need
to know the exact schema of the database; it is sufficient for her to
know only the semantic information contained in the database.

There are several challenges in building a natural language in-
terface to databases. The most difficult task is understanding the
semantics of the query, hence the user intent. Early systems [7,
34] allowed only a set of keywords, which has very limited expres-
sive power. There have been works to interpret the semantics of
a full-blown English language query. These works in general try

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 12
Copyright 2016 VLDB Endowment 2150-8097/16/08.

to disambiguate among the potentially multiple meanings of the
words and their relationships. Some of these are machine learning
based [5, 29, 33] that require good training sets, which are hard to
obtain. Others require user feedback [16, 19, 20]. However, ex-
cessive user interaction to resolve ambiguities can be detrimental
to user acceptance. Most of the non-learning disambiguation tech-
niques (e.g., [30]) build on database integrity constraints and thus
do not capture the rich semantics available in the ontology.

This paper presents ATHENA, an ontology-based system for nat-
ural language querying over relational databases. ATHENA uses
domain ontologies, which describe the semantic entities and the
relationships between them. Ontologies are widely used because
not only they capture the semantics of a domain but also provide a
standard description of the domain for applications to use.

We propose a unique two-stage approach: In the first stage, a nat-
ural language query (NLQ) is translated into an intermediate query
language, called Ontology Query Language (OQL), over the do-
main ontology. In this stage, we propose an interpretation algo-
rithm that leverages the rich semantic information available in the
ontology, and produces a ranked list of interpretations for the in-
put NLQ. This is inspired by the search paradigm, and minimizes
user’s interaction for disambiguation. Using an ontology in the in-
terpretation provides a stronger semantic basis for disambiguation
compared to operating on a database schema. It also provides phys-
ical independence from the underlying relational database.

The NLQ interpretation engine uses database data and synonyms
to map the tokens of the textual query to various ontology elements
like concepts, properties, and relations between concepts. Each
token can map to multiple ontology elements. We produce an in-
terpretation by selecting one such mapping for each token in the
NLQ, resulting in multiple interpretations for a given NLQ. Each
interpretation is then translated into an OQL query.

In the second stage, each OQL query is translated into a SQL
query by using the mapping between the ontology and database
schema. ATHENA does not rely on user interaction to pick the
correct interpretation, but rather uses an intuitive ranking function
based on ontology metrics to choose the best interpretation. This
top-ranked SQL query is run against the database and the results
are returned to the user. In addition to the results of the top-ranked
query, ATHENA also displays alternative interpretations to the user.
The user only needs to choose an alternative interpretation, if the
top-ranked query did not capture her intent.

The contributions of the paper can be summarized as follows:

• We present ATHENA, an ontology-based query engine which
provides a natural language query interface to relational data. To
the best of our knowledge, ATHENA is the first ontology-based
NLQ engine for relational databases.

• We propose a unique two-stage approach that first translates an

1209

Institutional

Investment

Investment

Investor

is-a

investedIn investedBy

Personal

Investment

is-a

VC

Investment

is-a

type

Transaction

Holding

fo
rC

o
m

p
a

n
y

reported_year

reported_year

amount

purchase_year
type

Investor

Company
Investee

Security

Investee

Company

issuedBy

unionOf

Company

LenderBorrower

is-a

is-a is-a is-a
name

fo
rC

o
m

p
a

n
y

Funding

Round

unionOf

type

name

Figure 1: Financial Domain Ontology

input NLQ into an OQL query defined over the ontology, and
then translates the OQL query into its corresponding SQL query.

• We provide a novel ontology-driven algorithm that generates a
ranked list of interpretations, and their corresponding OQL queries.

• We describe a novel algorithm to translate the OQL queries into
SQL queries. Our algorithm is able to handle various underlying
physical representations.

• We show the effectiveness of ATHENA using a comprehen-
sive experimental study on three workloads. ATHENA achieves
100% precision on a geographical (GEO) and an academic
(MAS) workload, and 99% precision on a financial (FIN) work-
load. Moreover, ATHENA attains 87.2%, 88.3%, and 88.9% re-
call on the GEO, MAS, and FIN workloads, respectively.

2. SYSTEM OVERVIEW
We now present an overview of ATHENA, and show how an

example NLQ flows through our system.

2.1 Ontology-Driven Architecture
ATHENA employs a Domain Specific Ontology (referred to as

the ontology) to represent a real-world domain and interprets NLQs
using such an ontology. The ontology is expressed in the Web On-
tology Language (OWL2) 1.

In this paper, we will use a financial domain ontology, shown
in Figure 1, to describe our architecture and algorithms. The on-
tology contains the concepts of the domain (e.g., Company) along
with their properties (e.g., name) as well as the relations between
the concepts (e.g., forCompany). Note that Figure 1 shows only a
small portion of a complex, real-world ontology that we use inter-
nally, and in the experiments we present in Section 4. The full
ontology contains 75 concepts, 289 properties and 95 relations.
As shown in Figure 1, the ontology contains hierarchies between
concepts. For example, an InvesteeCompany is a specific type of
Company, and, thus inherits the properties of the Company concept
(e.g, InvesteeCompany.name). The InvesteeCompany is called
a child concept, the Company is called a parent concept, and their
relationship is captured by an is-a arrow (inheritance). Addition-
ally, since Securities and Investee Companies together constitute
the collection of Investees, the Investee is a union concept and
Security and InvesteeCompany are the corresponding member
concepts, and this relationship is represented by the unionOf ar-
rows (membership). Such inheritance and membership relation-
ships are frequently encountered in real-world ontologies.

The data corresponding to the ontology is stored in a Relational
Store (RS). The schema of the RS must capture all the information
that is contained in the ontology, and is generated by an RS designer
1https://www.w3.org/TR/owl2-overview/

Figure 2: System Architecture

during an offline phase. Typically, multiple relational schemata can
conform to the same ontology. For example, the RS designer might
create a denormalized, or a normalized schema, or might generate
materialized views depending on application requirements. Note
that the users of ATHENA are not aware of the relational schema,
but form their NLQs relying solely on the ontology. We only re-
quire that the RS designer provides our system with an Ontology-
to-Database Mapping, which is also generated during an offline
phase, and describes how the ontology elements (concepts, prop-
erties, and relations) are mapped to database objects (e.g., tables,
views, columns, and referential integrity constraints). The map-
ping must satisfy certain requirements which are discussed in Sec-
tion 3.1.3. In this paper, we assume that the data corresponding to a
particular ontology is already loaded in the RS, and the Ontology-
to-Database Mapping is provided by the RS designer.

2.2 Query Flow
We present the overall system architecture in Figure 2. Assume

that the user submits the following NLQ against the ontology pre-
sented in Figure 1: “Show me restricted stock investments in Al-
ibaba since 2012 by investor and year”. As a first step, the NLQ
engine determines which elements of the ontology are referenced
by the query. For example, the token “restricted stock” may refer
to a value of the property type of InstitutionalInvestment or
Holding among others. Similarly, the token “Alibaba” may refer
to the name of a Company, an InvestorCompany, or a Lender. The
NLQ Engine explores all of these options and generates a ranked
list of interpretations conforming to the ontological structure and
semantic constraints. A natural language explanation is also gener-
ated for each such interpretation.

During the query interpretation process, the NLQ Engine re-
lies on an auxiliary service, named the Translation Index (TI).
The TI provides data and metadata indexing for data values stored
in the RS, and for concepts, properties, and relations appearing
in the ontology, respectively. For our example query above, the
NLQ engine would search for the token “Alibaba” in the TI. The
TI captures that “Alibaba” is a data value for the name column
in the Company table in the RS, which based on the Ontology-to-
Database Mapping, maps to the ontology property Company.name
(Figure 1). Note that “Alibaba” maps to multiple ontology ele-
ments (e.g., InvestorCompany or Lender), and the TI captures all
of them. TI provides powerful and flexible matching by using se-
mantic variant generation schemes. Essentially, for the data values
indexed in the TI, we not only index the actual values (e.g., dis-
tinct values appearing in Company.name), but also variants of those
distinct values. We support semantic variant generators (VGs) for
person and company names, among others. For example, given an
input string “Alibaba Inc”, the company name VG produces the fol-

1210

lowing list of variants: {“Alibaba”, “Alibaba Inc”, “Alibaba Inc.”,
“Alibaba Incorporated”}. This allows the users of ATHENA to
formulate the queries by using any of the indexed variants of a data
value (e.g., “Alibaba” vs. “Alibaba Inc”). The TI is built during an
offline initialization phase, and is populated from the RS.

One key distinguishing feature of ATHENA is the use of a two-
stage approach that provides physical independence. By solely rea-
soning over the ontology, and by exploiting the TI, our NLQ engine
is completely oblivious to the actual representation of the data in
the RS. To support this two-stage approach, we define an interme-
diate query language over the ontology, namely Ontology Query
Language (OQL). The role of OQL is to provide independence
from the underlying data stores and their target languages. For ex-
ample, the same query interpretation can be executed against a rela-
tional store and/or a graph store. This paper focuses on Relational
Stores, and thus OQL serves as an input to the Query Translator
which generates the corresponding SQL queries. Each interpreta-
tion generated by the NLQ engine is translated into an OQL query.

The Query Translator takes the ranked OQL queries, along with
the ontology and the corresponding Ontology-to-Database Map-
ping, and generates a list of SQL queries. As opposed to previous
systems (e.g., [19]), ATHENA automatically picks the top-ranked
SQL query, submits it to the RS for execution and presents the re-
sults to the user. As shown in Figure 2, the complete list of ranked
SQL queries with their natural language explanations [22] are also
presented to the user. Thus, the user can choose an alternative query
interpretation (SQL) and execute it against the RS, if the top-ranked
query did not capture her intent. As we show in Section 4, for the
majority of the queries we tested, the top-ranked query interpreta-
tion is actually the intended interpretation, and only in some rare
cases does the user need to pick an alternative interpretation.

3. ALGORITHMS
We now present the algorithms used by ATHENA. We start by

describing the notations used in these algorithms.

3.1 Notations

3.1.1 Ontology
An Ontology O=(C,R,P) contains a set of concepts C = {cn,1≤

n≤ N}, a set of relations R = {rk,1≤ k ≤ K} and a set of proper-
ties P = {pm,1≤m≤M} that represent a real-world domain. The
ontology domain consists of real-world entities called individuals
which are grouped into concepts based on similarity of characteris-
tics. A property represents a characteristic of a concept and belongs
uniquely to that concept. Pn is the set of properties belonging to
concept cn ∈C and P is the set of all properties. We use the naming
convention c.p to refer to the property p that belongs to concept c
(c.p ∈ P). Each relation rk = (ci,c j) ∈ R represents a relationship
between the concepts ci and c j ∈C. We use the term ontology el-
ement to refer to a concept, property or relation of the ontology.
Each ontology element is associated with a set of synonyms which
are generated manually or semi-automatically [12, 21].

The relations have an associated type, namely membership, in-
heritance, and functional. The set RM contains the membership
relations where (ci,c j) ∈ RM denotes that the concept ci is a union
concept and the concept c j is a member concept. The set RI con-
tains the inheritance relations where (ci,c j) ∈ RI denotes that the
concept ci is a parent concept and that the concept c j is a child con-
cept. Note that unlike a union concept, a parent concept can contain
individuals that are not present in any of its child concepts. How-
ever, as noted in Section 2.2, the child and the member concepts in-
herit the properties of their parent or union concepts, respectively.

Thus, the set P includes the inherited properties of all the child and
member concepts. Finally, the set RF contains the remaining rela-
tions of the ontology which are called functional relations. The set
of the ontology relations R can be defined as: R = RM ∪RI ∪RF .

3.1.2 Ontology Query Language (OQL)
The OQL language2 is specifically designed to express queries

over an ontology and is agnostic to the underlying physical schema.
The focus of this paper is to explain how our system achieves phys-
ical independence through the OQL language and not to present
OQL’s functionality in detail. The portion of the OQL grammar
that we use in this paper is presented below:

UnionQuery: Query (UNION Query)*
Query: select from where? groupBy? orderBy? having?
select: (aggrType?(PropertyRef))+
from: (Concept ConceptAlias)+
where: binExpr1* binExpr2* inExpr?
groupBy: (PropertyRef)+
orderBy: (aggrType?(PropertyRef))+
having: aggrType(PropertyRef) binOp value
value: Literal+ | Query
aggrType: SUM| COUNT| AVG | MIN | MAX
binExpr1: PropertyRef binOp [any] value
binExpr2: ConceptAlias RelationRef+ = ConceptAlias
inExpr: PropertyRef IN Query
binOp: > | < | >= | <= | =
PropertyRef: ConceptAlias.Property
RelationRef: Relation ->

The OQL grammar can express sophisticated OLAP-style
queries that include aggregations, unions, and nested subqueries.
An OQL query operates on top of individuals of concepts where
each concept has an alias defined in the from clause of the query.
Section 3.2.3 presents more details about OQL.

3.1.3 Ontology-to-Database Mapping
As noted earlier, our system architecture is independent of the

underlying database schema which allows an RS designer to incor-
porate any existing database without explicitly modeling the ontol-
ogy elements. The RS designer creates the Ontology-to-Database
Mapping which is given as input to ATHENA, and describes how
the ontology elements are mapped to the database objects.

A relational database D = (T,F,S) consists of a set of tables T ,
a set of fields F , and a set of referential integrity constraints S. The
term table refers to both database tables and views. A field belongs
uniquely to a table or a view, and F is the set of all fields. The set
S contains the referential integrity constraints between tables in T .

The Ontology-to-Database Mapping ODM(O,D) = (
−→
T ,
−→
F ,
−→
S),

maps an ontology O = (C,R,P) to a database D = (T,F,S) through
the mapping functions

−→
T ,
−→
F , and

−→
S . The mapping functions are

provided to our system by the RS designer and they must satisfy
certain requirements that we describe next. Firstly, each concept in
the ontology must be mapped to one database table or view through
the function

−→
T : C 7→ T . ATHENA maps each concept’s synonyms

to the same database table or view. The function
−→
F : P 7→ F maps

the ontology properties to their corresponding database fields. Since
the ontology allows for inheritance and membership relations, our
system offers two alternatives. In the first alternative, the database
designer can map the properties of the child, member or union con-
cepts to fields in the database directly through the function

−→
F . Al-

ternatively, ATHENA will derive them indirectly from the corre-
sponding properties of the parent, union, or member concepts. A
table or view that represents a concept that is not a child, a member

2Note that the language is different from the Object Query Lan-
guage: https://en.wikipedia.org/wiki/Object Query Language

1211

Show	me restricted	stock	 investments	 in	 Alibaba	 since	2012	 investor	 yearby and
metadataindexed value

Transaction.reported_year
Transaction.purchase_year
InstitutionalInvestment.reported_year
…

Lender.name
InvestorCompany.name
InvesteeCompany.name
…

Holdings.type
Transaction.type
InstitutionalInvestment.type
…

PersonalInvestment
InstitutionalInvestment
VCInvestment
…

Evidence V

Tokens t

Evidence type

Candidates E
Chosen Element

Company
InvestorCompany
…

metadata indexed value metadata metadatatime-range

Figure 3: A Natural Language Query annotated with the Evidence Set V obtained from the Ontology Evidence Annotator.

or a union concept, must include all the database fields that corre-
spond to this concept’s properties. Note that this model does not
pose any restriction on the database schemata supported. This is
because the RS designer can map concepts to arbitrarily complex
view definitions which incorporate database fields that might be-
long to different tables. Finally, each relation between concepts of
the ontology must be mapped to a set of referential integrity con-
straints between database tables through the function

−→
S : R 7→ 2S.

3.2 Natural Language Query (NLQ) Engine
The NLQ Engine consists of 3 components discussed next.

3.2.1 Ontology Evidence Annotator
As a first step, the NLQ engine invokes the Ontology Evidence

Annotator component on the input NLQ text. Each annotation pro-
duced by this component, shows evidence that one or more on-
tology elements (concept, relation, property) have been referenced
in the input NLQ. Formally, an evidence v : t 7→ E maps a token
t (set of words in the NLQ text) to a set of ontology elements
E ⊆ {C∪R∪P} called candidates. Figure 3 shows the candidates
obtained for our example NLQ. The Ontology Evidence Annotator
consists of the following two major types of annotators:
• Metadata Evidence Annotator: This annotator performs a

lookup against a dictionary which maps the synonyms of the
ontology elements (see Section 3.1.1) to the ontology elements.
This process produces a set of metadata evidences where tokens
in the NLQ are associated with ontology elements whose syn-
onyms match those tokens. For example, in Figure 3, the to-
ken “investments” maps to the InstitutionalInvestment and
PersonalInvestment concepts among others. As a rule, an an-
notation that spans a set of contiguous tokens W in the text is
preferred over an annotation that spans a subset of W .

• Data Value Evidence Annotator: The Data Value Annotators
associate data values referenced in the NLQ with a set of ontol-
ogy properties, thus producing data value evidences. Our system
supports three kinds of annotators. The Indexed Value Annotator
annotates data values that are indexed by the Translation Index
(TI) (indexed value evidence). For example, the token “Alibaba”
in Figure 3 can be matched to various properties including the
Lender.name property, according to the TI. The Time Range
Expression Annotator annotates tokens in the NLQ that indicate
time ranges (e.g, “since 2012”) using the TIMEX annotator [35]
(time range evidence). These tokens are then associated with
the ontology properties whose corresponding data type is time-
related (e.g., Date). Finally, the Numeric Expression Annotator
annotates tokens that mention numeric quantities, either in the
form of numbers (“45.3”) or in text (“fifty two”) using the Stan-
ford Numeric Expressions annotator [23] (numerical evidence).
The tokens are subsequently matched to ontology properties with
numerical data types (e.g., Double).

The Ontology Evidence Annotator is also responsible for anno-
tating dependencies between tokens in the NLQ. For example, the
NLQ shown in Figure 3 contains a dependency between the to-
kens “investments” and “Alibaba” through the token “in”. These
dependencies are called Relationship Constraints and are formally
defined in the following section.

The output of the Ontology Evidence Annotator is a set of Re-
lationship Constraints RC and an Evidence Set V . Each evidence
vi : ti 7→ Ei ∈ V has a type (metadata or data value evidence) and
maps a token ti to a set of candidates Ei. Some tokens other than
prepositions, adverbs, conjunctions or tokens in the head phrase
(e.g., “show me”, “tell me”, etc.) may fail in mapping to any on-
tology element. In this case, our system stops the interpretation
process and returns an appropriate message to the user.

3.2.2 Ontology-driven Interpretations Generator
At the next step, ATHENA invokes the Ontology-driven Inter-

pretations Generator component. This component uses a novel
ontology-driven interpretation algorithm to generate a ranked list
of interpretations for the input NLQ. Our algorithm first computes
a set of selected sets from the Evidence Set V . A selected set (SS) is
formally defined as SS = {(ti 7→ ei) | ∀ (ti 7→ Ei) ∈V, ∃ ei ∈ Ei}.
Informally, it is formed by iterating over all evidences (ti 7→ Ei) in
V and collecting a single ontology element (ei) (called the chosen
element) from each evidence’s candidates (Ei). Figure 3 shows the
chosen elements of one possible selected set (in bold) for our exam-
ple NLQ. Our algorithm attempts to find one interpretation for each
selected set. Then, it computes the interpretations corresponding to
all the selected sets and subsequently ranks them. Each interpreta-
tion is represented by a set of interpretation trees. Figure 4 shows
an interpretation consisting of two interpretation trees associated
with the selected set of Figure 3. These trees will be further dis-
cussed towards the end of Section 3.2.2.2. The scenarios where an
interpretation contains multiple interpretation trees are discussed
later. We now formally define an interpretation tree.

3.2.2.1 Interpretation Trees.
An interpretation tree (ITree) corresponding to an Ontology O =

(C,R,P) and a selected set (SS) is defined as ITree = (C′,R′,P′)
such that C′ ⊆ C, R′ ⊆ R, and P′ ⊆ P. The ITree must satisfy the
following constraints:

• Evidence Cover: The ITree must contain the chosen element of
each evidence in SS. This constraint ensures that the ITree covers
all the annotated tokens of the NLQ.
• Weak Connectedness: The ITree must satisfy the weak connect-

edness property of directed graphs [1]. This property states that
the undirected graph created by removing the direction of the re-
lation edges in the ITree must be connected. More specifically,
all the concepts in the ITree must be connected to each other
through an undirected path of relation edges, and each prop-
erty must be connected to its corresponding concept. This con-
straint avoids forming cartesian products when generating the

1212

Institutional Investment

Investment

Investor CompanyInvestee

Investee Company

is-a

investedIn investedBy

unionOf

type

name

reported_year
“restricted stock”

“investments”

“investor”

“since 2012”, “year”

“Alibaba”

“in”

Institutional Investment

Investment

Investor CompanyInvestee

Security Investee Company

is-a

investedIn investedBy

issuedBy

unionOf

type

name

reported_year

“restricted stock”

“investments”

“investor”

“since 2012”, “year”

“Alibaba”

“in”

(a) (b)
Figure 4: Interpretation trees that form the top-ranked inter-
pretation for the NLQ of Figure 3.

SQL query that corresponds to the ITree. If only directed paths
are considered, we may miss valid interpretations. For exam-
ple, consider that concepts A, B, C are connected with the path
A← B→C in the ontology. A valid join path exists between A
and C’s corresponding database tables even though there is no
directed path connecting concepts A and C.

• Inheritance Constraint: Consider a modified tree of Fig-
ure 4(a). In this tree, the token “restricted stock” is still mapped
to the InstitutionalInvestment.type property but the token
“investments” is now mapped to the Investment concept. Note
that in our ontology, the InstitutionalInvestment concept
is a child of the Investment concept, and the type property is
specific to the InstitutionalInvestment concept, and not its
parent concept. This tree implies that investments have a type
(“restricted stock” type), essentially requiring the Investment
concept to inherit the type property from its child concept. The
Inheritance Constraint invalidates such trees by prohibiting a
chosen element who is a parent (or union) concept to inherit a
property or a relation from a chosen element that corresponds to
its child (or member) concept.

• Relationship Constraint: A Relationship Constraint is a
triple of tokens 〈t1, t2, t3〉 whose corresponding chosen elements
e1,e2,e3 in SS satisfy the following constraints: e1,e3 ∈ C∪P
and e2 ∈ R. The ITree satisfies the Relationship Constraint if
the relation e2 is contained in the undirected path between the
nodes e1 and e3. As noted in the ITree shown in Figure 4(a),
the chosen elements corresponding to the “investments”, “in”
and “Alibaba” tokens are the InstitutionalInvestment,
investedIn and InvesteeCompany.name ontology elements
respectively. This ITree satisfies the (“investments”, “in”,
“Alibaba”) constraint since the undirected path between the
InstitutionalInvestment and InvesteeCompany.name on-
tology elements contains the investedIn relation. Let us con-
sider a slightly different tree, in which the token “Alibaba” is
mapped to the InvestorCompany.name property. This tree does
not satisfy the Relationship Constraint since the path between the
InstitutionalInvestment and InvestorCompany.name on-
tology elements does not contain the investedIn relation.

3.2.2.2 Ontology-driven Interpretation Algorithm.
We now present our interpretation algorithm which takes as in-

put the Evidence Set V and a set of Relationship Constraints RC and
generates a ranked list of interpretations for the input NLQ. Our al-
gorithm builds on techniques previously used in keyword search
systems such as [2, 7, 14, 34]. However, it significantly extends
these techniques to better exploit the richer semantics present in

the ontology in the form of inheritance and membership relations.
In summary, our algorithm first creates all selected sets from the
Evidence Set V . For each selected set, the algorithm attempts to
generate a single interpretation that consists of one or more ITrees
that satisfy the constraints presented before. Finally, the interpreta-
tions corresponding to different selected sets are ranked.

Our algorithm first creates an undirected graph G by removing
the direction of the relation edges in the ontology graph. More-
over, multiple edges between two ontology concepts are replaced
by a single edge in G. The algorithm operates on the undirected
graph because this enables finding more solutions that satisfy via
the Weak Connectedness Constraint. Corresponding to each se-
lected set, the algorithm attempts to identify an undirected inter-
pretation tree (UITree) which is a connected tree of the graph
G that satisfies the Evidence Cover, Inheritance, and Relationship
constraints. For example, a valid UITree is produced if we ignore
the direction of the edges of the tree shown in Figure 4(a). As we
show next, the UITrees will later be converted to directed ITrees.

A UITree must contain all the chosen elements in the selected
set (Evidence Cover). Note that there can be many connected trees
of G spanning all the chosen elements. Our system will choose
the tree that has the minimal number of functional relations. As
noted in [7, 34], the problem is similar to the Steiner Tree prob-
lem. Given an undirected weighted graph, and a set of nodes called
Steiner Nodes, a Steiner Tree is a tree with minimal total weight-
ing for its edges that spans all the Steiner Nodes through additional
intermediate nodes, and edges if needed [28]. Note that the Steiner
Tree problem is NP-Complete and is typically addressed by ap-
proximation algorithms (e.g., [15]). In our case, the Steiner Nodes
consist of the concepts, properties, and source and destination con-
cepts of the relations in the current set of chosen elements. The
typical Steiner Tree algorithms can produce a connected tree that
satisfies the Evidence Cover constraint. However, these algorithms
do not guarantee that the resulting tree will satisfy the Inheritance
and Relationship constraints. To handle these constraints, we first
preprocess the graph G to make sure the Inheritance Constraint will
be satisfied, and then we invoke a modified Steiner Tree algorithm
which takes the Relationship Constraints into account.

Given a selected set, our interpretation algorithm creates the set
of Steiner Nodes as described above. It, then, preprocesses the
graph G in two phases to generate the graph G′. In the first phase,
the algorithm assigns appropriate weights to the graph edges (note
that the Steiner Tree algorithms operate on weighted graphs). More
specifically, the edges that correspond to relations which are chosen
elements have a weight equal to 0. In this way, we can make sure
that these edges will be included in the resulting UITree. The re-
maining edges that correspond to functional relations have a weight
equal to 1. The edges that correspond to inheritance and member-
ship relations have a weight equal to 0. This ensures that the in-
herited functional relations of child and member concepts have the
same weight as their non-inherited functional relations.

In the second phase, the algorithm removes certain edges from
the graph to make sure that the Inheritance Constraint is satis-
fied. More specifically, all the edges of G that represent inheri-
tance and membership relations are removed, if the correspond-
ing parent or union concept is a chosen element. Let’s take the
example tree of Section 3.2.2.1, where the token “investments”
is mapped to the Investment concept but the token “restricted
stock” is mapped to the InstitutionalInvestment.type prop-
erty. This tree violates the Inheritance Constraint. Since in this
case the parent concept Investment is a chosen element, our al-
gorithm removes the edge from G that connects the Investment
and InstitutionalInvestment concepts. As a result, the invalid

1213

Algorithm 1: Modified Steiner Tree Algorithm
Input: Graph G′, Steiner Nodes SN, Relationship Constraints RC
Output: UITree or Null

1 Set of paths P={}
2 foreach Relationship Constraint (t1, t2, t3) in RC with corresponding chosen

elements e1,e2,e3 do
3 Choose a relationship path p(e1,e3) that connects the nodes e1 and e3

through the relation e2 in the graph G′ and add p(e1,e3) to P
4 if the graph that contains all the paths in P has a cycle then
5 backtrack
6 end
7 end
8 if a set P is not found then
9 return Null

10 end
11 Create a complete undirected graph GS whose vertices are the Steiner Nodes SN.
12 For every p(ei,e j) ∈ P, assign negative weight to the edge between nodes ei and

e j in GS .
13 For the remaining elements ei,e j ∈ SN that are not part of a Relationship

Constraint, set the weight of the edge between ei and e j in GS equal to the
weight of the shortest path from ei to e j in G′.

14 Find the minimal spanning tree T of GS
15 Form GT by replacing T ’s edges by the corresponding shortest paths and

relationship paths, giving a weight of −1 to the edges of the relationship paths.
16 UITree = Invoke the cycle removal, unnecessary node and edge removal steps of

the algorithm in [15] on GT .
17 return UITree

connected tree will not be generated.
After generating the graph G′, our interpretation algorithm in-

vokes an approximation algorithm which extracts a connected tree
from G′ that spans all the Steiner Nodes and satisfies the Relation-
ship Constraints. Our algorithm is a modification of a well-known
Steiner Tree approximation algorithm [15] which additionally guar-
antees that the resulting tree satisfies the Relationship Constraints.

The algorithm in [15] creates a complete undirected graph GS
that contains only the Steiner Nodes. Each edge between two Steiner
Nodes in GS corresponds to the shortest path between them in the
graph G′. The weight of the edge is equal to the sum of the weights
of the edges in the shortest path. Next, a minimal spanning tree T of
GS is computed. Then, T ’s edges are replaced by the corresponding
shortest paths to form GT . The algorithm removes possible cycles,
unnecessary nodes, and edges from GT , and produces a tree that
approximately has the minimal weight.

Our modified Steiner Tree algorithm (presented in Algorithm 1)
first modifies the formation of graph GS. For the chosen elements
that are part of a Relationship Constraint, a path that satisfies the
Relationship Constraint is chosen (as short as possible) instead of
the shortest path. We call this path relationship path. If there are
multiple Relationship Constraints, our algorithm attempts to select
the relationship paths such that the graph that contains all the paths
does not contain cycles (Lines 1-10). The weight of the correspond-
ing edges in GS is negative so that these edges are included in T
(Line 12). GT is formed by replacing T ’s edges with the corre-
sponding shortest paths, and the relationship paths. Note that the
edges of the relationship paths have a weight equal to −1 in GT
which guarantees that they are included in the final tree (Line 15).

After a UITree has been generated for a given selected set, our
interpretation algorithm examines whether the tree contains mem-
bership relations. In case there are multiple paths in G′ between a
union concept and another concept of the UITree through the union
concept’s member nodes then multiple UITrees can be generated.
As shown in the selected set of Figure 4(a) the token “Alibaba” is
mapped to the InvesteeCompany concept. According to Figure 1,
the InvesteeCompany concept is connected to the Investee union
concept either directly or through the Security concept. The tree
of Figure 4(a) connects the two concepts directly. However, as de-

picted in the ontology, another way of investing in “Alibaba” is by
purchasing securities issued by the company. Thus, our algorithm
generates the tree of Figure 4(b) which contains the Security con-
cept (the details are ommitted in the interest of space). These two
trees form the interpretation that corresponds to the selected set.

The last task is to convert the UITrees corresponding to the se-
lected set into ITrees by mapping their undirected edges to the di-
rected edges of the ontology. As noted before, an undirected edge
in the UITree can be mapped to multiple directed edges of the
ontology graph. Unless there exists one directed edge that cor-
responds to a relation which is a chosen element, all the directed
edges are considered. Therefore, one UITree can be mapped to
more than one ITrees which all become part of the interpretation.

After an interpretation for each selected set is generated, the in-
terpretations are ranked based on the number of distinct functional
relations contained in each interpretation’s constituent ITrees.

3.2.3 Ontology Query Builder
As described in the previous section, our interpretation algorithm

produces a ranked list of interpretations for a given NLQ. The goal
of the Ontology Query Builder is to represent each interpretation in
that list as an OQL query. In this section, we provide a high-level
overview on the OQL query generation process.

As discussed in the previous section, each interpretation con-
sists of a set of interpretation trees and a selected set. The OQL
query that corresponds to an interpretation is a union of individual
OQL queries, each one associated with one interpretation tree. Our
example NLQ will produce an OQL query that is a union of two
OQL queries, each one associated with one of the interpretation
trees shown in Figure 4. The OQL query related to the first inter-
pretation tree is shown in Figure 5(a). The constituent clauses of
an OQL query corresponding to a given interpretation tree (ITree)
and a selected set (SS) are generated as follows:
• from clause: The from clause specifies the concepts refer-

enced in the OQL query along with their aliases. Our algo-
rithm iterates over all the evidences in SS and creates an alias
for each concept associated with the chosen element of each ev-
idence. As shown in Figure 3, the chosen elements are associ-
ated with the InstitutionalInvestment, InvesteeCompany
and InvestorCompany concepts. Thus, the OQL query of Fig-
ure 5(a) contains 3 concept aliases to represent these concepts.
• groupBy clause: The groupBy clause specifies an ordered list

of ontology properties that the user wishes to group the results by
(grouping properties). We treat the presence of the word by in the
NLQ as a trigger word, possibly indicating that the user wishes to
group by the terms following it. Consider a slight variant of the
NLQ of Figure 3: “Show me investments by Alibaba by investor
and year”. In this case, the user wants to group the results first
by “investor” and then by “year”. Thus, the token “Alibaba” that
follows the word by should not be considered for grouping.

Our algorithm is able to make such token differentiations based
on the type of each evidence in the selected set SS. In our
example, the token “Alibaba” produces a data value evidence
whereas the other two tokens produce a metadata evidence. Our
algorithm considers only the metadata evidences whose cho-
sen element is a concept or a property as potential candidates
for grouping. Concepts are represented in the groupBy clause
by their key property which is configured to denote the con-
cept’s unique identifier (similar to the primary key of a rela-
tional table). For example, the name property is the key prop-
erty of the InvestorCompany concept. Our system then ap-
plies lexical and dependency rules on the token of each evi-
dence to determine whether the corresponding chosen element

1214

SELECT Sum(oInstitutionalInvestment.amount),
oInvestorCompany.name,
oInstitutionalInvestment.reported_year

FROM InstitutionalInvestment oInstitutionalInvestment,
InvestorCompany oInvestorCompany,
InvesteeCompany oInvesteeCompany

WHERE oInstitutionalInvestment.type = ‘restricted stock’
oInstitutionalInvestment.reported_year >= ‘2012’,
oInstitutionalInvestment.reported_year <= Inf,
oInvesteeCompany.name = {‘Alibaba Holdings Ltd.’,

‘Alibaba Inc.’, ‘Alibaba Capital Partners’},
oInstitutionalInvestmentisaInvestedBy = oInvestorCompany,
oInstitutionalInvestmentisainvestedInunionOf_Security

issuedBy = oInvesteeCompany
GROUP BY oInvestorCompany.name,

oInstitutionalInvestment.reported_year

SELECT Sum(rInstitutionalInvestment.amount),
rInvestorCompany.name,
rInstitutionalInvestment.reported_year

FROM RInstitutionalInvestment rInstitutionalInvestment,
RInvestorCompany rInvestorCompany,
RInvesteeCompany rInvesteeCompany,
RInvestment rInvestment, RSecurity rSecurity

WHERE rInstitutionalInvestment.type = ‘restricted stock’ and
rInstitutionalInvestment.reported_year >= ‘2012’and
rInvestorCompany.name = {‘Alibaba Holdings Ltd.’,

‘Alibaba Inc.’, ‘Alibaba Capital Partners’} and
rInstitutionalInvestment.id = rInvestment.id and
rInvestment.investedBy = rInvestorCompany.id and
rInvestment.investedIn = rInvestee.id and
rInvestee.securityId = rSecurity.id and
rSecurity.issuedBy = rInvesteeCompany.id

GROUP BY rInvestorCompany.name,
rInstitutionalInvestment.reported_year

SELECT Sum(rInvestment.amount),
rCompany2.name, rInvestment.reported_year

FROM RInstitutionalInvestment rInstitutionalInvestment,
RInvestorCompany rInvestorCompany,
RInvesteeCompany rInvesteeCompany,
RInvestment rInvestment, RCompany rCompany1,
RCompany rCompany2, RSecurity rSecurity

WHERE rInstitutionalInvestment.type = ‘restricted stock’ and
rInvestment.reported_year >= ‘2012’and
rCompany1.name = {‘Alibaba Holdings Ltd.’,

‘Alibaba Inc.’, ‘Alibaba Capital Partners’} and
rInstitutionalInvestment.id = rInvestment.id and
rInvestment.investedBy = rInvestorCompany.id and
rInvestment.investedIn = rInvestee.id and
rInvestee.securityId = rSecurity.id and
rSecurity.issuedBy = rInvesteeCompany.id and
rInvesteeCompany.id = rCompany1.id and
rInvestorCompany.id = rCompany2.id

GROUP BY rCompany2.name, rInvestment.reported_year
(a) (b) (c)

Figure 5: An OQL sub-query (a), and the corresponding SQL queries (b) and (c) on different relational schemata

is a grouping property. According to the lexical rule, if the
token immediately follows the trigger word, then the chosen
element is included in the groupBy clause. Additionally, the
Stanford Dependency Parser [11] is employed to capture long
range dependencies (spanning two or more words) between a
token and the trigger word. In case a dependency exists, the
corresponding chosen element is also a grouping property. Ac-
cording to these rules only the InvestorCompany.name and
InstitutionalInvestment.reported year properties qual-
ify as grouping properties for the NLQ shown in Figure 3.

• select clause: The select clause contains a list of on-
tology properties which are categorized as aggregation prop-
erties and display properties depending on whether an aggre-
gation function is applied to them. In Figure 5(a) the prop-
erty oInvestorCompany.name is a display property whereas the
property oInstitutionalInvestment.amount is an aggrega-
tion property. The first challenge when forming the select
clause is to determine whether it will include aggregation proper-
ties or not. Our system identifies explicit references of aggrega-
tion functions (e.g., SUM) in the NLQ by employing a lexicon of
terms corresponding to the aggregation functions supported (see
Section 3.1.2). However, in many cases there are implicit ref-
erences of an aggregation function. For example, the existence
of groupBy properties in the NLQ of Figure 3, implies that the
select clause should contain an aggregation. In this example,
the aggregation is related to the “investments” token and as a re-
sult the InstitutionalInvestment concept. In such cases, we
use a default aggregation property and aggregation function for
the concept involved. As shown in Figure 5(a), the default aggre-
gation function is SUM and is applied on the amount property.

In case the query does not include any aggregation, the algo-
rithm iterates over the metadata evidences and creates one dis-
play property for each evidence whose chosen element is a prop-
erty or a concept. Note that similar to SQL, the groupBy prop-
erties are included in the select clause as display properties.
The queries that include aggregation are more challenging since
depending on the ontology, we may encounter the “double count-
ing” problem. This problem is well-known in the context of
OLAP [18, 27] and we will not discuss it extensively. Consider
two concepts c1 and c2 in the ITree, connected through a many-
to-one relation r. If we aggregate over a property of concept c2
iterating through its individuals by following the path r starting
from concept c1, we will unavoidably count the same individual
of c2 multiple times, thus computing an incorrect aggregation.
Our system is able to identify when an aggregation is “unsafe”
and generates a nested query (see inExpr in Section 3.1.2) to
avoid the “double counting” problem. In case the aggregation is
“safe”, the aggregation property is added to the select clause.

• orderBy clause: The orderBy clause specifies an ordered list
of ontology properties (or aggregations over properties) that the
user wishes to order the results by. We use trigger words (e.g.,
least, most, ordered by, top) to identify whether the user expects
the results to be ordered. Similar to the groupBy clause, we use
only the metadata evidences whose chosen element is a concept
or a property as potential candidates for ordering. We represent
the concepts in the orderBy clause by their key property.
• where clause: As noted in Section 3.1.2, the where clause con-

sists of binExpr1 and binExpr2 expressions. The binExpr1 ex-
pressions specify predicates applied on a property, and are gen-
erated based on the data value evidences in SS. For example, the
predicate on the oInvesteeCompany.name property shown in
Figure 5(a) is a binExpr1 expression. Each binExpr1 expres-
sion consists of the property that corresponds to the particular
evidence, an operator, and a set of literal values. For indexed
value evidences, the operator is the equality (‘=’) operator and
the literal values are those obtained from the TI. For example,
the “Alibaba” variants of our example OQL query are obtained
from the TI. As shown in Figure 5(a), the time range evidences
produce two binExpr1 expressions referring to the start and end
timestamp. For numerical evidences, the operator is set based on
the comparator phrase immediately preceding the numeric ex-
pression in the NLQ. If the operator is applied on an aggregation
over the property under consideration, instead of generating a
binExpr1 expression, we generate a having clause that speci-
fies a predicate on the aggregation quantity.

The binExpr2 expressions denote how the concepts in the from
clause are connected to each other in the ITree. Each binExpr2
expression specifies a list of relations that connect the concept
alias on the left-hand side (lConcept) to the concept alias on
the right-hand side (rConcept). We create binExpr2 expres-
sions that connect the concept alias that corresponds to the root
node of the ITree (as lConcept) to every other concept alias in
the from clause (as rConcept). In Figure 5(a), the concept alias
oInstitutionalInvestment corresponding to the root node is
connected to the oInvestorCompany and oInvesteeCompany
concept aliases through two binExpr2 expressions.

3.3 Query Translator
In this section, we describe the Query Translator which is re-

sponsible for converting an OQL query over an ontology O into
a SQL query over a database D, using the Ontology-to-Database
Mapping ODM(O,D) = (

−→
T ,
−→
F ,
−→
S). For the rest of this section,

we use both a normalized and denormalized relational schema for
the ontology shown in Figure 1. To keep our example simple,
both schemata contain one table for each concept, named after
the concept with the prefix “R” (e.g., the RCompany table repre-

1215

sents the Company concept). However, as noted in Section 3.1.3,
ATHENA can support much more complex mappings. Each table
contains a column for each property of the concept that it repre-
sents, and a primary key column, named id. In the normalized
schema, the tables that represent child concepts contain only the
id column and are connected to the tables of their corresponding
parent concept through a foreign key (FK) constraint. Thus, to re-
trieve the values of the InvestorCompany.name property, we join
the RInvestorCompany and RCompany tables and then perform
a selection on the RCompany.name column. In the denormalized
schema, the tables that represent child concepts contain additional
columns for all the properties that are inherited from their parent
concept. Thus, a selection on the RInvestorCompany.name col-
umn returns the values of the InvestorCompany.name property.
Figures 5(b) and 5(c) show the SQL queries produced by the Query
Translator for the OQL query of Figure 5(a) on the denormalized
and normalized schema respectively.

3.3.1 Representation of OQL Queries
Given an OQL query that corresponds to a single NLQ interpre-

tation, the Query Translator identifies the ontology elements refer-
enced in the OQL query as well as the operations applied to them.

The Query Translator represents an OQL query as a set of at-
tributes and a set of join conditions. An attribute represents a
particular PropertyRef of the OQL query (see Section 3.1.2),
such as oInvestorCompany.name in the query of Figure 5(a).
Formally, the attribute a = (c, alias, p) references the con-
cept c (e.g., InvestorCompany) through the alias alias (e.g.,
oInvestorCompany), and its property p (e.g., name). The concept
c is the attribute’s referenced concept and p is the attribute’s refer-
enced property. ATHENA maintains additional information about
attribute a, such as aggregation functions and predicates applied, as
well as its positions in the select, groupBy and orderBy clauses.
The join conditions are constructed based on the binExpr2 expres-
sions of the OQL query and show how the concepts referenced in
the query are connected in the ontology. The join condition j =
(ci,aliasi,c j,alias j,r) refers to the concepts ci (through the alias
aliasi) and c j (through the alias alias j), and to the relation r that
connects them. For example, the query of Figure 5(a) contains a
join condition between the oInvestment and oInvestorCompany
aliases, through the investedBy relation.

The attributes and join conditions have an associated type,
namely concrete and virtual. This type distinction is crucial since
it allows our algorithm to handle various physical data represen-
tations. The concrete type implies that there is a direct mapping
between the ontology elements referenced by the attribute or join
condition, and the database objects of the relational schema. The
virtual type, on the other hand, implies that there is a compli-
cated relationship between the ontology elements and the actual
physical representation. An attribute a is concrete, if the func-
tion
−→
F (c.p) points to a database field that belongs to table

−→
T (c)

and it is virtual when
−→
F (p) is not defined (Section 3.1.3 describes

when this is possible). For example, the attribute associated with
the InvestorCompany.name property is concrete on the denormal-
ized schema presented above, since the property is mapped to the
RInvestorCompany.name field. However, it is virtual on the nor-
malized schema because in this case, the RInvestorCompany table
does not contain a name field. A join condition j is concrete, if
the set

−→
S (r) contains only one FK constraint between the tables

−→
T (ci) and

−→
T (c j) and thus they can be joined directly. If more than

one FK constraints are involved, the join condition is considered
virtual. This typically happens when r is a many-to-many relation.

In this case, a typical approach is to create an auxiliary table that
breaks the relation into two one-to-many relations.

A query that consists of only concrete attributes and join condi-
tions can be directly translated into a SQL query. This is because,
the only database tables accessed are the ones that correspond to
the concepts explicitly referenced in the sets of attributes and join
conditions. For example, the OQL query of Figure 5(a) can be
translated to a SQL query over the denormalized schema without
further processing (Figure 5(b)). As we show next, the same OQL
query needs further processing over the normalized schema.

3.3.2 Translation Algorithm
We now present an overview of our translation algorithm. Since

an OQL query can be a union of individual OQL queries, the al-
gorithm maintains a set of OQL queries that need to be translated
into equivalent SQL queries (QuerySet). It also maintains the set
of their corresponding SQL queries (ResultSet). The algorithm op-
erates on each query of the QuerySet, performing attribute and join
condition transformations until all the virtual elements of the query
become concrete. The query is then converted into an equivalent
SQL query. The transformations take a virtual element as input
and produce new elements (concrete or virtual).

In a virtual attribute, the referenced property is not represented
as a field in the database table that corresponds to the referenced
concept. The attribute transformations derive the property from an-
other concept that is connected with the referenced concept through
an inheritance (inheritance transformation) or through a member-
ship relation (membership transformation).

In case the referenced concept is a child or a member concept,
the inheritance and membership transformations attempt to derive
the referenced property from its corresponding parent or union
concept, respectively. For example, the InvestorCompany.name
and InvesteeCompany.name properties will be retrieved from the
Company concept, in the normalized schema of our example. Both
transformations replace the current attribute with a new one that
still refers to the property but references the parent or union con-
cept, through a new alias. The new alias guarantees that the query
remains semantically correct, in case the concept is already refer-
enced in the OQL query. In Figure 5(c), the application of two in-
heritance transformations introduced the RCompany table with two
different aliases in the query, even though the Company concept
was not present in the original OQL query. A new join condition
between the parent and child (or union and member) concepts is
also created using the appropriate aliases (e.g, a join condition be-
tween the Company and InvestorCompany concepts). This join
condition ensures that the connection to the originally referenced
child or member concept, is still maintained.

If the referenced concept is a union concept, the referenced
property is derived from the properties of the member concepts.
The membership transformation replaces the current query in the
QuerySet with a set of new queries, each one referencing a mem-
ber concept instead of the union concept.

The join condition transformation is applied when the two tables
that correspond to the referenced concepts cannot be joined directly
but an auxiliary table is involved in the join path. The transforma-
tion creates a dummy concept to represent the additional table, and
breaks the original join condition into two concrete join conditions.

When the query consists of only concrete elements, the corre-
sponding SQL query is generated, and is added to the ResultSet.
After all the queries in the QuerySet have been translated, the algo-
rithm generates the final SQL query by applying the SQL UNION
operator on the queries of the ResultSet.

1216

3.4 Handling Nested Sub-queries
ATHENA is able to handle more complex natural language queries

that get translated into nested SQL queries. We now provide a high-
level overview of how our system processes this type of queries.

After an NLQ has been annotated by the Ontology Evidence An-
notator, ATHENA invokes the Nested Query Detector which ex-
amines whether the NLQ should be translated into a nested OQL
query. This component employs a collection of lexicon-based tech-
niques to decompose the input NLQ text into two sentences, namely
the left-hand side (LHS) sentence corresponding to the outer OQL
query, and the right-hand side (RHS) sentence corresponding to the
inner OQL query. The inner query essentially represents a predicate
on a property referenced in the outer query. At the next step, the
Ontology-driven Interpretations Generator is invoked on the LHS
and RHS sentences, and then the Ontology Query Builder gener-
ates two OQL queries corresponding to the two sentences. The in-
ner query is incorporated in the having clause of the outer query, if
it represents a predicate applied on an aggregation over a property
of the outer query. Otherwise, it is incorporated in the where clause
as a binExpr1 expression. After the nested OQL query is gener-
ated, the Query Translator converts it into a nested SQL query. The
details are ommitted in the interest of space.

Our current implementation supports single level nesting in the
OQL queries. In our experiments with real queries, we rarely en-
countered a case where a deeply nested OQL query needs to be
generated. This is because users tend to form simple NLQs. How-
ever, the OQL grammar can support arbitrary levels of nesting and
we plan to extend our implementation to also cover these cases.

4. EXPERIMENTAL EVALUATION
In this section, we provide a comprehensive evaluation of

ATHENA using various workloads. We also compare our system
with NaLIR [19] and PRECISE [30], two state of the art systems
that expose a natural language interface over relational databases.

4.1 Experimental Setup
We first describe the workloads used in our experiments, fol-

lowed by our evaluation metrics.

4.1.1 Workloads
To evaluate the effectiveness of our system on different applica-

tion domains, we use three workloads over geographical, academic
and financial data described below:
• GEO Workload: The GEO workload is a popular workload that

has been used in prior work [9, 33], including PRECISE [30]. It
consists of 250 natural language queries over geographical data
about United States. The data is stored in a relational database
and the schema is well-specified.

• MAS Workload: The MAS workload is generated based on
the Microsoft Academic Search dataset3 which contains biblio-
graphic information for academic papers, authors, journals, con-
ferences, and universities. The workload was designed by the
authors of [19], and consists of 196 natural language queries that
have been used to evaluate the effectiveness of the NaLIR sys-
tem. The relational schema corresponding to this dataset has
been provided to us by the authors of [19].

• FIN Workload: The FIN workload is created by IBM based
on real-world, financial data from various sources. The dataset
is described by a complex financial ontology that contains 75
concepts, 289 properties and 95 relations. For this experiment,
we conducted a user study. Ten IBM employees that have not

3http://academic.research.microsoft.com/

Ontology Characteristics
Workload |C| |P| |RF | |RI | |RM |
GEO 14 20 15 0 0
MAS 17 23 20 0 0
FIN 75 289 55 34 6

Table 1: Summary statistics of the three ontologies

used this dataset before, generated 108 NLQs against the ontol-
ogy using ATHENA. The users observed ATHENA’s output and
marked whether it was able to find a correct interpretation as well
as the rank of the correct interpretation. The results that we re-
port are based on the users’ responses. The dataset is stored in a
relational database with a fully normalized schema.
To evaluate ATHENA with the GEO and MAS workloads, we

manually created the ontology and the corresponding Ontology-to-
Database Mapping based on the provided database schema. Ta-
ble 1 shows the characteristics of the three ontologies. As shown
in the table, the FIN ontology is significantly more complex than
the other two ontologies. It consists of a much larger number of
concepts (C), properties (P), and functional relations (RF) and it is
the only one that contains inheritance (RI) and membership (RM)
relations. To the best of our knowledge, our work is the first one
to evaluate NLQs over relational databases using such a complex
domain specific ontology and underlying relational schema.

The dictionary of synonyms for the elements of the GEO and
MAS ontologies was manually populated. The synonyms for the
FIN ontology were generated both manually and semi-automatically.

4.1.2 Evaluation Metrics
We have two objectives in our experiments. First, given a work-

load, we evaluate how often our system is able to find the correct
NLQ interpretations, and thus returns correct results. We use the
precision and recall measures to evaluate our system with respect
to this objective. Second, we evaluate how often user interaction is
required. Note that our system ranks the NLQ interpretations and
presents to the user. The results of the SQL query corresponding to
the top-ranked interpretation are automatically returned to the user.
In case the top-ranked interpretation is not the correct one, the user
can interact with the system and pick an alternative interpretation.
We’d like to minimize user interaction as much as possible. We
use the mean reciprocal rank to evaluate the effectiveness of our
ranking scheme. The definitions of our three metrics are as follows:

• Precision: The precision is the number of NLQs correctly an-
swered by the system divided by the total number of NLQs for
which the system produced an answer.
• Recall: The recall is the number of NLQs correctly answered by

the system divided by the total number of NLQs in the workload.
• Mean Reciprocal Rank (MRR): Given that the system cor-

rectly answers N NLQs, its mean reciprocal rank is a standard
statistic measure defined as:

MRR =
1
N

N

∑
i=1

1
ranki

(1)

where ranki refers to the rank position of the correct interpre-
tation for the ith NLQ. Ideally, the correct NLQ interpretation
should be always the top-ranked one, since in this way no user
interaction is required. Thus, the closer the value of MRR is to
1, the more effective the interpretation ranking scheme will be.

4.2 Experimental Results
Table 2 shows our experimental results. ATHENA achieves high

precision and recall on all workloads. Moreover, the MRR values

1217

show that ATHENA’s interpretation scheme is very effective and
thus the system requires user interaction only in some rare cases.

Workload Precision Recall MMR
GEO 100% 87.2% 1.00
MAS 100% 88.3% 1.00
FIN 99% 88.9% 0.99

Table 2: ATHENA’s performance on the three workloads

4.2.1 GEO Workload
As noted in Section 4.1.1, the GEO workload has been used to

evaluate the PRECISE system [30] on geographical data. In this ex-
periment, we evaluate ATHENA using the 250 queries of the GEO
workload and compare its performance with PRECISE.

We now compare the two systems using the precision and recall
numbers for PRECISE from [30]. Both systems achieve 100% pre-
cision. However, ATHENA is able to correctly answer more NLQs
than PRECISE. More specifically, ATHENA achieves 87.2% re-
call whereas PRECISE achieves 77.5% recall. ATHENA never re-
quires user feedback to find the correct interpretation for a NLQ.
Its MMR value is 1 which denotes that when the correct interpre-
tation is found, it is always the top-ranked one. The MRR metric
is not applicable for PRECISE since the system does not rank the
NLQ interpretations but instead returns the results of all the inter-
pretations to the user. Note that PRECISE classifies some NLQs
as semantically intractable and automatically rejects them. These
NLQs contain tokens that cannot be mapped to any database ob-
ject. ATHENA, on the other hand, is able to answer questions that
are considered semantically intractable by PRECISE due to the the
large set of synonyms associated with the ontology elements.

ATHENA correctly answers 218 out of the 250 NLQs of the
GEO workload. For the remaining 32 NLQs, ATHENA cannot
generate any interpretation. We identified three reasons for this
behavior. First, 30 NLQs contain tokens that cannot be mapped to
an ontology element. For example, the token “USA” in the NLQ
“What is the highest point of the USA?” cannot be mapped to
any of the ontology elements. This is because the GEO dataset
does not contain the data value “USA”, and thus the value is not
indexed in the TI. A similar problem exists with the token “den-
sity” in the NLQ “What state has the largest population density?”.
Note that we cannot fix this problem by adding more synonyms
in our dictionary since the ontology does not contain any element
that can qualify as a synonym for the “density” token. Second,
the NLQ “What rivers do not run through Tennessee?” cannot be
handled since our current implementation of the NLQ Engine does
not support negation. Finally, ATHENA cannot produce any in-
terpretation for the query “Which states have points higher than
the highest point in Colorado?”. This NLQ implicitly references
the State.highestElevation property of the GEO ontology and
ATHENA is not able to make this association.

In some cases, ATHENA generates multiple top-ranked interpre-
tations which all have the same score. For example, the NLQ “How
many people live in Washington?” produces two top-ranked inter-
pretations. In the first interpretation, the token “Washington” refers
to the state of Washington, and in the second one it refers to the city
of Washington. Both interpretations are correct and thus ATHENA
presents the results of two SQL queries to the user.

4.2.2 MAS Workload
In this experiment, we evaluate ATHENA using the MAS work-

load that was also used to evaluate the NaLIR system [19]. As
shown in Table 2, ATHENA is able to correctly answer 173 out of

the 196 NLQs of the workload, achieving 88.3% recall and 100%
precision. ATHENA is able to produce the correct interpretations
without requiring any user feedback. More specifically, the correct
interpretation for the 173 answered NLQs is always ranked first,
effectively producing an MRR value of 1.

An evaluation of NaLIR on this workload is presented in [19].
The authors did not use the precision and recall metrics. However,
they presented an analysis on the number of failed queries. The au-
thors performed a user study in which each of the 196 NLQs in the
workload was evaluated by multiple users. Note that in our experi-
ment, we evaluate each NLQ only once. This is because ATHENA
does not require user feedback to generate the correct interpretation
for this workload and thus it always produces the same result. Al-
though the results presented in [19] are not directly comparable to
ours, it is clear that NaLIR performs poorly without user feedback
during the interpretation process. More specifically, NaLIR was
able to answer correctly only 65.3% of the queries without user
interaction. In case the users provided feedback, NaLIR answered
correctly 89.8% of the queries. Note that ATHENA provides a sim-
ilar recall without requiring user interaction.

ATHENA is not able to generate an interpretation for 23 NLQs
due to unmatched tokens and some nested query cases that we
do not handle yet. Here we present 2 examples. Consider the
NLQ “Return me the authors who have cooperated both with H.
V. Jagadish and Divesh Srivastava”. In this case, the token “co-
operated” cannot be mapped to an ontology element and thus the
NLQ interpretation process stops. In the NLQ “Return me the pa-
pers written by H. V. Jagadish and Divesh Srivastava”, the tokens
“H. V. Jagadish” and “Divesh Srivastava” are both mapped to the
Author.name property. This NLQ cannot be represented by a sin-
gle interpretation tree since the tree would contain a cycle that starts
and ends at the Author concept. The solution is to express this
NLQ using a nested OQL query. However, the Nested Query De-
tector component does not currently support this type of NLQs.

4.2.3 FIN Workload
In this section, we present the results of our user study on the

FIN ontology. As mentioned in Section 4.1.1, the FIN ontology
is much more complex than the MAS and GEO ontologies. The
corresponding SQL queries of this workload contain aggregations,
joins, unions and nested subqueries among others.

The output of ATHENA for each NLQ is presented to the user
that formulated the NLQ. The user verifies whether the interpreta-
tion that captures her intent is generated and also denotes the inter-
pretation’s ranking position. ATHENA generated at least one inter-
pretation for 97 out of the 108 NLQs of the workload. However,
it did not produce the correct interpretation for 1 of these queries,
effectively achieving a precision of 99%. As shown in Table 2,
ATHENA’s recall is 88.9% since it correctly answers 96 out of the
108 queries. For 94 of the 96 correctly answered queries, ATHENA
identified the correct interpretation as the top-ranked one. The cor-
rect interpretation for the remaining 2 queries is ranked in the sec-
ond position. Thus, the MRR value is 0.99 for this workload.

It is worth noting that 70% of the FIN queries, refer to a parent or
a union concept in the ontology. Note that systems such as NaLIR
or PRECISE would not be able to handle these NLQs. This is be-
cause they operate directly on the database schema and thus do not
exploit the rich semantics of the ontology (inheritance and mem-
bership relations). Note that NaLIR and PRECISE experimented
with datasets that do not include this type of relationships.

ATHENA is not able to generate an interpretation for 11 NLQs.
Here are 2 examples. Consider the NLQ “Total capital of small
vs. large companies by year and state”. In this case, ATHENA

1218

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Fra
ctio

n o
f Q

uer
ies

SQL Generation Time (in ms)

GEO
MAS
FIN

0.99
0.93

Figure 6: Cumulative distribution function of SQL generation
time for the three workloads

does not understand the meaning of the tokens “small” and “large”.
In the case of the NLQ “List the industry sector with highest ra-
tio of the salary of CEO to the average salary of their employee”,
ATHENA does not understand the meaning of the token “ratio”.
The remaining NLQs were rejected for similar reasons.

As noted before, ATHENA produced an incorrect answer for 1
NLQ, namely “In which sector did Citibank invest the most?”. Our
NLQ Engine creates a selection set that maps the token “sector” to
the Industry.sector property and the token “Citibank” to the
InvestorCompany.name property. As noted in Section 3.2.2, our
interpretation algorithm finds the “simplest” interpretation that cov-
ers the selection set. In this case, ATHENA picked an interpretation
tree that connects the Industry and InvestorCompany concepts
through the Company concept. However, in the correct interpreta-
tion tree, these two concepts are connected through a longer path
that spans four other intermediate concepts. Since, this interpreta-
tion tree is not the simplest one, ATHENA disregards it.

ATHENA ranks the correct interpretation of the following NLQ
in the second position: “Show me amount of transactions be-
tween Citibank and IBM”. The selection set that forms the top-
ranked interpretation maps both the “IBM” and “Citibank” to-
kens to the Company.name property and the token “amount of
transactions” to the Transaction.amount property. The corre-
sponding interpretation tree contains one edge that connects the
Company and Transaction concepts, and thus has a score equal
to 1. However, the correct interpretation is generated by an-
other selection set in which the token “Citibank” is mapped to the
InsiderCompany.name property. In this case, the interpretation
tree is more complex and has a score equal to 2. Our NLQ Engine
ranks the interpretation trees corresponding to different selection
sets in increasing order of their score. Thus, the tree that corre-
sponds to the correct interpretation is placed in the second position.

4.2.4 Performance Evaluation
In this section, we present an analysis of ATHENA’s SQL gen-

eration time, i.e., the time spent in translating the input NLQ to the
equivalent SQL query. In summary, for 90% of the NLQs contained
in our three workloads, the system is able to generate the final SQL
query in less than 120 ms, achieving its goal of interactive execu-
tion time.

Figure 6 shows, for each of the three workloads, the cumulative
distribution function (CDF) of the SQL generation time, i.e., the
fraction of queries that were translated in less than the time on the
x-axis. We have excluded the queries for which ATHENA is un-
able to find the correct interpretation. To improve readability of the
graph, we only show SQL generation times up to 500 ms. As shown
in the figure, 99%, 100% and 93% of the queries in the GEO, MAS,
and FIN workload respectively, are translated in less than 500 ms.

For the GEO and the MAS workloads, SQL generation com-
pleted within 200 ms for 99% of the queries. However, for the
more complex FIN workload, 14% of the queries took longer than
300 ms to be translated. Breaking the SQL generation time down
by components, we observed that a larger fraction of the time is
spent in the Ontology-driven Interpretations Generator and Query
Translator components for the FIN workload. We attribute this be-
havior to two factors.

First, many of the natural language queries in the FIN workload
contain tokens such as “year” and “quarter”, which match multiple
time-related properties in the ontology. Thus, a much larger space
of interpretations needs to be searched to identify the correct inter-
pretation. Excluding queries with such time-related tokens brings
the SQL generation time down in line with the other workloads
(less than 200 ms each). In future work, we intend to further re-
duce the search space by heuristically filtering time-related prop-
erties before the interpretation tree is generated. Second, the large
number of inheritance and membership relations in the FIN ontol-
ogy forces the Query Translator to spend about 21 ms on average,
as opposed to about 1 ms in the simpler GEO and MAS ontologies.

Overall, ATHENA demonstrates interactive SQL generation times
for more than 90% of the queries in our three workloads.

5. RELATED WORK
The problem of designing natural language interfaces for

databases (NLIDBs) has been studied extensively in the data man-
agement literature [3, 31]. To the best of our knowledge, our system
is the first ontology-based NLQ engine for relational databases.

As was noted in [3, 19], early NLIDBs used grammars de-
signed for specific databases, thus limiting their applicability to
other databases. More recent works such as NaLIR [3] and PRE-
CISE [30] operate directly on the database schema, as opposed to
our two stage approach designed to exploit the powerful semantics
of the ontology. While NaLIR relies on user interaction to find the
correct interpretation for ambiguous NLQs, PRECISE returns all
interpretations deemed correct according to its own approximate
definition of correctness. In contrast, ATHENA uses a novel rank-
ing scheme that greatly improves user experience, and as shown in
our experiments, it gives results that are comparable, if not more
correct, than both these systems. Nauda [16] is an early interactive
NLIDB. However, it focuses on providing additional information
than explicitly required by the NLQ with the goal of generating re-
sponses that are useful as possible (over-answering). CANaLI [24]
answers NLQs over general-purpose knowledge bases using an
RDF (as opposed to a relational) data model. However, it only
supports controlled natural language queries (following a specific
template defined by an automaton) and it does not consider inheri-
tance and membership relations in the ontology.

Keyword search interfaces over relational databases is another
well-studied area [2, 4, 6, 7, 8, 13, 14, 32, 34]. Generally, NLIDBs
support a much richer query mechanism than a flat collection of
keywords. However, the techniques developed for keyword search
systems can be useful in the context of NLIDBs. As noted in Sec-
tion 3.2.2, ATHENA builds on Steiner Tree based techniques that
have been developed for keyword search systems but significantly
extends them to handle the rich semantics of the ontology.

Works such as [10] study the problem of generating an ontol-
ogy from a relational database. These works are orthogonal to
ATHENA, since our system is flexible enough to operate on an
ontology and the corresponding relational database as long as an
ontology-to-database mapping is provided. However, these works
can be very useful for users who have an existing database and want
to generate a corresponding ontology and query it using ATHENA.

1219

Similar to OQL, UNL [17] is an intermediate language that has
been used in natural language applications. However, UNL [17]
targets mostly multilingual translation, and thus does not operate
on top of an ontology. As opposed to the work in [17], ATHENA
translates the NLQs into SQL and not into another natural lan-
guage. As a result, the OQL language constructs are designed to
facilitate the conversion to SQL whereas the UNL hypergraphs do
not have this functionality since it is not required for multilingual
translation. Another important distinction is that an OQL query
represents one or more trees of an ontology graph whereas the UNL
hypergraphs [17] encode a natural language statement without as-
sociating with a particular ontology.

WordNet [25] and BabelNet [26] are two popular frameworks
which characterize English words and provide sets of synonyms for
these words. ATHENA would be able to leverage such frameworks
to generate synonyms during its offline processing phase. However,
a challenge with these frameworks is that they do not sufficiently
incorporate the terminology of specialized domains such as finance,
healthcare, etc. Consequently, they might not be able to cover spe-
cific domains adequately and thus they are often substituted by
domain-specific dictionaries developed in house. ATHENA will
easily be able to accommodate such frameworks once they are able
to cover domain-specific applications.

6. CONCLUSIONS AND FUTURE WORK
We have presented ATHENA, an ontology-driven system for nat-

ural language querying of complex relational data stores. Using
an ontology-driven approach has two main advantages. First, it
enables a richer semantic basis for interpreting the NLQ as com-
pared to approaches which employ the database schema directly
as the basis. Our experimental results demonstrate the efficacy of
our ontology-driven interpretation algorithm. Second, the ontology
provides physical independence, by separating logical and physical
schemas. This enables the user to operate on the semantic ontol-
ogy level and allows the system to generate queries on different
relational schemata, or possibly even beyond relational data stores.

We plan to extend ATHENA to include natural language dia-
logue capabilities such that user can ask followup questions using
the context of the previous questions. This will also enable the user
to get answers to complex queries by engaging in a natural lan-
guage conversation with the system. Another extension is to han-
dle self-join queries through nesting. We also envision to use the
ontology’s structure and its associated data for automatically gen-
erating meaningful query suggestions for auto-completion of user
questions. Additionally, we plan to incorporate query recommen-
dation techniques in ATHENA in order to help the users understand
which questions can be answered from a particular ontology. Fi-
nally, we plan to extend ATHENA to support NLQs over graph and
document stores, and eventually allow cross-store queries.

7. REFERENCES
[1] Weakly Connected Directed Graph. http:

//mathworld.wolfram.com/WeaklyConnectedDigraph.html.
[2] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A System For

Keyword-Based Search Over Relational Databases. In ICDE, 2002.
[3] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural

Language Interfaces to Databases–An Introduction. Natural
Language Engineering, 1(01):29–81, 1995.

[4] Z. Bao et al. Exploratory keyword search with interactive input. In
ACM SIGMOD, 2015.

[5] J. Berant et al. Semantic Parsing on Freebase from Question-Answer
Pairs. In EMNLP, pages 1533–1544, 2013.

[6] S. Bergamaschi et al. QUEST: A Keyword Search System for
Relational Data Based on Semantic and Machine Learning
Techniques. Proc. VLDB Endow., pages 1222–1225, 2013.

[7] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword Searching and Browsing in Databases using BANKS. In
ICDE, 2002.

[8] L. Blunschi et al. SODA: Generating SQL for Business Users. Proc.
VLDB Endow., 5(10):932–943.

[9] P. Cimiano and M. Minock. Natural Language Interfaces: What is the
Problem?–A Data-driven Quantitative Analysis. In Natural Language
Processing and Information Systems, pages 192–206. Springer, 2010.

[10] C. Curino et al. Accessing and Documenting Relational Databases
Through OWL Ontologies. FQAS, 2009.

[11] Stanford Dependency Parser.
http://stanfordnlp.github.io/CoreNLP/depparse.html.

[12] I. Feinerer and K. Hornik. WordNet Interface, 2016.
[13] V. Ganti, Y. He, and D. Xin. Keyword++: A Framework to Improve

Keyword Search over Entity Databases. Proc. VLDB Endow., pages
711–722, 2010.

[14] V. Hristidis and Y. Papakonstantinou. Discover: Keyword Search in
Relational Databases. In VLDB, 2002.

[15] L. Kou, G. Markowsky, and L. Berman. A Fast Algorithm for Steiner
Trees. Acta Informatica, 15(2):141–145, 1981.

[16] D. Küpper, M. Storbel, and D. Rösner. NAUDA: A Cooperative
Natural Language Interface to Relational Databases. In ACM
SIGMOD, 1993.

[17] M. Lafourcade and C. Boitet. UNL Lexical Selection with
Conceptual Vectors. In LREC, 2002.

[18] H. Lenz and A. Shoshani. Summarizability in OLAP and Statistical
Data Bases. In SSDBM, 1997.

[19] F. Li and H. V. Jagadish. Constructing an Interactive Natural
Language Interface for Relational Databases. Proc. VLDB Endow.,
8(1):73–84, 2014.

[20] Y. Li, H. Yang, and H. V. Jagadish. NaLIX: An Interactive Natural
Language Interface for Querying XML. In ACM SIGMOD, 2005.

[21] D. Lin. Automatic Retrieval and Clustering of Similar Words. In
Proceedings of the 17th International Conference on Computational
Linguistics - Volume 2, COLING, 1998.

[22] W. S. Luk and S. Kloster. ELFS: English Language from SQL. ACM
Trans. Database Syst., 11(4):447–472, 1986.

[23] C. D. Manning et al. The Stanford CoreNLP Natural Language
Processing Toolkit. In ACL System Demonstrations, 2014.

[24] G. M. Mazzeo and C. Zaniolo. Answering Controlled Natural
Language Questions on RDF Knowledge Bases. In EDBT 2016,
pages 608–611, 2016.

[25] G. A. Miller. WordNet: A Lexical Database for English. Commun.
ACM, 38(11), 1995.

[26] R. Navigli and S. P. Ponzetto. BabelNet: The Automatic
Construction, Evaluation and Application of a Wide-coverage
Multilingual Semantic Network. Artif. Intell., 193, 2012.

[27] T. B. Pedersen et al. Extending Practical Pre-Aggregation in On-Line
Analytical Processing. In VLDB, 1999.

[28] J. Plesnı́k. A bound for the steiner tree problem in graphs.
Mathematica Slovaca, 31(2):155–163, 1981.

[29] A.-M. Popescu et al. Modern Natural Language Interfaces to
Databases: Composing Statistical Parsing with Semantic Tractability.
In COLING, 2004.

[30] A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a Theory of
Natural Language Interfaces to Databases. In IUI, 2003.

[31] U. Shafique and H. Qaiser. A Comprehensive Study on Natural
Language Processing and Natural Language Interface to Databases.
International Journal of Innovation and Scientific Research,
9(2):297–306, 2014.

[32] A. Simitsis, G. Koutrika, and Y. Ioannidis. PréCis: From
Unstructured Keywords As Queries to Structured Databases As
Answers. The VLDB Journal, pages 117–149, 2008.

[33] L. R. Tang and R. J. Mooney. Using Multiple Clause Constructors in
Inductive Logic Programming for Semantic Parsing. In ECML. 2001.

[34] S. Tata and G. M. Lohman. SQAK: Doing More with Keywords. In
ACM SIGMOD, 2008.

[35] TIMEX Annotator.
http://ilps.science.uva.nl/resources/timextag/.

1220

