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Abstract
Safe programming languages are readily available, but many
applications continue to be written in unsafe languages be-
cause of efficiency. As a consequence, many applications
continue to have exploitable memory safety bugs. Since
garbage collection is a major source of inefficiency in the
implementation of safe languages, replacing it with safe
manual memory management would be an important step
towards solving this problem.

Previous approaches to safe manual memory manage-
ment use programming models based on regions, unique
pointers, borrowing of references, and ownership types. We
propose a much simpler programming model that does not
require any of these concepts. Starting from the design of an
imperative type safe language (like Java or C#), we just add
a delete operator to free memory explicitly and an excep-
tion which is thrown if the program dereferences a pointer
to freed memory. We propose an efficient implementation
of this programming model that guarantees type safety. Ex-
perimental results from our implementation based on the C#
native compiler show that this design achieves up to 3x re-
duction in peak working set and run time.

CCS Concepts •Software and its engineering→ Alloca-
tion / deallocation strategies; Software safety

Keywords memory management, type safety, managed
languages, garbage collection

1. Introduction
Safe programming languages are readily available, but many
applications continue to be written in unsafe languages, be-
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cause the latter are more efficient. As a consequence, many
applications continue to have exploitable memory safety
bugs. One of the main reasons behind the higher efficiency
of unsafe languages is that they typically use manual mem-
ory management, which has been shown to be more efficient
than garbage collection [19, 21, 24, 33, 34, 45]. Thus, replac-
ing garbage collection with manual memory management in
safe languages would be an important step towards solv-
ing this problem. The challenge is how to implement man-
ual memory management efficiently, without compromising
safety.

Previous approaches to safe manual memory manage-
ment use programming models based on regions [20, 40],
unique pointers [22, 38], borrowing of references [11, 12,
42], and ownership types [10, 12, 13]. For example, Rust [5]
is a recent programming language that incorporates several
aspects of the Cyclone [38] design, including unique point-
ers, and lexically-scoped borrowing. These concepts make
programming languages more complex, and often impose
restrictions that require programmers to follow specific id-
ioms. For example, unique pointers facilitate implementing
safe manual memory management, but they impose severe
restrictions on the programs that can be written (e.g., data
structures cannot contain cycles). This often results in pro-
grammers reverting to using expensive mechanisms like ref-
erence counting (or garbage collection) or resorting to using
unsafe constructs [5].

We propose a much simpler programming model for safe
manual memory management that does not require regions,
unique pointers, borrowing or ownership types. The starting
point for our design is an imperative type safe language like
Java or C#. We propose the following minimal changes to
the programming model:

• We replace the garbage collected heap with a manually
managed heap. Memory in this heap is allocated using
the new operator, which returns a reference to a newly
allocated object.

• We introduce an operator delete, which the application
can use to declare that an object is no longer in use and
may be reclaimed.



• We guarantee type and memory safety by introducing a
new exception (DanglingReferenceException) with the
following semantics: a dereference to a deleted object
will either succeed as if that very object was not yet
deleted, or result in a DanglingReferenceException.

The merits of this model deserve some discussion. First,
this model is simple both for the compiler writer and the
programmer: there are no uniqueness or ownership restric-
tions that affect the static type system and expressiveness
of the language, no restrictions on pointer aliasing, concur-
rent sharing of pointers, or allocation and deallocation sites.
Second, for C/C++ programmers, this programming model
is familiar - it offers a similar level of control over mem-
ory usage. To get the improved efficiency of manual mem-
ory management, programmers do need to explicitly deal-
locate memory. We argue that this burden is well under-
stood and acceptable to a large class of programmers, as ex-
emplified by the C and C++ communities. Finally, unlike
C/C++, we guarantee type and temporal safety. This pro-
vides stronger security since programming errors such as
use-after-free bugs no longer result in memory corruptions
and vulnerabilities. Memory errors result in exceptions at the
faulting deference, and include contextual information such
as a full stack trace, which make them easier to diagnose.

An important aspect of this programming model is the
semantics of delete. We do not guarantee that all derefer-
ences to deleted objects will throw an exception. While the
weaker semantics is crucial for achieving good performance,
it introduces non-determinism and may result in exceptions
that only surface during real use. We argue that such ex-
ceptions can be detected with the combination of rigorous
testing and support in the allocator for a debug mode that
enforces stronger semantics (i.e. exceptions on every deref-
erence to a deleted object) at a higher cost.

The main challenge in implementing this programming
model is efficiently detecting temporal safety errors i.e.
dereferences of pointers to freed memory. We propose an
allocator which detects temporal safety violations using sup-
port for large address spaces in modern 64-bit processors
and paging hardware. The basic method for detecting safety
violations can be described as follows. The allocator as-
signs each object a unique virtual address; it never reuses
virtual addresses (until it is safe to do so). When an object
is deleted, the allocator unmaps the object from the appli-
cation’s address space. Once an object has been unmapped,
the memory management unit in the processor detects any
attempts to access the object and throws an access violation.
The allocator catches these access violations and exposes
them to the user as a DanglingReferenceException.

While the idea of ensuring temporal safety using paging
hardware is promising, translating it into good end-to-end
performance on modern systems is extremely challenging.
In fact, several other systems [3, 4, 16, 27] have attempted to
employ a similar approach. The best previous system [16] al-

locates each object on a new virtual page since virtual mem-
ory operations are only supported at page granularity. This
results in poor performance because of high fragmentation,
large number of TLB misses, and the cost of a system call
on every deallocation.

Our allocator achieves good performance by allocating
objects compactly (just like a conventional allocator), delay-
ing reclamation till a page predominantly contains deleted
objects, and transparently copying live objects away from
page before unmapping the virtual page and reclaiming the
underlying physical page. The allocator also incrementally
and efficiently patches references to live objects that be-
come invalid once the objects have been copied and the cor-
responding pages unmapped. The method for patching ref-
erences relies on extensions to the compiler for identifying
locations in the heap where a reference originates.

This approach is sufficient for a large class of applications
that never exhaust the large virtual address spaces supported
by 64-bit processors. For applications that come close to
exhausting virtual address space, we support an incremental
compaction phase that recycles virtual address space without
violating safety.

Besides supporting the immediate goal of unmapping
deleted objects, this design has three additional benefits.
First, even if objects with different lifetimes are allocated
on the same page, the copying mechanism tends to group
objects with similar lifetimes; this reduces memory frag-
mentation which would otherwise negatively impact mem-
ory performance. Second, we can use very fast bump allo-
cation – essentially just a bounds check and incrementing
a pointer in the common case; the allocator does not need
to worry about reducing fragmentation, because the copying
mechanism handles it. Finally, and crucially, if a number of
objects with similar lifetimes are allocated and deallocated
in sequence (a common scenario), we just unmap the cor-
responding virtual pages, achieving quick physical memory
reclamation without requiring any copying or compaction.
In all cases, we never require tracing of the object graph
through potentially very large heaps, because we rely on
the programmer to specify when memory should be deallo-
cated; this allows us to achieve large performance gains over
garbage collected systems.

We have implemented the allocator in .NET native [2],
a .NET runtime which supports an industrial-strength op-
timizing ahead-of-time compiler. Our implementation re-
quired changes to the compiler and the memory management
subsystem. We have evaluated the allocator using micro-
benchmarks and a range of real-world applications including
a key-value store, large-scale data analytics and web caching
services. The evaluation shows that the allocator achieves
significant improvement in performance and reduction in
memory consumption (by 3X in several cases).

In summary, we make the following contributions:



• A managed runtime that replaces garbage collection with
a simple programming model for manual memory man-
agement: a delete operator to free memory and an excep-
tion thrown on dereferences of pointers to freed memory.

• An allocator that guarantees type safety using a combi-
nation of paging hardware on modern 64-bit processors
and a procedure for lazily patching invalid references.

• An implementation based on a production runtime and
performance evaluation on large data analytics applica-
tions, as well as micro-benchmarks, showing 3X im-
provements in memory and CPU usage.

2. Design
2.1 Overview
As described earlier, our allocator ensures temporal safety
by identifying virtual pages that predominantly contain
deleted objects and copying live objects from these pages
to an unused part of the address space. These pages are then
unmapped and the corresponding physical pages reclaimed.

Copying objects and unmapping partially filled pages al-
ters program execution in two ways. First, it immediately
invalidates all references to live objects in registers, stack
and the heap. Unlike a conventional garbage collector, our
allocator does not patch these references eagerly; the appli-
cation is even permitted to copy invalid references. Instead,
the allocator traps any attempt to use an invalid reference
and patches the reference to point to the new location of the
object. This step relies on two features of strongly typed lan-
guages, namely the ability to walk the stack, and distinguish
references from primitive values. In addition, the allocator
attempts to lazily patch objects containing invalid references
(with compiler support for locating containing objects). This
ensures that any subsequent loads from patched objects re-
turn valid references. The allocator falls back to scanning
pages and patching all invalid references only when this lazy
approach generates a high rate of page faults.

Another effect of copying objects and patching references
lazily is that it alters the semantics of the operation that
checks equality of two references. Specifically, we can no
longer assume that two references that are not bitwise equal
do not reference the same object as they may refer to differ-
ent copies of the same object. We therefore extend the lan-
guage runtime to support an efficient algorithm for checking
equality of two references, one or both of which may have
been invalidated by copying. Together, both these extensions
ensure that the process of copying objects and reclaiming
memory is transparent to the application i.e. appears to oc-
cur as if live objects were never copied. In the rest of this
section, we describe the allocator in more detail.

2.2 Heap organization
The heap managed by our allocator is organized as a set of
segments. Each segment is a contiguous part of the address

(a) (b)

Figure 1: (a) Layout of a segment and (b) layout of a gen3 object in our
allocator. The header contains the segment-relative offsets of incarnations
of this object in all lower generations.

space (a power of 2, maximum of 4GB). Each segment is
further divided into generations as shown in Figure 1a. The
first generation gen0 is half the size of the segment and
each subsequent generation is half the size of its previous
generation. The allocator reserves space at the start of the
segment for metadata. The metadata section is organized as
an array with an entry for each page in the segment. Each
metadata entry contains information such as the offset of the
first and last object allocated in the page and the cumulative
size of allocated objects on the page.

Note that our use of generations differs from generational
garbage collectors. In particular, we do not intend to reuse
virtual pages allocated to a generation. Instead, our alloca-
tor reclaims physical memory associated with pages in the
generation that mostly contain deleted objects.

2.3 Object allocation and deallocation
Our allocator is a simple bump allocator with support for
fast allocation from a per-thread heap. The allocator main-
tains a list of segments. Each application thread allocates a
per-thread heap from gen0 of the last allocated segment. It
uses this heap for servicing allocation requests originating
from the thread. The allocator maintains a thread-local free
pointer (which initially is set to the start of the heap) and a
pointer to the end of the heap. Each allocation request checks
if there is enough free space in the heap, adds the object size
to the free pointer and returns the previous free pointer. As
long as there is space in the per-thread heap, no synchro-
nization is required. When a thread runs out of space in its
heap, it synchronizes with other threads and obtains a new
per-thread heap. A new segment is allocated when gen0 of
the previously allocated segment runs out of free space.

The allocator treats objects of size greater than 32 KB as
large objects. These objects are allocated from a large object
heap (LOH) allocated at the bottom of the address space. In
the LOH, objects do not share pages. When a large object is
freed, the allocator simply unmaps the corresponding pages.
Note that the allocator does not explicitly maintain the size



of each allocation. In a strongly typed language, each object
stores a pointer to its type, which contains the object size.

The allocator processes delete requests by marking ob-
jects as free using a bit in the object header. The bit is
also checked to detect double frees. If the deallocated ob-
ject belongs to gen0, the allocator checks if all objects allo-
cated on the page containing the object have been also been
deleted (using per-page metadata described above). In this
case, the allocator immediately unmaps the page. Any sub-
sequent accesses to this virtual page will trigger an access
violation. Pages in gen0 that are not entirely free and pages
in higher generations are reclaimed by a background process
described below.

2.4 Live object promotion
As the allocator receives allocation and deallocation re-
quests, the segment fills up with partially occupied pages,
resulting in fragmentation. The allocator monitors the degree
of fragmentation. When fragmentation exceeds a pre-defined
threshold, it identifies virtual pages with high fragmentation,
promotes live objects on those pages to higher generations
and reclaims the corresponding physical pages.

Identifying candidate pages. We quantify the degree of
heap fragmentation using the following measure:

f =
total size deleted− num unmapped pages ∗ PAGE SIZE

(total size allocated− total size deleted)

where total size allocated and total size deleted refer
to the total bytes allocated and deleted respectively, and
num unmapped pages refers to the number of unmapped
pages. The numerator is the number of bytes yet to be re-
claimed, and the denominator is the number of bytes al-
located to live objects. When the degree of fragmentation
exceeds a threshold (and enough time has elapsed since the
last promotion), the allocator creates a background thread
that scans the segment metadata and identifies a set of pages
for promotion. The promotion policy takes into account the
amount of free space on a page and the cost of promoting
objects (discussed later in this section). The policy also ac-
counts for object boundaries i.e. all pages that share a live
object are promoted together. We discuss a range of policies
in Section 3.

Promoting live objects. After selecting pages for promo-
tion, the allocator enters the promotion phase, which exe-
cutes on the background thread concurrently with mutators.
The promotion phase iterates over all selected pages and pro-
motes live objects from each page to a contiguous block of
memory in the next generation.

The core of the promotion algorithm (Figure 1) is a se-
quence of steps that promotes live objects on a source page
to a target location in the next generation. The promotion
algorithm operates as follows: the allocator disables write
access to the source page and then copies live objects (i.e.

Algorithm 1 Algorithm for promoting live objects on a source
page to a location in the next generation.

1: procedure PROMOTE PAGE(source page, target offset)
2: make source page read-only;
3: copy objects from source page to target offset;
4: make target page(s) read-only;
5: update remap table;
6: execute memory barrier;
7: unmap source page;
8: enable read & write access to target page(s)
9: end procedure

objects with the free bit in the header unset) to the target lo-
cation. If the last live object on the source page spills over
to the next page, we continue promoting objects on the next
page. After copying the objects, the allocator disables write
accesses to the target page(s) and updates a data structure
called the remap table. The remap table maps each page to
the offset within the segment where objects from the page
have been (most recently) copied. The remap table entry for
a page is updated every time objects located on that page
are promoted. In other words, if live objects from page p0
in gen0 are promoted to an offset on page p1 in gen1, and
subsequently (some of) these objects are promoted to gen2,
then the allocator updates remap table entries for both pages
p0 and p1. Remap table entries share the space reserved for
per-page allocation metadata since only one of them is re-
quired at any point in time.

While copying objects, the allocator also stores the
segment-relative offset of the source object in the header
of the target object. Since objects can be promoted multi-
ple times through many generations, we reserve space in the
object header for an offset for every generation lower than
the generation of the target object (Figure 1b). The alloca-
tor uses the remap table in conjunction with per-generation
offsets to locate the target object given an arbitrary source
address (Section 3). After updating the remap table, the al-
locator unmaps the source page (reclaiming unused physical
memory) and then enables write access to the target page(s).

This algorithm ensures that at any given point in time,
there is at most one writable copy of each object. Also, by
unmapping the source page before enabling write access to
the target page, the algorithm ensures that only the copy on
the target page(s) can be read thereafter.

2.5 Patching references
Unlike a conventional garbage collector, our allocator does
not eagerly patch references to promoted objects. Instead,
the allocator uses a lazy approach to patching references.
The allocator installs an exception handler that detects spu-
rious access violations caused by accesses to live objects on
pages that have been reclaimed, and redirects these accesses
to the corresponding promoted objects in higher generations.
The allocator achieves this by identifying the origin of the



1 unsigned int access_violation_handler(cxt) {
2 thread *t = get_thread();
3 if (t->in_exception_context)
4 return EXCEPTION_CONTINUE_SEARCH;
5 t->in_exception_context = 1;
6 void* obj = get_faulting_address(cxt);
7 retry:
8 pobj = search_promoted_object(obj);
9 if (pobj == NULL) {

10 if (promotion_active() &&
11 is_write_exception(cxt)) {
12 sleep(1);
13 goto retry;
14 }
15 throw_dangling_reference_exception();
16 } else {
17 scan_stack_and_patch(cxt, obj, pobj);
18 }
19 t->in_exception_context = 0;
20 return EXCEPTION_CONTINUE_EXECUTION;
21 }

Figure 2: Access violation handler used by the allocator for han-
dling page faults. The handler checks if the page fault is a result of
dereferencing an invalid reference and patches the reference with
the new location of the object.

access (i.e. register, stack or heap location that contains a
reference to the object), and patching this location with the
address of the promoted object. Lazy patching is suited for
workloads where the number of incoming references to fre-
quently used objects is small, and it is more efficient to patch
these references when a dereference fails instead of tracing
through the heap and patching all references eagerly.

In the rest of this section, we describe a mechanism for
lazily patching invalid references in registers or the stack.
We then describe two extensions to this mechanism for
patching references in the heap without requiring heap scans.

2.5.1 Patching roots.
Figure 2 shows the lazy algorithm for patching roots i.e.
references in registers or on the stack. The algorithm ex-
ecutes as part of an exception handler installed by our al-
locator. The handler receives an exception context as input
(register values and type of exception i.e. read or write).
The handler retrieves the faulting heap address from the
context and attempts to find the address of the target ob-
ject in case the object was promoted (using the routine
search promoted object described in Section 3).

If the object was promoted, the handler scans all registers
and the current stack frame, and patches all stale references
to promoted objects. This step of our algorithm is similar
to how garbage collectors patch roots, with a key difference
that an access violation can be triggered by any load or store
instruction. Therefore, we modify the compiler to emit meta-
data describing the location of heap references in registers
and on the stack for every load and store instruction (instead
of just gc safe points). Once the invalid reference(s) has been
patched, execution resumes at the faulting program counter.

As long as the promoted object has not been promoted again,
the access will succeed. Otherwise, the access will fail and
the handler will retry patching the invalid reference.

A failure to find the promoted object (line 9) indicates
that the faulting object has not been promoted. However, this
does not imply that the faulting reference is a dangling refer-
ence. The access violation may have occurred due to a write
to the source page by another thread before the background
thread has updated the remap table. This condition is de-
tected using the predicate promotion active which is true if
the allocator is currently in the promotion phase. It is also
possible that the access violation was caused by a write to
the target page before write access was enabled; this is de-
tected using the predicate is write exception. In either case,
the handler busy waits for the remap table to the updated or
write access to be enabled (line 13). If (and when) none of
these conditions hold, then the handler generates a Danglin-
gReferenceException (line 15).

2.5.2 Patching heap references.
Patching roots allows the mutator to recover from spurious
access violations caused by promotion and make progress.
However, this approach can potentially result in a large num-
ber of access violations, because registers and the stack are
temporary state, and references must be patched every time
they are copied from the heap into a register or stack. For
example, consider the following C# code fragment.

int GetFirst(List<T> list) {
Node<T> node = list.First;
return node.Value;

}

If the object pointed to by the field First of parameter
list is promoted, the allocator will patch the reference node

since it is stored in a register or on the stack. However, the
object list continues to store a stale reference to node. We
use the term parent to refer to objects that contain references
to a given object, and the term child to refer to the referenced
object. We now describe two extensions for patching parent
objects and thereby preventing repeated access violations.

Patching parents. The first extension is a modification to
the exception handler to follow objects directly reachable
from registers or the current stack frame and patch refer-
ences in these objects. If no such references are not found
in the current stack frame, the handler continues scanning
objects reachable from the caller’s stack frame. This exten-
sion is based on the heuristic that an application is likely to
load and dereference objects closer to the roots. We exclude
arrays from this heuristic because our experiments suggest
that scanning and patching arrays eagerly can be wasteful.

As an example, consider the C# code sequence listed
above. This code translates into the following instruction
sequence.
mov r2, [r1 + 8]
mov r3, [r2 + 16]



Here, the register r1 contains a reference to list, the field
First is located at offset 8 in the List<T> class, and Value is
located at offset 16 in Node). The register r1 contains a ref-
erence to the parent of node. If the object pointed to by node

has been promoted, accessing this object will fail. The ex-
tended exception handler scans the object list and patches
the reference node with the address of the promoted object;
any subsequent reads from list will return a reference to the
promoted object.

Observe that this extension is effective only when a reg-
ister or stack contains a parent when an object is accessed.
In the example above, r1 happens to contain a parent when
node is accessed (as an artifact of the way code is gener-
ated). However, there are several cases where this is not true.
For example, if list is no longer live after the first derefer-
ence, the compiler is free to reuse r1 for storing other values.
To address this, we propose two compiler transformations
which ensure that when an object is accessed, a reference to
the parent exists in the roots.

The first transformation extends the lifetime of variables
containing references to parents to include uses of all child
objects (up to the next write to the variable). If a child object
is passed to a method, we extend the lifetime of the parent
to include the function call. In the example described above,
this transformation extends the lifetime of list to include
the dereference node.Value. This ensures that list is either
in a register or on the stack when the dereference occurs.

The second transformation is targeted at arrays of refer-
ences. We make modifications to code generation so that op-
erations on arrays such as array indexing explicitly expose
parents in the roots. For example, consider the pattern arr[i

].Value. The .NET compiler translates this pattern into the
following instruction sequence.

mov r1, [r2 + r3*8 + 16]
mov r3, [r1 + 24]

Here, r2 contains a reference to the array arr, r3 con-
tains index i and the field Value is stored at an offset 24
within element. This sequence loads a reference to the ob-
ject at index i in register r1. However, there is no regis-
ter or stack location containing the address of this reference.
With our transformation, the compiler splits the array index-
ing operation into two instructions (as shown below). The
first instruction loads the address of the array element into a
register (r4), and the second instruction loads the reference.

lea r4, [r2 + r3*8 + 16]
mov r1, [r4]
mov r3, [r1 + 24]

This sequence requires an extra instruction and an addi-
tional register. However, it makes the reference to the parent
explicit, and allows the exception handler to patch the refer-
ence in the array.

Patching dead parents. Another scenario where refer-
ences to parents do not appear in the roots is when objects

1 #define SEGMENT_OF(addr)
2 (addr & FFFFFFFF00000000)
3 #define SEGMENT_OFFSET(addr) (DWORD)(addr)
4 #define GEN_OFFSET(ref) return __lzcnt(˜

SEGMENT_OFFSET(ref))
5
6 bool reference_equal(ref1, ref2) {
7 if (ref1 == ref2) return true;
8 if (SEGMENT_OF(ref1) != SEGMENT_OF(ref2) ||

GEN_OFFSET(ref1) == GEN_OFFSET(ref2))
return false;

9 if (ref1 > ref2) xchg(ref1, ref2);
10 if (IS_PROMOTED(ref1)) {
11 if (!IS_PROMOTED(ref2))
12 return SEGMENT_OFFSET(ref1) == *(DWORD*)

((BYTE*)ref2 + OFFSET_OF(GEN_OFFSET(
ref1)));

13 else {
14 return slow_path(ref1, ref2);
15 }
16 }
17 return false;
18 }

Figure 3: Pseudo-code for checking equality of two references.

are returned from method calls. This is because parents in
the callee stack frame disappear when the stack frame is
popped. We address this scenario by instrumenting every
method that returns an object to push the parent reference of
the returned object into a circular buffer maintained in the
runtime. We also extend the access violation handler to scan
references in the buffer and patch parent objects.

The two extensions described above are not exhaustive -
there are a few other cases where a reference to the parent
may not exist in the roots when a child is accessed. For
example, no parents exists when a freshly allocated object is
accessed. Parents may also be missing if the variable holding
a reference to the parent is updated before all accesses to its
child objects. Our evaluation (Section 4) suggests that these
cases are rare and have little impact on performance.

Pinning references. Pinning is a primitive which prevents
the memory manager for relocating an object during a spec-
ified scope. Pinning allows managed code to inter-operate
with native code (e.g. system calls) by passing references to
managed objects. Supporting pinning in our allocator is rel-
atively straight-forward – we simply do not relocate pages
that contain pinned objects.

2.6 Equality checks
In managed languages, the runtime is usually responsible for
discharging checks for equality between references. Check-
ing equality is an extremely frequent operation, and there-
fore must be fast. With our allocator, checking equality of
references is challenging because references are patched
lazily. Therefore, the application may attempt to check
equality of two invalid references of an object that has been
promoted (perhaps more than once), or compare a stale refer-



ence with a valid reference to the promoted object. In either
case, a bitwise comparison of addresses in no longer valid.

Our allocator exposes a specialized operation for check-
ing equality of two references (Figure 3). Consider the case
where two references ref1 and ref2 are not bitwise equal. Let
these references point to objects obj1 and obj2 respectively
such that obj2 belongs to the same or higher generation than
obj1 . The checker uses the following invariants to ascertain
if they are references to different copies of the same object.

• References in two different segments are not equal be-
cause objects are only promoted to generations in the
same segment.

• References in the same generation are not equal.
• If obj1 has not been promoted, then the references are not

equal (since no other copy of obj1 exists).
• The references are equal only if obj2 has not been pro-

moted yet and segment-relative source object offset of
obj1 is contained in the list of source offsets stored in the
header of obj2 .

These checks can be discharged quite cheaply. We can
compute the generation an object belongs to by counting
the number of consecutive 1s in the segment-relative offset
of the object. On Intel processors, this can be implemented
using the lzcnt or bsr instruction (line 4). We can also
check if an object has been promoted using a single lookup
in the remap table (see Section 3). If these checks fails,
and obj2 has not been promoted, we use the source object
offset stored in obj2 ’s header to determine if the references
are equal. We resort to a slow path (line 14) only if obj2
been promoted but is no longer accessible (because of page
protection). In this case, we search for the location where
obj2 has promoted and check the promoted object’s header.
This process repeats until we find a promoted object that is
accessible.

2.7 De-dangling
The patching algorithm described above incrementally fixes
stale references in the heap following a promotion phase.
However, in some workloads, lazily patching references can
be expensive e.g. if the allocator promotes a set of live ob-
jects with a large number of active parent objects, patching
each parent will incur an access violation. In such cases,
the allocator falls back to the de-dangling phase for eagerly
patching invalid references. This phase runs as a background
thread concurrently with mutators. The background thread
scans live objects on allocated pages. While scanning, it
patches invalid references using a CAS operation. This en-
sures that mutator updates are not lost i.e. if a mutator up-
dates a reference after the dedangler finds it is invalid, then
the CAS will abort, or the update will overwrite the CAS.

While the de-dangling phase may appear similar to mark-
ing/tracing in a conventional GC, there is an important dif-
ference. Unlike tracing, background de-dangling is a per-

Algorithm 2 Pseudo-code for compaction.
1: procedure COMPACTION
2: create space for compaction;
3: patch dangling references;
4: for all segment s do
5: if allocation in s is disabled then
6: relocate allocated objects in s;
7: end if
8: end for
9: patch dangling references;

10: end procedure
11:
12: procedure PATCH DANGLING REFERENCES
13: dedangle heap;
14: reset write watch;
15: dedangle heap;
16: suspend all threads;
17: read write watch and patch all written pages;
18: patch roots;
19: resume all threads;
20: end procedure
21:
22: procedure CREATE SPACE FOR COMPACTION
23: for all segment s do
24: disable allocation in s;
25: try compacting objects in s;
26: if cannot compact objects in s then
27: enable allocation in s;
28: end if
29: end for
30: end procedure

formance optimization; it is not required for correctness. In
other words, de-dangling does not have to guarantee that all
invalid references are patched and can miss invalid refer-
ences (such as those written to objects that have already been
scanned in the current phase). This eliminates the need for a
write barrier and a mechanism for tracking cross-generation
pointers such as remembered sets or card tables. Further-
more, unlike tracing, which involves a traversal of the heap
to find reachable objects, de-dangling is implemented as a
cache-friendly, parallel scan over sets of pages since we can
easily identify live objects (by checking the free bit in the
header).

2.8 Compaction
Recall that our allocator does not reuse virtual address space;
it simply allocates a new segment when it runs out of space
in the current segment. Generally, we do not expect virtual
address space consumption to be a concern for most appli-
cations. However, for long running applications such as web
servers and databases that allocate objects at high rates, the
application will run out of virtual address space eventually.
For example, an application allocating 3GB memory every



second will run out of virtual address space in a day. Our
allocator supports a relatively expensive compaction phase
(Figure 2) to handle such rare events.

The compaction phase is conceptually similar to a full
heap garbage collection - it de-fragments the heap by re-
locating all objects in a segment to a contiguous block of
memory in the beginning of gen0 in the same segment and
patching all stale references in the heap. However, gen0 may
already contain live objects and mutators actively allocat-
ing objects in previously allocated per-thread heaps. To cre-
ate space for relocation, the allocator first disables allocation
of new per-thread heaps in the segment, and then estimates
the number of allocated bytes (k) in the segment assuming
that all previously allocated per-thread heaps are fully uti-
lized. If there is not enough free (unmapped) space in the
initial k bytes of gen0 and no mutators are actively allocat-
ing in initial k bytes, the allocator promotes all live objects
in the initial k bytes to gen1 (and higher generations if re-
quired). If there are mutator threads allocating in the initial
k bytes, the allocator forces the threads to switch to other
segments by suspending the threads, setting the thread-local
free pointer to the end of the per-thread heap and then re-
suming the threads.

Once the allocator has created space in gen0, it can start
compacting objects. However, note that at this stage, vir-
tual pages in gen0 may have been unmapped and must be
mapped again before relocating objects. However, map-
ping these pages is not safe because the application may
have stale references to objects originally allocated in gen0.
Therefore, before relocating objects to gen0, we remove
stale references to all previously allocated objects using the
routine patch_dandling_references. This routine involves
the following sequence of steps.

1. Run a de-dangling phase. This phase scans objects in the
heap (concurrently with mutators), replaces references to
freed objects with NULL values and patches all other
references.

2. Reset write watch1 and rerun the de-dangling phase.
Write watch is an OS feature for tracking pages writ-
ten by an application. Reseting the write watch clears all
tracking state and allows the application to identify pages
written after a certain point in time.

3. Suspend all mutator threads to prevent mutators from
creating any new stale references.

4. Query and scan all pages written by mutator threads, and
patch stale references.

5. Patch references in the roots of all threads.

6. Resume all mutator threads.

This routine does not guarantee that all references are
patched; it only guarantees that there are no stale references

1 https://msdn.microsoft.com/en-us/library/
windows/desktop/aa366874(v=vs.85).aspx

to objects deleted before the routine was invoked. We run
the de-dangling phase twice to minimize the amount of time
spent in scanning pages while mutators are suspended. We
expect the first de-dangling phase to patch a majority of stale
references and the second de-dangling phase to touch only a
small number of pages, which reduces the number of pages
returned by the write watch.

After de-dangling all references, the allocator relocates
all live objects in each segment to the beginning of gen0
using a procedure similar to live object promotion. While
relocating an object, the allocator stores the segment-relative
offset of the object in the header of the relocated object in
gen0. Once all objects have been relocated, the allocator
re-runs the protocol described above for removing all stale
references. Finally, we flush the remap table for the segment.
The segment is now reset to a clean state (where all objects
have been allocated in a contiguous block of memory at the
beginning of gen0 and there are no stale references to these
objects), and can be used for allocations.

Relocating objects to gen0 violates one of the invariants
assumed by equality checking i.e. two objects that belong to
the same generation in the same segment are not equal. This
invariant is violated because a live object in gen0 may be
compacted to another location in gen0. Therefore, we extend
the equality checking routine to account for relocated objects
in segments where compaction is in progress. Specifically,
when two references are not bitwise equal and the segment
that the references belong to is being compacted, we check
if one of the references has an offset smaller than the size of
the compacted block of memory at the beginning of gen0).
This indicates that the object is a relocated object. In this
case, we compare the segment offset stored in its header with
the segment offset of the other reference. The references are
considered equal of the comparison succeeds.

3. Implementation
The allocator we propose can be integrated into any safe
managed language. We have integrated this allocator with
the .NET Native toolchain [2]. .NET Native is an ahead-
of-time compilation toolchain for .NET applications. The
toolchain consists of a compiler (based on Microsoft’s
C/C++ compiler), a .NET runtime and a set of libraries.
The compiler frontend translates .NET binaries (in MSIL)
to an intermediate language, which is then translated into
architecture specific assembly code by the backend. The
optimized native code is linked with the .NET runtime to
generate a standalone executable. We modified the .NET
runtime by disabling the GC and redirecting all allocation
requests to our allocator. We also exposed a new .NET API
System.Heap.Delete which takes an object as a parameter.
We now describe a few implementation specific aspects of
our design.

Searching for promoted objects. A key component of our
allocator is the procedure for locating the promoted ob-

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366874(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366874(v=vs.85).aspx


1 #define OBJ_TO_GEN(ref) return __lzcnt(˜ref)
2 void* search_promoted_object(void* obj) {
3 retry:
4 __try {
5 if (!IS_PROMOTED(obj)) return NULL;
6
7 void* target = offset_of_first_object(obj);
8 int obj_gen = OBJ_TO_GEN(obj);
9 int target_gen = OBJ_TO_GEN(target);

10 void* cur_offset = read_offset(target,
obj_gen);

11 void* last_offset = cur_offset;
12 int source_offset = SEGMENT_OFFSET(obj);
13
14 /* scan objects on the target page */
15 while (cur_offset <= source_offset &&
16 cur_offset >= last_offset) {
17 size = object_size(target);
18 if (source_offset >= cur_offset &&

source_offset < cur_offset + size)
19 return target + (source_offset -

cur_offset);
20 target += size + size_of_header(obj);
21 if (OBJ_TO_GEN(target) != target_gen)

break;
22 last_offset = cur_offset;
23 cur_offset = read_offset(target,obj_gen);
24 }
25 return NULL;
26 }
27 __except {
28 goto retry;
29 }
30 }

Figure 4: Procedure for finding the address of the promoted object
given a source address.

IS_PROMOTED(rcx):
mov rax, 0ffffffff00000000h
and rax, rcx ; find segment from address
mov r10d, ecx ; find segment offset
shr r10d, 12 ; find page from segment offset
mov r10d, dword ptr [rax+4*r10+

REMAP_TABLE_START] ; load remap table entry
test r10d, 1 ; LSB of remap table entry

indicates if page promoted
je ret_false
mov rax, 1
ret

ret_false:
xor rax, rax
ret

Figure 5: Procedure for checking if an object (in the register rcx)
has been promoted.

ject given a source address. There are several ways of im-
plementing this procedure. Our approach, shown in Fig-
ure 4), uses a remap table in conjunction with offsets stored
in object headers. The procedure looks up the remap ta-
ble to check if the page containing the source address has
not been promoted (using the function IS PROMOTED), in
which case the search terminates unsuccessfully; the caller
is expected to handle the condition where the page has been

promoted but the remap table has not been updated yet. Fig-
ure 5 shows an implementation of IS PROMOTED in ma-
chine code. This is a performance critical operation also used
while checking equality of two references. Our implementa-
tion requires a single lookup in the remap table.

If a remap table entry exists, we start scanning objects
from the address where the first object from the source page
was copied (line 7). The scan completes successfully when
we find an object header containing the source address (line
18,19). Since objects from a page are copied in order, we
can terminate the search (with a failure) when we find an
object that was copied from a larger offset than the source
address’s offset (line 15), or an object promoted from a page
with a lower virtual address than the source page (line 16), or
if we have scanned past the end of the generation (line 21).
Objects from a page with a lower source address introduce a
discontinuity in the sequence of source offsets.

Note that the search routine can trigger an access viola-
tion while scanning the target page if a different thread pro-
motes and subsequently unmaps the target page. We han-
dle these exceptions by restarting the search. The search will
eventually succeed when the remap table entry for the source
page has been updated and the new target page is not pro-
moted during the scan.

Allocator tuning. Much like other allocators and the GC,
our allocator needs to be tuned to achieve good performance
over a large class of applications. There are several allocator
parameters that have a large impact on performance.

The first parameter is the promotion policy, which con-
trols when and what set of pages to consider for promotion.
An aggressive policy will reclaim memory quickly but may
also promote a large number of live objects, resulting in ac-
cess violations. We evaluated several possible policies and
eventually settled on the following: Our allocator triggers
promotion when (a) the amount of memory allocated since
the last promotion phase is greater than 128MB, and (b) the
degree of fragmentation f is greater than 0.5. This policy is
designed to keep the working set of the application to within
a factor of two of the total size of live objects. When this
condition holds, our allocator selects for promotion all pages
where at least half the page contains deleted objects. sorts
pages by degree of fragmentation and promotes pages in or-
der until overall fragmentation f falls below 1/3.

A second policy controls when the de-dangling phase is
triggered. Although de-dangling is a background activity, it
does consume CPU cycles and pollutes the caches while
scanning the whole heap. However, triggering de-dangling
too infrequently can cause application threads to spend a
high percentage of CPU cycles handling access violations
following a promotion. We control this trade-off using a sin-
gle parameter: an upper bound on the percentage of CPU cy-
cles application threads spend in handling access violations.
Our experiments show that on modern hardware, the latency
of each access violation is 8µs, including the latency of our



access violation handler. Therefore, on an 8-core machine,
an upper bound of 12.5% on CPU cycles (equivalent to 1
core) for handling access violations translates to a thresh-
old of 125,000 access violations/sec. Our allocator triggers
de-dangling once this threshold is reached. There are other
policies possible e.g. policies impose per-core bounds and/or
factor the number of cores the application is actively using;
evaluating these policies is left for future work.

Another policy controls compaction is triggered. We trig-
ger compaction in two rare conditions, (a) when the applica-
tion is running out of virtual address space, and (b) when the
application is close to exhausting physical memory.

Porting libraries. Most managed languages have a large
ecosystem of libraries that support a number of high level
services such as IO, strings, math, collections, synchroniza-
tion, tasks etc. In .NET Native, many of these libraries are
written assuming the presence of a garbage collector. We
ported several libraries (such as collections, file IO etc.) to
manually manage memory i.e. explicitly deleting objects us-
ing System.Heap.Delete. In a majority of cases, identifying
the lifetime of objects (and therefore introducing Delete) is
relatively straightforward. For example, consider the method
Resize in the class Array<T>, which copies an existing array
into a new array. Here, we can delete the old array right after
it has been copied.

public static void Resize<T>(ref T[] array, int
newSize) {

T[] larray = array;
if (larray.Length != newSize) {

T[] newArray = new T[newSize];
Copy<T>(larray, 0, newArray, 0, larray.

Length > newSize ? newSize : larray.
Length);

System.Heap.Delete(larray);
array = newArray; }

In other cases, we had to establish an ownership disci-
pline and use destructors to delete owned objects (as shown
below). Our allocator calls destructors just before an object
is deleted.

public class List<T> : IList<T>, ... {
private T[] _items;
...
˜List() {

if (_items != _empty) System.Heap.Delete(
_items);

} }

4. Evaluation
Benchmarks. Memory allocators are expected to perform
well across a wide variety of applications, architectural con-
figurations and performance metrics. Therefore, we evaluate
our allocator using two sets of benchmarks. We use a set
of micro-benchmarks to exercise the allocator across a wide
range of loads and allocation patterns. We also use a set of di-
verse real-world applications namely, ASP.NET caching2, a

2 https://github.com/aspnet/Caching

caching layer for web applications, RaptorDB3, a key-value
store and a simplified version of Naiad [30], a data process-
ing engine optimized for streaming data.

Our experience in modifying these benchmarks to use
manual memory management was mixed. For example, port-
ing Naiad operators was relatively straightforward. We mod-
ified operators to explicitly free batches and internal state
when they are no longer needed. We also rewrote user-
defined functions (such as custom mappers and reducers)
to delete any intermediate state they create. In ASP.NET
caching, we added a reference count to each key-value pair
to track the number of clients accessing the value. The key-
value pair is deleted when the reference count falls to zero.
We also extended our allocator to support notifications to
indicate memory pressure. Our allocator notifies the appli-
cation when the total amount of memory allocated since the
last notification exceeds a threshold.

Experimental Setup. We use the .NET native toolchain
to generate two (native) versions of each benchmark, one
linked with the .NET garbage collector [1], and the second
linked with our allocator. The .NET native GC is a back-
ground compacting collector. The GC supports two modes
of operation, a workstation mode intended for client work-
stations and stand-alone PCs, and a server mode intended
for applications that need high throughput. The workstation
GC uses a single heap for all threads, whereas the server GC
uses (and can collect independently) a heap per thread. Each
heap contains a small object and a large object heap. The
GC reserves memory for the heap in multiples of segments.
The server GC uses comparatively larger segments than the
workstation GC (4GB vs 256MB in 64-bit machines). The
GC automatically adapts the size of the heap by reserving
additional segments as needed and releasing segments back
to the operating system when they are no longer required.
For our experiments, we configured .NET native to use the
server GC.

We compile all versions of the applications with the high-
est optimization level (-O2). We ran our experiments on a
server with a quad-core, hyper-threading enabled Intel Xeon
E5 1620 processor clocked at 3.60Ghz with 16GB DDR3
RAM and a 2TB SATA drive running Windows 10 enter-
prise. In each execution, we measure the time to completion,
peak working set, and total amount of memory committed.
For configurations with garbage collection enabled, we also
measure the number of gen0, gen1 and gen2 collections, the
percentage of time the application was paused for GC and
the maximum and the average pause times. For configura-
tions with our allocator, we measure the number of access
violations and the number of times de-dangling is initiated.
Each data point we report is obtained by executing the appli-
cation 5 times and taking the average.

3 https://github.com/mgholam/RaptorDB-Document
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Benchmark Description
GC Simulator Data parallel benchmark used to stress test the .NET garbage collector. Each thread in the benchmark creates a collection of objects

organized as a tree. The key configuration parameter is the fraction of short-lived vs. long lived objects. Threads make several passes
over the collection, and randomly replace existing objects with new ones while ensuring that the fraction of short lived and long lived
objects remains constant.

Red black tree An implementation of a left-leaning red-black tree [36] with rebalancing. Each node in the tree contains a unique key and a payload of
a configurable size. The tree supports lookups (by key), insertions and deletions.

RandomGraph A graph benchmark where each vertex contains a payload and references to incoming edges. During each iteration, we pick a vertex at
random, replace it with a new vertex and patch references in neighboring vertices. This benchmark represents an adversarial scenario for
our allocator because each object has several parents and each parent is equally likely to be used to access the object.

ASP.NET Caching An in-memory caching layer that can be used in ASP.NET web applications. The cache supports a get/put interface and can be configured
with various expiration policies. The cache is designed to adapt to memory pressure. It registers for notifications from the GC before a
gen2 collection is about to start. A background thread clears stale entries from the cache when a notification is received.

RaptorDB A NoSQL key-value store that supports inserts and removes of key-value pairs, where values are arbitrary bytes arrays. RaptorDB stores
all values on disk and maintains an index over values in memory.

Naiad A streaming engine that supports querying over data streams. A stream consists of a sequence of {time, record} pairs, and queries
are expressed as a composition of operators such as filtering, aggregation, joins. Queries specify the window size, which determines the
amount of time after which records expire. Operators in Naiad perform (potentially stateful) computation over one or more input batches.
When a time window expires, each operator constructs an output batch and transfers it downstream.

Table 1: Benchmarks used for evaluating manual memory management.

Figure 6: Time to completion and peak working set of the GC simulator
benchmark with garbage collection and manual memory management with
varying number of threads and percentage of short lived objects.

Compiler transformations. The compiler transformations
described in Section 2.5.2 increase the lifetime of variables
containing references to parent objects and introduce addi-
tional instructions. We measured the effect of these transfor-
mations in isolation by comparing the performance of our
benchmarks with a garbage collector, with and without trans-
formations enabled. Our experiments show that the transfor-
mations have no measurable impact on performance.

GC simulator. We configured the benchmark to create
long-lived binary trees with a total of 223 (little over 8 mil-
lion) objects divided equally between threads. Short-lived

and long lived are stored inside the tree and trigger replace-
ment when visited 3 and 10 times respectively. Each thread
makes 10 passes over its tree. We vary the number of threads,
size of the payload in each object (16, 64 and 256 bytes) and
the fraction of short lived objects (10, 50 and 90%).

Figure 6 shows the time to completion and peak working
set both with GC and manual memory allocation for 256-
byte objects. With the garbage collector, the benchmark does
not scale linearly, especially when the ratio of short lived
objects (and hence the allocation rate) is high (speedup of
1.85X with 8 threads) in spite of the benchmark being data
parallel. Also observe that the peak working set is higher
when the fraction of short-lived objects is higher and in-
creases with the number of threads. Figure 6 also shows
the execution time and working set of the benchmark us-
ing our allocator. The benchmark scales almost linearly with
the number of threads (3.45X with 4 threads and 5.96X with
8 threads). Also observe that the peak working set is much
lower (< 1/2 compared to GC in some configurations) and
remains almost constant irrespective of the allocation rate
and the number of threads. This is an artifact of our alloca-
tor’s policy to trigger promotion once the degree of fragmen-
tation exceeds 0.5.

To understand this difference in performance, we mea-
sured a number of GC and allocator related metrics for this
benchmark (Table 2). As expected, the number of gen0 col-
lections increases with the fraction of short-lived objects, in-
dependent of the number of threads. The maximum pause
time increases with the fraction of short lived objects (up to
8.9 seconds), while the average pause time remains more or
less unchanged. However observe that the percentage of time
the application is paused for GC increases significantly with
the number of threads, reaching up to 80%. This explains
why this benchmark scales poorly with the GC even though
it is data parallel.

Our allocator is able to recover the performance loss by
eliminating long pauses. As shown in Table 2, our alloca-



Threads % Short gen0 gen1 gen2 % Pause Max pause Avg. pause #Promotion #AV #AV patched #Dedangle
lived for GC (ms) (ms)

1 10 477 379 10 37.6 257 36 1 194449 165512 0
1 50 771 542 12 45.4 5644 49 5 2252247 1593650 5
1 90 1069 705 14 47.5 6884 52 10 6314512 4823422 7
2 10 557 308 8 47.1 212 29 1 223113 189809 0
2 50 859 473 9 56.1 339 41 4 2618080 1865863 4
2 90 1165 638 12 62.1 7468 51 9 5554439 3850610 8
4 10 560 306 4 63.3 390 31 1 249862 211691 0
4 50 864 472 6 67.5 695 41 4 3059286 2426542 3
4 90 1171 636 6 69.5 8588 51 5 5969741 4702079 4
8 10 562 306 3 75.4 885 30 1 49699 41862 0
8 50 866 470 3 74.6 859 41 3 1859671 1592611 0
8 90 1173 635 4 80.3 8921 48 3 2998572 2545600 0

Table 2: Execution profiles with the garbage collector and our allocator for the GC simulator using 256 byte objects with varying number of threads and
percentage of short lived objects. % Pause GC is the percentage of time the application was paused for garbage collection. #AV is the number of access
violations encountered and #AV Patched is the number of access violations patched lazily.

Figure 7: Time to completion and peak working set of the red-black tree for
varying payload size and fraction of updates.

tor triggers promotion relatively infrequently (between 1 to
10 times). Furthermore, when an AV is triggered due to pro-
motion, the allocator is able to patch parent references in a
majority of cases. In some configurations, promotion causes
a spurt of access violations, forcing the allocator to trigger
de-dangling.

We also ran a variant of this benchmark where all short-
lived objects are ephemeral and hence do not survive gen0
collection. This variant is designed to compare raw alloca-
tion throughput of the GC vs. our allocator. We find that our
throughput in this scenario is marginally lower due to system
calls overheads of reclaiming memory.

Red black tree. We created a tree with 10 million nodes
and executed 10 million operations while varying payload
size and the fraction of updates. In this benchmark, switch-
ing to manual memory management improves execution

Figure 8: Time to completion and peak working set for RandomGraph with
different graph sizes.

time by 38% on average (Figure 7). The speedup is higher
for larger objects and when the fraction of updates is higher
(which translates to an increased allocation rate). We ob-
serve that when the ratio of updates is small, the allocator
never triggers promotion because the degree of fragmenta-
tion remains below the threshold through the execution. In
contrast, the garbage collector must initiate collections with
the hope of finding freed objects. Also observe that the re-
duction in memory utilization is not as significant. This is
because almost all allocated objects in this benchmark have
long lifetimes. With the GC, these objects are quickly pro-
moted to gen2, which also expands to include all live objects
in the tree.

Random graph. We configured this benchmark to create
graphs with different number of vertices and connectivity
and perform 10 million random replacements on the graph.
This workload has a high rate of allocation and garbage gen-
eration. Therefore, the garbage collector triggers collections
very frequently (Table 3). Our allocator also triggers pro-
motions relatively frequently, especially for smaller graphs
because the degree of fragmentation increases faster. Pro-
motions result in a spurt of access violations due to high in-
degree of vertices, and eventually trigger de-dangling

Figure 8 shows the execution time and peak working
set for this benchmark for different graph sizes. We ob-
serve an improvement in throughput when using manual



Graph size gen0 gen1 gen2 % Pause Max pause Avg. pause #Promotion #AV #AV patched #Dedangle
for GC (ms) (ms)

1048576 579 231 9 73.1 773 437 20 32750481 32750455 20
4194304 709 321 13 80.0 3160 680 5 26587731 26587729 5
8388608 882 451 14 81.8 7323 812 2 14715787 14715786 2

Table 3: Execution profiles with the garbage collector and our allocator for the RandomGraph benchmark.

(a) 1M entries. (b) 10M entries.
Figure 9: Throughput and peak working set for ASP.NET caches with
different sizes and different expiration times.

memory management. Perhaps surprisingly, we observe that
the throughput remains constant independent of the graph
size, which is ideal since the amount of work done remains
the same. With garbage collection, throughput drops as the
graph size increases. This is due to higher number of gen0
and gen1 collections that trace the entire graph to find free
objects. We also find that the peak working set is higher with
our allocator, especially in large graphs. For large graphs,
our allocator triggers promotion less frequently.

ASP.NET caching. ASP.NET caching supports several
configuration parameters that can be used to trade off hit
rates with memory consumption. For our evaluation, we
chose two different cache sizes (1M and 10M key/value
pairs) and expiration policy (sliding window with a 2 sec-
onds and 5 seconds). We created a multi-threaded client
that randomly generates keys from a exponential distribu-
tion (with λ = 1.5) to model skew, issues a get requests and
attempts to add a new value (randomly sized between 16
bytes and Kb) if no value exists. Using a skewed distribution
results in contention due to threads acquiring writer locks
and inserting values in a small part of the key space.

As shown in Figure 9, the overall throughput of the cache
decreases as the number of client threads increases. This is

Figure 10: Time to completion and peak working set for three Naiad opera-
tors and varying window sizes.

expected due to contention. Also observe that throughput are
higher with higher expiration times. This is because entries
stay in the cache for longer resulting in higher hit rates. A
cache with 1M entries achieves a hit rate of approximately
89% and 92% for expiration periods of 2s and 5s respec-
tively.

Switching to manual memory management improves the
throughput across configurations and significantly reduces
memory consumption (by a factor of 2). Also observe that
peak working set remains mostly the same independent of
the number of threads. We also observe that in this applica-
tion, the degree of fragmentation is low and never exceeds
the threshold of 0.5. Therefore, the allocator never triggers a
promotion phase. This is because objects that are allocated
together (in time and space) tend to have the same lifetime.
Therefore, entire pages are unmapped from gen0 without
promoting any objects.

Naiad. We executed queries over a streaming workload
containing documents and authors. Each document has an
identifier, a title, a length and an author, and each author
has an identifier, name and age. The stream of document
is divided into epochs with each epoch containing between
100000 and 500000 documents. Epochs in the author stream
contain anywhere between 1 and 5 authors picked from a
collection of 10 authors. For the evaluation, we picked three
queries, an aggregation of document lengths by author, a
grouping of documents by author, and a windowed join of
documents and authors.

Figure 10 shows the execution time and peak working
sets for three Naiad queries for different window sizes (in
log scale). Aggregation and grouping are simpler operators
that maintain relatively compact summaries of input streams.
Therefore, these operations have a much lower memory foot-
print (and lower execution times). The windowed join on the



other hand maintains a much larger amount of state, which
increases with window size. In all cases, the implementa-
tions that use our allocator outperform the ones with GC (by
up to 3X) both in throughput and memory consumption.

RaptorDB. We use a stress test for RaptorDB that in-
serts 20 millions key/value pairs in the database, builds
an index, and then performs 20 millions get requests over
the entire key space. With the GC, RaptorDB achieves a
throughput of 66000 ops/sec and has a peak working set of
2.2GB. With manual memory management, the throughput
improves marginally to 69000 ops/sec (an improvement of
4.5%) and the peak working set reduces to 1.4GB. Further
profiling suggests that this benchmark is predominantly IO
bound and spends only 14% of its time in GC.

5. Related work
Several languages propose static type systems for manual
memory management. Some of these languages are based on
regions [10, 20, 40, 43]. For example, Cyclone [22, 38] inte-
grates a garbage collector with safe manual memory man-
agement based on regions. Several languages propose us-
ing unique pointers to objects [5, 23, 29, 31, 38]using con-
cepts from linear types [8, 41]; and borrowing of references
for temporary use [11, 12, 42]. Languages with ownership
types [10, 12, 13] and alias types [37] can express complex
restrictions on object graphs. Capability types [43] can be
used to verify the safety of region-based memory manage-
ment. We propose a simpler programming model that nei-
ther requires any of these concepts nor imposes restrictions
on pointer aliasing, concurrent sharing of pointers, or allo-
cation and deallocation sites.

Several systems use page-protection mechanism to add
temporal safety to existing unsafe languages: [3, 4, 27] al-
locate a different virtual and physical page for every alloca-
tion; [16] improves efficiency by sharing a physical page for
different virtual pages. However, it suffers from increased
TLB pressure and high-overhead for allocation. We propose
techniques that eliminate these limitations and achieve high
performance.

Some systems propose weaker guarantees for safe man-
ual memory management. Cling [6] and [17] allow reuse of
objects having same type and alignment. DieHard(er) [9, 35]
and Archipelago [27] randomize allocations to make the ap-
plication less vulnerable to memory attacks. Several systems
detect accesses to freed objects [26, 32, 44], but do not pro-
vide full type safety.

Several systems have proposed optimizing garbage col-
lection – for instance for big data systems [15, 18, 28, 34]
and for real-time and embedded systems with very low la-
tency constraints [7]. Rather than optimizing garbage collec-
tion, we propose replacing it with manual memory manage-
ment. Another line of work uses page-protection to eliminate
pauses during compaction [14, 39]. C4 compacts relocates
fragmented pages to unused pages. However, C4 uses a read

barrier whenever a reference is loaded from memory to de-
tect and patch invalid references. A loaded value barrier en-
sures that at any point all the visible loaded references can
be dereferenced. Pauseless [14] uses a special hardware to
implement this, whereas C4 [39] emulates the read barri-
ers in software. Our allocator allows invalid references to be
loaded and copied; these references are patched only when
they are dereferenced. We use compiler transformations to
achieve this efficiently.

Compressor [25] uses page protection for pause-less
compaction. Unlike [14, 39], Compressor does not require
read barriers, but can only compact the entire heap at once.
Unlike these systems, we do not require tracing the object
graph through potentially very large heaps to discover ob-
jects that can be freed; instead we rely on programmers ex-
plicitly deallocating objects.

Scala off-heap4 provides a mechanism to offload all allo-
cations in a given scope onto the unmanaged heap but does
not provide full temporal and thread safety. Related work
in the .NET ecosystem is Broom [19] that relies on regions
but does not offer type safety. Recent recent work has also
proposed the use of hints to allocate objects in arenas [34]
without sacrificing safety. Safety is ensured using write bar-
riers to track cross arena references, and objects are migrated
from one arena to another or to the GC heap when program-
mer hints are wrong.

6. Conclusion and Future work
We presented a design for simple and fast manual memory
management in safe languages. We propose simple program-
ming model that does not impose any static constraints. Ex-
periments show that this design achieves up to 3X reduction
in memory and run time. An interesting direction for future
work is to integrate manual memory management in lan-
guages with garbage collection, giving developers the choice
of exercising control where desired while benefiting from
automated memory management at the same time.
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