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Abstract
Programming by Example (PBE) is the task of
inducing computer programs from input-output
examples. It can be seen as a type of ma-
chine learning where the hypothesis space is
the set of legal programs in some programming
language. Recent work on differentiable inter-
preters relaxes the discrete space of programs
into a continuous space so that search over pro-
grams can be performed using gradient-based op-
timization. While conceptually powerful, so far
differentiable interpreter-based program synthe-
sis has only been capable of solving very sim-
ple problems. In this work, we study modeling
choices that arise when constructing a differen-
tiable programming language and their impact on
the success of synthesis. The main motivation
for the modeling choices comes from functional
programming: we study the effect of memory al-
location schemes, immutable data, type systems,
and built-in control-flow structures. Empirically
we show that incorporating functional program-
ming ideas into differentiable programming lan-
guages allows us to learn much more complex
programs than is possible with existing differen-
tiable languages.

1. Introduction
A key decision in supervised machine learning is to choose
a hypothesis space, which is the space of possible map-
pings from inputs to outputs. Common choices for hypoth-
esis spaces are neural networks, decision trees, and near-
est neighbor models. The premise underlying this work
is that programs,1 or programs in combination with other
models like neural networks, are a useful hypothesis class
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1In this work, by “program” we mean a program that is rep-
resented as source code in a human-readable programming lan-
guage.

for machine learning. Programs are interesting models be-
cause (1) they can be very expressive—they define com-
plex modern technical infrastructure like operating systems
and the internet—and (2) they come with a strong induc-
tive bias. Programming languages are designed to make
common programming patterns compact and easy to ex-
press, and with appropriate priors this might bias a learning
method to favor hypotheses that humans consider to be nat-
ural programs. The ultimate goal of this line of work is to
build models that generalize strongly from a small amount
of data but are expressive enough to fit large, complex data
sets. Such models might be particularly applicable to se-
quential and procedural data.

However, recent results indicate that programs are a dif-
ficult hypothesis class to work with. There is significant
literature on discrete search-based techniques for program
induction (e.g., (Gulwani, 2011; Albarghouthi et al., 2013;
Feser et al., 2015; Frankle et al., 2016)), and a small amount
of recent work on gradient-based program induction (Bunel
et al., 2016; Riedel et al., 2016; Gaunt et al., 2016). (Gaunt
et al., 2016) has shown for low-level assembly-like differ-
entiable programming languages, discrete search performs
better than gradient-based search, and further that the kinds
of problems that can be solved by differentiable interpreters
are limited to simple problems like accessing an element of
an array.

One may then wonder why it is worth continuing to study
differentiable programming languages. We believe there
are three main reasons. First, differentiable programming
languages allow program-like models to be composed with
neural network-like models, which opens up many pos-
sibilities. However, the bottleneck in scaling up is that
differentiable interpreters cannot currently solve complex
problems. Second, differentiable interpreters appear funda-
mentally different from discrete search, and they may have
benefits. For example, differentiable interpreters naturally
operate in the stochastic regime with small minibatches of
data processed at each step, whereas discrete search meth-
ods typically operate in a batch regime.2 They may also
give more natural ways of handling noisy data. The re-
lated final point is that differentiable interpreters are a very

2Or in counterexample-guided inductive synthesis (CEGIS)
setting, where data instances are added to a monotonically grow-
ing active set.
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new development, and they have not been studied nearly
as extensively as discrete search techniques. We believe
it important to study them in different contexts, to better
understand where their strengths and weaknesses lie. In
this work, we focus on differentiable interpreters for higher
level programming languages than have previously been
studied.

Specifically, in this work we show that ideas from mod-
ern high-level functional programming languages can be
used to improve differentiable interpreters. We show how
to adapt several key ideas and discuss why they lead to
more powerful differentiable interpreters. In total, we de-
velop a functional programming language operating on in-
tegers and lists and a corresponding differentiable inter-
preter. In our empirical evaluation, we show the effects
on learning performance of our four modeling recommen-
dations, namely automatic memory management, the use
of combinators and if-then-else constructs to structure pro-
gram control flow, immutability of data, and an application
of a simple type system. Our experiments show that each
of these features crucially improves program learning over
existing baselines.

2. Related Work
Inductive Program Synthesis There has been signifi-
cant recent interest in synthesizing functional programs
from input-output examples in the programming lan-
guages community. Synthesis systems generally operate by
searching for a program which is correct on the examples,
using types or custom deduction rules to eliminate parts of
the search space. Among the notable systems: MYTH (Os-
era & Zdancewic, 2015; Frankle et al., 2016) synthesizes
recursive functional programs from examples using types
to guide the search for a correct program, λ2 (Feser et al.,
2015) synthesizes data structure manipulating programs
structured using combinators using types and deduction
rules in its search, ESCHER (Albarghouthi et al., 2013) syn-
thesizes recursive programs using search and a specialized
method for learning conditional expressions, and Flash-
Fill (Gulwani, 2011) structures programs as compositions
of functions and uses custom deduction rules to prune can-
didate programs. Our decision to learn functional programs
was strongly inspired by this previous work. In particular,
the use of combinators to structure control flow was drawn
from (Feser et al., 2015). The key difference in our work
is the use of differentiable interpreters and gradient-based
optimization instead of the discrete search employed in the
above works.

Neural Networks Learning Algorithms A number of
recent models aim to learn algorithms from input/output
data. Many of these augment standard (recurrent) neu-
ral network architectures with differentiable memory and

simple computation components (e.g. (Graves et al., 2014;
Kurach et al., 2016; Joulin & Mikolov, 2015; Neelakantan
et al., 2016a; Graves et al., 2016)). The main commonal-
ity between differentiable interpreters and these works is
the smoothing technique that is used to convert discrete
operations into a continuous parameterization. The main
difference is that these models use a neural network con-
troller to decide which operation to perform next, whereas
differentiable interpreter-based models store the decision
of what operations to perform in the source code itself,
in conjunction with some kind of instruction pointer that
denotes where in the source code the current execution is.
Zaremba et al. (2016) induce algorithms using a reinforce-
ment learning setup, which avoids the need for the smooth-
ing operations. Like the other above works, it uses a neu-
ral network controller to decide the order in which to per-
form operations. Reed & de Freitas (2016) learn algorithms
from strong supervision specifying which operation to per-
form at each step. Li et al. (2017) weakens the supervision
requirement somewhat but still requires supervision in the
form of sequences of basic actions and some strong super-
vision.

None of these works focus on producing source code, and
thus we do not expect them to achieve the same strong
generalization properties that come from using a source
code representation. In experiments, we will show that the
source code-based models can generalize from 5 examples,
whereas a model using a neural network-based controller
fails to do so.

Finally, the most related work is that on differentiable in-
terpreters. Bunel et al. (2016) and Riedel et al. (2016) have
used program models similar to assembly (resp. Forth)
source code to initialize solutions, and either optimize or
complete them. Gaunt et al. (2016) develops a framework
that allows comparing differentiable interpreters to several
alternative synthesis systems, focusing on low-level pro-
gramming models including Turing machines, Boolean cir-
cuits, and an assembly-like language. Our work differs
from these in that we focus on the question of how to de-
sign a programming model to improve the performance of
differentiable interpreter-based synthesis.

3. Differentiable Interpreters
We begin by reviewing differentiable interpreters and defin-
ing a basic program and data representation to introduce the
general concepts.

Programs operate on states consisting of an instruction
pointer indicating the next instruction to execute, a number
of registers holding inputs and intermediate results of exe-
cuted instructions, and a heap containing memory allocated
by the program. We focus on list-manipulating programs,
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so we use a heap represented as an array of (data, pointer)
value pairs, where pointers are indices of this array, or the
special 0 value. To represent a linked list, each cell points
to the next cell in the list, except for the last cell, which
points to 0. The elements of the list are stored in the data
part of each heap location.

Program Representation. All of our models share a ba-
sic instruction set, namely the constructor cons which
stores a (data, pointer) value pair on the heap and returns a
pointer to the newly created heap cell, the heap accessors
(head & tail) which return the data (resp. pointer) ele-
ment of a heap cell, integer addition, increment and decre-
ment (add, inc, dec), integer equality and greater-than
comparison (eq & gt), Boolean conjunction and disjunc-
tion (and & or), common constants (zero & one), and
finally a noop instruction. These all have the expected se-
mantics, although we will discuss the behavior of cons in
detail later.

We pick a maximal integer value M , a number of instruc-
tions I , and a number of registers R. In this introductory
setting, the size of the heap memory H has to be equal to
the maximal integer value M , but we will relax this later.

We limit the length of programs to some value P ,
and can then encode programs as a sequence of tuples
(o(p), i (p), a

(p)
1 , a

(p)
2 ), where i (p) ∈ [1, I ] identifies the p-

th instruction and o(p), a
(p)
1 , a

(p)
2 ∈ [1,R] its output and

argument registers respectively.

Interpreter. An interpreter takes a program description
and executes it. In our setting we limit the number of
execution timesteps T and keep a program state s(t) =

(p(t), r
(t)
1 . . . r

(t)
R , h

(t)
1 . . . h

(t)
H ) for each timestep t , where

p(t) ∈ [1,P ] is an instruction pointer indicating which in-
struction to execute next, r (t)∗ are the values of registers,
and h

(t)
∗ are the values of the (pointer, data) cells in the

heap. The interpreter works by iteratively updating the pro-
gram state by executing the next instruction, which is de-
termined by the instruction pointer. For example, execut-
ing (o, add, a1, a2) on a state at timestep t yields
the following registers at the next timestep:

r (t+1)
u =

{
r
(t)
a1 + r

(t)
a2 mod M if u = o

r
(t)
u otherwise.

∀u ∈ [1,R]

Differentiable Interpreter. To make an interpreter dif-
ferentiable, we follow earlier work (e.g. (Graves et al.,
2014; Kurach et al., 2016; Bunel et al., 2016; Riedel et al.,
2016; Gaunt et al., 2016)) and replace all discrete values
with probability distributions over their values and lift all
operations to operate on probability distributions instead of
discrete values by averaging over all the possibilities with

weights given by the probability distributions. For exam-
ple, if η(s(t), (o, i , a1, a2)) computes the state obtained by
executing the instruction (o, i , a1, a2), we can compute the
next state s(t+1) as follows, where Jx = nK denotes the
probability that a variable x encoding a discrete probability
distribution assigns to the value n.

s(t+1) =
∑

p∈[1,P ],i∈[1,I ],
o,a1,a2∈[1,R]

Jp(t) =pK · Jo(p)=oK · Ji (p)= iK
·Ja(p)

1 =a1K · Ja(p)
2 =a2K

·η(s(t), (o, i , a1, a2))

(1)

We can then differentiate with respect to the parameters of
these probability distributions. To do program synthesis,
we randomly initialize the representation of the program
(a collection of probability distributions over discrete val-
ues) and then use gradient ascent to find distributions over
program variables that (locally) maximize the log proba-
bility of observed (discrete) output values given observed
(discrete) input values. In a bit more detail, our aim is to
learn the program parameters (o(p), i (p), a

(p)
1 , a

(p)
2 ) such

that program “evaluation” according to (1) starting on a
state s(0) initialized to an example input yields the target
output in s(T). For scalar outputs such as a sum of values,
our objective is simply to minimize the cross-entropy be-
tween the distribution in the output register r(T)

R and a point
distribution with all probability mass on the correct output
value. In practice, we developed our models in Terp r et.
See Gaunt et al. (2016) for more details.

4. Differentiable Functional Program
Interpreters

In the following, we will discuss how and why to add func-
tional programming features to differentiable interpreters.
We start with the simple assembly-like language from the
previous section and progress to a differentiable version
of a simple functional programming language. We be-
gin by developing an observation model for list-structured
data, and then we make four modeling recommendations
inspired by functional programming. Empirically, we
will demonstrate the benefit of these recommendations in
Sect. 5.

4.1. Observation Model for List Data

We first discuss a new observation model for list-structured
data. Handling list outputs is more complex than scalar
values, as there are many ways for a target list to be rep-
resented in memory. Intuitively, we will traverse the heap
from the returned heap address until reaching the end of
a linked list, recording the list elements as we go, and
then we will observe the sequence of elements that was
recorded. To formalize this intuition, let dh

(T)
k (resp.

ph
(T)
k ) denote the data (resp. pointer) information in the
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heap cell at address k at the final state of the evaluation.
We then compute the traversal sequences of list element
values v1, . . . , vH and addresses a1, . . . , aH as follows.

ai =

{
r
(T)
R if i = 1∑
a∈[1,H ]Jai−1 = aK · ph(T)

a otherwise

vi =
∑

a∈[1,H ]

Jai = aK · dh(T)
a

The probability that the computed output list is equal to
an expected output list [v̄1, . . . , v̄k] is then Jak+1 = 0K ·∑k

i=1Jvi = v̄iK.

4.2. Structured Control Flow

1:
out

←
instr arg1 arg2 branch

2:
out

←
instr arg1 arg2 branch

. . .

Figure 1

Our baseline program
model corresponds
closely to an assembly
language as used in
earlier work (Bunel
et al., 2016), resulting in a program model as shown in
Fig. 1, where boxes correspond to learnable parameters.
We extend our instruction set with jump-if-zero (jz),
jump-if-not-zero (jnz) and return instructions. Our
assembly program representation also includes a “branch”
parameter b specifying the new value of the instruction
pointer for a successful conditional branch. To learn
programs in this language, the model must learn how to
create the control flow that it needs using these simple
conditional jumps. Note that the instruction pointer suffers
from the same problems as the stack pointer above, i.e.,
uncertainty about its value blurs together the effects of
many possible program executions.

pre1:
out

←
instr arg1 arg2 cond

pre2: . . .

foreach ele in
reg

loop1:
out

←
instr arg1 arg2 cond

loop2: . . .

suf 1:
out

←
instr arg1 arg2 cond

suf 2: . . .

Figure 2

A key differ-
ence between
hardware-level
assembly lan-
guages and
higher-level
programming
languages is
that higher-level
languages struc-
ture control flow using loops, conditional statements,
and procedures, as raw gotos are famously considered
harmful (Dijkstra, 1968). Functional languages go a step
further and leverage higher-order functions to abstract
over common control flow patterns such as iteration over
a recursive data structure. In an imperative language,
such specialized control flow is often repeated and mixed
with other code. In the differentiable interpreter setting,
structured control flow gives an additional benefit, which
is that it reduces uncertainty in the instruction pointer.

To introduce structured control flow, we replace raw
jumps with an if-then-else instruction and an explicit
foreach loop that is suited for processing lists. We re-
strict our model to a prefix of instructions, a loop which
iterates over a list, and a suffix of instructions. The parame-
ters for instructions in the loop can access an additional reg-
ister that contains the value of the current list element. An
outline of such a program is shown in Fig. 2. This removes
uncertainty about the value of the instruction pointer, as
each time step corresponds to exactly one “line” in the pro-
gram template. To implement this behavior in practice, we
unroll the loop for a fixed number of iterations derived from
the bound on the size of the input, which ensures that every
input list can be processed.

For the if-then-else instruction, we extend the in-
struction representation with a “condition” parameter c ∈
[1,R] and let the evaluation of if-then-else yield its
first argument when the register c is non-zero and the sec-
ond argument otherwise. An overview of the structure of
such programs is displayed above.

foldli:

acc ←
reg

idx ← 0

foreach ele in
reg

out
←

instr arg1 arg2 cond

. . .

acc ←
reg

idx ← idx + 1
out

← acc

Figure 3

We note that while
fixing the iteration
over the list elements
is already helpful,
learning most list-
processing programs
requires the model to
repeatedly infer the
concepts of creating a
new list, aggregating
results and keeping

track of the current list index. In functional programming
languages, such regular patterns are encapsulated in
combinators. Thus, in a second model, we replace the
simple foreach loop with three combinators: mapi
creates a new list by applying a function to each element
of the input list, zipWithi creates a new list by iterating
over two lists in parallel and applying a function to both
elements, and foldli computes a value by iterating over
all list elements and applying a function to the current list
element and the value computed so far. A program model
using the foldli combinator is shown in Fig. 3. The i
suffix indicates that these combinators additionally provide
the index of the current list element (the precise semantics
of the combinators are presented in Sect. A.2).

Recommendation (L): Instead of raw jumps, use loop and
if-then-else templates.

4.3. Memory Management

Most modern programming languages eschew manual
memory management and pointer manipulation where pos-
sible. Instead, creation of heap objects automatically gen-
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erates an appropriate pointer to fresh memory. Similarly,
built-in constructs allow access to fields of objects, instead
of requiring pointer arithmetic. Both of these choices move
program complexity into the fixed implementation of a pro-
gramming language, making it easier to write correct pro-
grams.

As the programs we want to learn need to construct new
lists, we explored two memory allocation mechanism that
provides fresh cells. First, we attempted to use a stack
pointer sp which always points to the next free memory
cell, and fixing a maximum stack size H . Whenever a
memory cell is allocated (i.e., a cons instruction is exe-
cuted), the stack pointer is incremented.

There are two problems with this allocation mechanism.
1) We must maintain a copy of the heap and stack pointer
for each timestep t . For large values of T or H , this sig-
nificantly increases the size of the model. 2) Uncertainty
about whether an instruction is cons translates into un-
certainty about the precise value of the stack pointer, as
each call to cons changes sp. This uncertainty causes
cells holding results from different instructions in the stack
to blur together, despite the fact that cells are immutable
once created. As an example, consider the execution of
two instructions, where the first is cons 1 0 with proba-
bility 0.5 and noop otherwise, and the second is cons 2
0 with probability 0.5 and noop otherwise. After execut-
ing starting with sp = 1, the value of sp will be blurred
across three values 1, 2 and 3 with probabilities 0.25, 0.5
and 0.25. Similarly, the value of the first heap cell will be
0 (the default) with probability 0.25, 1 with probability 0.5
and 2 with probability 0.25. This blurring effect becomes
stronger with longer programs, and we found that it sub-
stantially impacted learning.

Both of these problems can be solved by transitioning to
a fully immutable representation of the heap. In this vari-
ant, we allocate and initialize one heap cell per timestep,
i.e., we set H = T . If the current instruction is a cons,
the appropriate values are filled in, otherwise both data and
pointer value are set to a default value (in our case, 0). This
eliminates the issue of blurring between outputs of different
instructions. The values of a heap cell may still be uncer-
tain as they inherit uncertainty about the executed instruc-
tions and the values of arguments, but depend only on the
operations at one timestep. Because there is no uncertainty
about whether to fill in a heap cell, we keep a single copy of
the heap and use the current timestep t as the stack pointer.
While this modification requires a larger domain to store
pointers, we found not copying the stack significantly re-
duces memory usage during training of our models.

Recommendation (F): Use fixed heap memory allocation
deterministically controlled by the model.

4.4. Immutable Data

In functional programming, functions are expected to not
have side effects, and all data is immutable. This helps
programmers reason about their code, as it eliminates the
possibility that a variable might be left uninitialized or ac-
cessed in an inconsistent state. Moreover, no data is ever
“lost” by being overwritten or mutated.

In training initial models, we observed that many random
initializations of the program parameters would overwrite
input data or important intermediate results. In models with
combinators that provide a way to accumulate result values,
we can sidestep this issue by making registers immutable.
To do so, we create one register per timestep, and fix the
output of each instruction to the register for its timestep.
Parameters for arguments then range over all registers ini-
tialized in prior timesteps, with an exception for the clo-
sures executed by a combinator. Here, each instruction only
gets access to the inputs to the closure, values computed
in the prefix, and registers initialized by preceding instruc-
tions in the same loop iteration. As in the heap allocation
case, we can avoid keeping a copy of all registers for ev-
ery timestep, and instead share these values over all steps.
A somewhat unintuitive consequence is that this strategy
reduces memory footprint of the model.

Recommendation (I): Use immutable registers by deter-
ministically choosing where to store outputs.

4.5. Types

In programming languages, expressive type systems are
used to protect programmers from writing programs that
will fail. Practically, a type checker is able to rule out many
syntactically correct programs that are certain to fail at run-
time, and thus restricts the space of valid programs. When
training initial models, we found that for many initializa-
tions, training would fall into local minima corresponding
to ill-typed programs, e.g., where references to the heap
would be used in integer additions. We expect the learned
program to be well-typed, so we introduce a simple type
system. We explored two approaches to adding a type sys-
tem.

Our first attempt extended the objective with a penalty for
type errors. In our programs, we use three simple types
of data—integers, pointers and booleans—as well as a spe-
cial type,⊥, which represents type errors. We extended the
program state to contain an additional element tr for each
register, encoding its type. Each instruction then not only
computes a value that is assigned to the target register, but
also a type for the target register. Most significantly, if one
of the arguments has an unsuitable type (e.g., an integer in
place of a pointer), the resulting type is ⊥. We then ex-
tended our objective function to add a penalty for values
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with type ⊥. Unfortunately, this changed objective func-
tion had neither a positive nor negative effect on our exper-
iments, so it seems that optimizing for the correct type is
redundant when we are already optimizing for the correct
return value.

In our second attempt, rather than penalizing ill-typed pro-
grams, we prevent programs from accessing ill-typed data
by construction. We augment our register representation by
adding an integer, pointer, and Boolean slot to each regis-
ter, so each register can hold a separate value of each type.
Instructions which read from registers now read from the
slot corresponding to the type of the argument. When writ-
ing to a register, we write to the slot corresponding to the
instruction’s return type, and set the other slots to a default
value 0. This prevents any ill-typed sequence of instruc-
tions, i.e., it is now impossible to, for example, increment
a pointer value or to fill the pointer part of a heap cell with
a non-pointer value. Furthermore, this modification allows
us to set the heap size H to a value different from the max-
imal integer M because it allows pointers and integers to
have different maximum values.

Recommendation (T): Use different storage for data of
different types.

5. Experiments
We have empirically evaluated our modeling recommen-
dations on a selection of program induction tasks of in-
creasing complexity, ranging from straight-line programs
to problems with loops and conditional expressions. All of
our models are implemented in Terp r et(Gaunt et al., 2016)
and we learn using Terp r et’s TENSORFLOW (Abadi et al.,
2015) backend.

For all tasks, three groups of five input/output example
pairs were sampled as training data and another 25 in-
put/output pairs as test data. For each group of five ex-
amples, training was started from 100 random initializa-
tions of the model parameters. After training for 3500
epochs (tests with longer training runs showed no signif-
icant changes in the outcomes), the learned programs were
tested by discretizing all parameters and comparing pro-
gram outputs on test inputs with the expected values. We
perform 300 runs per model and task, and report only the
ratio of successful runs. A run is successful if the dis-
cretized program returns the correct result on all five train-
ing and 25 test examples.3 The ratio of runs converging to
zero loss on the training examples was within 1% of the
number of successful runs, i.e., very few found solutions
failed to generalize.

3We inspected samples of the obtained programs as well and
verified that they were indeed correct solutions. See Sect. A.3 for
some of the learned programs.

We performed a cursory exploration of hyperparameter
choices, sampling 100 hyperparameter settings (choosing
optimization algorithm, learning rate, gradient noise, (de-
cay of) entropy bonus, and gradient clipping) and tested
their effect on two simple tasks. We ran the remaining ex-
periments with the best configuration obtained by this pro-
cess: the RMSProp optimization algorithm, a learning rate
of 0.1, clipped gradients at 1, and no gradient noise.

We consider the ratio of successful runs as earlier work
has identified this as a significant problem. For example,
(Neelakantan et al., 2016b) reports that even after a (task-
specific) “large grid search” of hyperparameters, the Neu-
ral Random Access Machine converged only in 5%, 7%
and 22% of random restarts on the considered tasks. Sim-
ilar observations were made in (Kaiser & Sutskever, 2016;
Bunel et al., 2016; Gaunt et al., 2016) for related program
learning models.

In our experiments we evaluate the effect of the choices dis-
cussed in Sect. 4, comparing seven model variants in total.
We call our initial assembly model A and its variation with
a fixed memory allocation scheme A+F. All other models
use the fixed memory allocation scheme. The extension
of the assembly model with a built-in foreach loop is
called A+L. The model including predefined combinators
is called C, where C+I (resp. C+T) are its extensions with
immutable registers (resp. typed registers). Finally, C+T+I
combines all of these, making it a simple end-to-end differ-
entiable functional programming language.

As baselines, we consider λ2 (Feser et al., 2015), a strong
program synthesis baseline from programming languages
research, and an implementation of the Neural Random Ac-
cess Machine (NRAM) (Kurach et al., 2016). We chose λ2

because of its built-in support for list-processing programs.
As λ2 is deterministic, we only report a success ratio of
either 1 (if a program matching all input-output examples
was generated) or 0 (if no so such program was generated)
for all experiments. We ran λ2 with a timeout of 600 sec-
onds. We give a detailed description of our NRAM model
and experimental results separately in Sect. 5.4.

5.1. Straight-line programs

In our first experiment, we consider two families of sim-
ple problems—solvable with straight-line programs—to
study the interaction of our modeling choices with program
length. Our first benchmark task is to duplicate a scalar in-
put a fixed number k times to create a list of length k. Our
second benchmark is to retrieve the k-th element of a list,
again fixing k beforehand (we will consider a generaliza-
tion of this task where k is a program input later). We set
the hyperparameters for all models to allow 11 statements,
i.e., for A and A+F we have set the program length to 11,
and for the A+L and C* models we have set the prefix and
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Figure 4: Success ratio of our models on straight-line programs of increasing length

loop length to 0 and the suffix length to 11. For models
where the number of registers does not depend on the num-
ber of timesteps, we use 3 registers, with one initialized
to the input. This allows for ∼ 1039 programs in the A,
A+F, C+I, and C+T+I models and for ∼ 1028 programs
in the remaining models. These parameters were chosen to
be slightly larger than required by the largest program to
be learned. For all of our experiments, the maximal inte-
ger M was set to 20 for models where possible (i.e., for A,
C+T+I, C+T), and to H (derived from T , coming to 22)
for the others.4

We evaluated all of our models following the regime dis-
cussed above and present the results in Fig. 4 for k values
from 1 to 9. The difference between A and A+F on the
dupK task illustrates the significance of Recommendation
(F) to fix the memory allocation scheme. Following Rec-
ommendation (T) to separate values of different types im-
proves the results on both tasks, as the differences between
C+T+I (resp. C+T) and C+I (resp. C) illustrate.

5.2. Simple loop programs

In our second experiment, we compare our models on three
simple list algorithms: computing the length of a list, re-
versing a list and summing a list. Model parameters have
been set to allow 6 statements for the A and A+F mod-
els, and empty prefixes, empty suffixes, and 2 instructions
in the loop for the other models. For models where the
number of registers does not depend on the number of
timesteps, we use 4 registers, with one initialized to the
input.

The results of our evaluation are displayed in Tab. 1, starkly
illustrating Recommendation (L) to use predefined loop
structures. We speculate that learning explicit jump targets
is extremely challenging because changes to the parame-
ters controlling jump target instructions have outsized ef-
fects on all computed (intermediate and output) values. On
the other hand, models that could choose between different
list iteration primitives were able to find programs for all

4We also experimented with varying the value of M . Choices
over 20 showed no significant differences to smaller values.

tasks. We again note the effect of Recommendation (T)
to separate values of different types on the success ratios
for the len and sum examples, and the effect of Recom-
mendation (I) to avoid mutable data on results for len and
rev.

5.3. Loop Programs

In our main experiment, we consider a larger set of com-
mon list-manipulating tasks (such as checking if all/one el-
ement of a list is greater than a bound, retrieving a list ele-
ment by index, finding the index of a value, and computing
the maximum value). Descriptions of all tasks are shown in
Sect. A.1 in the appendix. We do not show results for the
A and A+F models, which always fail. We set the param-
eters for the remaining models to M = 32 where possible
(M = H = 34 for the others), the length of the prefix to 1,
the length of the closure / loop body to 3 and the length of
the suffix to 2. Again, these parameters are slightly larger
than required by the largest program to be learned.

Table 2: Success ratios for full set of tasks.
Program C+T+I C+T C+I C A+L λ2

len 98.67 96.33 0.67 0.33 0.00 100.00
rev 18.00 10.33 2.67 8.33 9.67 100.00
sum 38.00 38.33 1.00 0.00 10.00 100.00

allGtK 0.00 0.00 0.00 0.33 0.00 100.00
exGtK 3.00 1.00 0.67 0.00 0.67 100.00
findLastIdx 0.33 0.00 0.00 0.00 0.00 0.00
getIdx 1.00 0.00 0.00 0.00 0.00 0.00
last2 0.00 8.00 0.00 2.00 23.00 0.00
mapAddK 100.00 98.00 100.00 95.67 0.00 100.00
mapInc 99.67 98.00 99.33 97.00 0.00 100.00
max 2.33 5.67 0.00 0.00 0.33 100.00
pairwiseSum 43.33 32.33 43.67 33.67 0.00 100.00
revMapInc 0.00 0.67 0.00 0.00 6.33 100.00

The results for our experiments on these tasks are shown
in Tab. 2. Note the changed results of the examples from
Sect. 5.2, as the change in model parameters has increased
the size of the program space from ∼ 107 to ∼ 1020. The
comparison to the A+L model show the value of built-in
iteration and aggregation patterns. The choice between im-
mutable and mutable registers is less clear here, seemingly
dampened by other influences. An inspection of the gen-
erated programs (eg. Fig. 10 in the appendix) reveals that
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Table 1: Success ratio for experiments on simple loop-requiring tasks.

Program C+T+I C+T C+I C A A+F A+L λ2

len 100.00 75.00 100.00 43.67 0.00 0.00 15.67 100.00
rev 48.33 32.67 46.33 41.33 0.00 0.00 86.33 100.00
sum 91.67 41.00 88.33 30.67 0.00 0.00 32.67 100.00
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Figure 5: Success ratio of NRAM on len

mutability of registers can sometimes be exploited to find
elegant solutions. Overall, it may be effective to combine
both approaches, using a few mutable “scratch value” reg-
isters and immutable default output registers for each state-
ment.

5.4. Comparison with NRAM

Our hypothesis was that the NRAM controller would fail
to generalize when trained on a small set of input-output
examples. As we believe that programming by example
use cases usually operate on small numbers of examples,
we explicitly tested this hypothesis on the most simple list-
processing task len. While not considered in (Kurach et al.,
2016), it is slightly simpler than the ListK and ListSearch
tasks that are classified as “Hard Tasks” there. We note that
while very different, the NRAM model implements some
of our recommendations: The RNN-like structure imposes
a basic loop structure, and the output of each module (i.e.,
instruction in our setting) is stored in a fixed register that is
immutable during a loop iteration.

For our experiments, we simplified the NRAM model sig-
nificantly and only provided the modules READ, ZERO,
ONE, INC, ADD, and DEC operating on integers. Most no-
tably, the absence of WRITE means that the heap remains
unchanged during program execution. We considered three
related models: “min”, in which only the modules required
in each iteration of a perfect solution are available,5“all”
in which all modules are available once,6 and “all2”, in
which all modules are available twice. We fixed the max-

5For len, this was INC, INC, READ.
6Note that this is the most challenging setting, as this requires

the controller to choose different instructions in alternating itera-
tions: One setting to advance the list pointer, and one to increment
the length counter.

imal length of input lists to 5, and the maximal integer to
11.

For each model, we performed an extensive random hy-
perparameter search (choosing the optimizer, learning rate,
momentum, size of the LSTM cell in the NRAM con-
troller, gradient noise, gradient clipping parameters, en-
tropy bonus, dropout probability), using 20 random restarts
on 200 input-output pairs, with validation and test sets of
(disjoint) 50 examples each. We stopped training after 200
epochs, or if the accuracy on the validation set reached
100% (most successful runs stopped after few epochs). A
run was counted as successful if the accuracy of the dis-
cretized model on the test was 100%, i.e., if the trained
model successfully generalized to unseen data of the same
size. For the best hyperparameter settings, we then var-
ied the size of the training set from 200 down to 10 in in-
crements of 10, keeping the size of the validation set at a
quarter of the size of the training set. The results are dis-
played in Fig. 5. We note that only the “min” model, where
the NRAM controller chooses between only 600 syntacti-
cally different programs in each iteration, has any success
with training sets smaller than 50. Thus, our experiments
confirm our hypothesis that NRAM-like models fail to gen-
eralize from little data.

6. Discussion and Future Work
We have discussed a range of modeling choices for end-to-
end differentiable programming languages and made four
design recommendations. Empirically, we have shown
these recommendations to significantly improve the suc-
cess ratio of learning programs from input/output exam-
ples, and we expect these results to generalize to similar
models attempting to learn programs.

In this paper, we only consider list-manipulating programs,
but we are interested in supporting more data structures,
such as arrays (which should be a straightforward exten-
sion) and associative maps. We also only support loops
over lists at this time, but are interested in extending our
models to also have built-in support for loops counting
up to (and down from) integer values. A generalization
of this concept would be an extension allowing the learn-
ing and use of recursive functions. Recursion is still more
structured than raw goto calls, but more flexible than the
combinators that we currently employ. An efficient imple-
mentation of recursion is a challenging research problem,
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but it could allow significantly more complex programs to
be learned. Modeling recursion in an end-to-end differen-
tiable language could allow us to build libraries of (learned)
differentiable functions that can be used in later synthesis
problems.

However, we note that with few exceptions on long
straight-line code, λ2 performs better than all of our consid-
ered models, and is able to synthesize programs in millisec-
onds. We see the future of differentiable programming lan-
guages in areas in which deterministic tools are known to
perform poorly, such as the integration of perceptual data,
priors and “soft” side information such as natural language
hints about the desired functionality.
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Colmenarejo, Sergio Gómez, Grefenstette, Edward, Ra-
malho, Tiago, Agapiou, John, et al. Hybrid computing
using a neural network with dynamic external memory.
Nature, 2016.

Gulwani, Sumit. Automating string processing in spread-
sheets using input-output examples. In ACM SIGPLAN
Notices, volume 46, pp. 317–330. ACM, 2011.

Joulin, Armand and Mikolov, Tomas. Inferring algorithmic
patterns with stack-augmented recurrent nets. In Pro-
ceedings of the 28th Conference on Advances in Neural
Information Processing Systems (NIPS), pp. 190–198,
2015.

Kaiser, Łukasz and Sutskever, Ilya. Neural GPUs learn
algorithms. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.
URL http://arxiv.org/abs/1511.08228.

Kurach, Karol, Andrychowicz, Marcin, and Sutskever,
Ilya. Neural random-access machines. In Proceedings
of the 4th International Conference on Learning Repre-
sentations (ICLR), 2016. URL http://arxiv.org/
abs/1511.06392.

Li, Chengtao, Tarlow, Daniel, Gaunt, Alexander L.,
Brockschmidt, Marc, and Kushman, Nate. Neural pro-
gram lattices. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), 2017.

Neelakantan, Arvind, Le, Quoc V., and Sutskever, Ilya.
Neural programmer: Inducing latent programs with gra-
dient descent. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016a.

Neelakantan, Arvind, Vilnis, Luke, Le, Quoc V., Sutskever,
Ilya, Kaiser, Lukasz, Kurach, Karol, and Martens,
James. Adding gradient noise improves learning for very
deep networks. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016b.
URL http://arxiv.org/abs/1511.06807.

Osera, Peter-Michael and Zdancewic, Steve. Type-and-
example-directed Program Synthesis. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2015, pp.
619–630. ACM, 2015. ISBN 978-1-4503-3468-6. doi:
10.1145/2737924.2738007.

Reed, Scott E. and de Freitas, Nando. Neural programmer-
interpreters. In Proceedings of the 4th International
Conference on Learning Representations (ICLR), 2016.
URL http://arxiv.org/abs/1511.06279.

Riedel, Sebastian, Bosnjak, Matko, and Rocktäschel, Tim.
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A. Appendix
A.1. Experiment Tasks

Name Description

len Return the length of a list.
rev Reverse a list.
sum Sum all elements of a list.

allGtK Check if all elements of a list are greater than k.
exGtK Check if at least one element of a list is greater k.
findLastIdx Find the index of the last list element which is equal to v.
getIdx Return the kth element of a list.
last2 Return the 2nd to last element of a list.
mapAddK Compute list in which k has been added to each element of the input list.
mapInc Compute list in which each element of the input list has been incremented.
max Return the maximum element of a list.
pairwiseSum Compute list where each element is the sum of the corresponding elements of

two input lists.
revMapInc Reverse a list and increment each element.

Our example tasks for loop based programs. “Simple”
tasks are above the line.

A.2. Combinators

Semantics of foldli, mapi, zipwithi in a Python-like
language:

function FOLDLI(list, acc, func)
idx← 0
for ele in list do

acc← func(acc, ele, idx)
idx← idx+ 1

return acc

function MAPI(list, func)
idx← 0
ret← [ ]
for ele in list do

ret← append(ret, func(ele, idx))
idx← idx+ 1

return ret
function ZIPWITHI(list1, list2, func)

idx← 0
ret← [ ]
for ele1, ele2 in list1, list2 do

ret← append(ret, func(ele1, ele2, idx))
idx← idx+ 1

return ret

A.3. Selected Solutions

We show example results of our training in Figs. 6-18.
Note that these are the actual results produced by our sys-
tem, and have only been slightly edited for typesetting. Fi-
nally, we have colored statements that a simple program
analysis can identify as not contributing to the result in
gray.
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r0 ← l
r1 ← k
r2 ← r0 ∨ r0
r1 ← foldli r0 r0 (λ ele acc idx→

r0 ← ele > r1
r2 ← head acc
r2 ← r0 ∧ acc
r2)

r2 ← r1 ∧ r0
r1 ← r1
return r2

Figure 6: A solution to allGtK in the C model. Code in gray is dead.

let r0 = l in
let r1 = k in
let r2 = (r0 = r1) in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc ∨ acc in
let c1 = ele > r1 in
let c2 = c0 ∨ c1 in
c2) in

let r4 = r3 ∨ r3 in
let r5 = r3 ∧ r2 in
return r4

r0 ← l
r1 ← k
r2 ← r2 = r1
for ele in r0 do

r0 ← if r2 then ele else r1
r0 ← ele > r1
r2 ← r2 ∨ r0

r2 ← r2 ∨ r0
r1 ← r2 ∨ r2
return r2

Figure 7: Solutions to exGtK in the C+T+I and A+L models.

let r0 = l in
let r1 = e in
let r2 = r0 + 1 in
let r3 = foldli r0 r2 (λ ele acc idx→

let c0 = if r2 then idx else r1 in
let c1 = (r1 = ele) in
let c2 = if c1 then idx else acc in
c2) in

let r4 = r3 + 1 in
let r5 = r2 in
return r3

Figure 8: A solution to findLastIdx in the C+T+I model.

let r0 = l in
let r1 = k in
let r2 = head r0 in
let r3 = foldli r0 r2 (λ ele acc idx→

let c0 = (r1 = idx) in
let c1 = if c0 then ele else acc in
let c2 = if idx then idx else c0 in
c1) in

let r4 = head r0 in
let r5 = tail r0 in
return r3

Figure 9: A solution to getIdx in the C+T+I model.
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r0 ← l
r1 ← 0
r2 ← nil
r2 ← foldli r0 r1 (λ ele acc idx→

r0 ← acc
r2 ← r1
r1 ← ele
r2) in

r0 ← r2 + r2
r0 ← r0 + 1
return r2

r0 ← l
r1 ← 0
r2 ← cons r0 r0
for (ele1, ele2) in (r0, r2) do

r2 ← if r2 then ele2 else ele2
r1 ← r2 − 1
r1 ← head r0

r1 ← if r1 then r2 else r0
r0 ← if r2 then r0 else r1
return r2

Figure 10: Solutions to last2 in the C+T and A+L models.

let r0 = l in
let r1 = 0 in
let r2 = tail r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = idx+ 1 in
let c1 = if r1 then r2 else c0 in
let c2 = c0 = ele in
c0) in

let r4 = if r2 then r3 else r3 in
let r5 = r3 + r2 in
return r3

Figure 11: A solution to len in the C+T+I model.

let r0 = l in
let r1 = k in
let r2 = if r1 then r0 else r0 in
let r3 = mapi r0 (λ ele idx→

let c0 = ele− 1 in
let c1 = c0 − 1 in
let c2 = r1 + ele in
c2) in

let r4 = r3 in
let r5 = r3 in
return r3

Figure 12: A solution to mapAddK in the C+T+I model.

let r0 = l in
let r1 = 0 in
let r2 = r0 in
let r3 = mapi r0 (λ ele idx→

let c0 = if r1 then ele else acc in
let c1 = ele+ 1 in
let c2 = r1 in
c1) in

let r4 = cons r3 r0 in
let r5 = r4 in
return r3

Figure 13: A solution to mapInc in the C+T+I model.
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let r0 = l in
let r1 = 0 in
let r2 = tail r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc > ele in
let c1 = acc in
let c2 = if c0 then acc else ele in
c2) in

let r4 = r2 − 1 in
let r5 = head r2 in
return r3

r0 ← l
r1 ← 0
r2 ← r0 − 1
for (ele1, ele2) in (r0, r0) do

r0 ← ele1
r1 ← ele1 > r2
r2 ← if r1 then ele1 else r2

r0 ← r0 + r0
r0 ← cons r2 r2
return r2

Figure 14: Solutions to max in the C+T+I and A+L models.

let r0 = l1 in
let r1 = l2 in
let r2 = if r1 then r0 else r1 in
let r3 = zipWithi r1 r0 (λ ele1 ele2 idx→

let c0 = ele1 + ele2 in
let c1 = ele2− 1 in
let c2 = idx− 1 in
c0) in

let r4 = if r0 then r3 else r1 in
let r5 = if r4 then r2 else r1 in
return r3

Figure 15: A solution to pairwiseSum in the C+T+I model.

let r0 = l in
let r1 = 0 in
let r2 = cons r0 r0 in
let r3 = foldli r0 r1 (λ ele acc idx→

let c0 = cons ele acc in
let c1 = cons acc acc in
let c2 = cons ele acc in
c2) in

let r4 = if r2 then r3 else r2 in
let r5 = cons r4 r3 in
return r3

r0 ← l
r1 ← 0
r2 ← tail r1
for ele1 in r0 do

r1 ← cons ele2 r0
r2 ← cons ele1 r2
r1 ← tail r0

r0 ← tail r0
r0 ← cons r2 r1
return r2

Figure 16: Solutions to rev in the C+T+I and A+L models.

r0 ← l
r1 ← 0
r1 ← tail r0
r2 ← foldli r0 r2 (λ ele acc idx→

r2 ← ele+ 1
r0 ← cons r2 acc
r2 ← cons r2 acc
r2)

r1 ← cons r2 r1
r0 ← cons r2 r0
return r2

r0 ← l
r1 ← 0
r1 ← 1
for ele1 in r0 do

r0 ← ele1 + 1
r1 ← 1
r2 ← cons r0 r2

r1 ← cons r0 r2
r1 ← cons r0 r2
return r2

Figure 17: Solutions to revMapInc in the C+T and A+L models.
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let r0 = l in
let r1 = 0 in
let r2 = r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc+ r0 in
let c1 = acc+ ele in
let c2 = if r0 then idx else r1 in
c1) in

let r4 = r2 + 1 in
let r5 = r3 − 1 in
return r3

r0 ← l
r1 ← 0
r1 ← if r2 then r1 else r0
for ele1 in r0 do

r2 ← ele1 + r2
r1 ← cons r2 r0
r1 ← ele1 + ele2

r0 ← r1 + r1
r0 ← r2 + 1
return r2

Figure 18: Solutions to sum in the C+T+I and A+L models.


