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Abstract. The current computing trend towards cloud-based Database-
as-a-Service (DaaS) as an alternative to traditional on-site relational
database management systems (RDBMSs) has largely been driven by
the perceived simplicity and cost-effectiveness of migrating to a DaaS.
However, customers that are attracted to these DaaS alternatives may
find that the range of different services and pricing options available to
them add an unexpected level of complexity to their decision making.
Cloud service pricing models are typically ‘pay-as-you-go’ in which the
customer is charged based on resource usage such as CPU and mem-
ory utilization. Thus, customers considering different DaaS options must
take into account how the performance and efficiency of the DaaS will
ultimately impact their monthly bill. In this paper, we show that the
current DaaS model can produce unpleasant surprises — for example, the
case study that we present in this paper illustrates a scenario in which a
DaaS service powered by a DBMS that has a lower hourly rate actually
costs more to the end user than a DaaS service that is powered by an-
other DBMS that charges a higher hourly rate. Thus, what we need is a
method for the end-user to get an accurate estimate of the true costs that
will be incurred without worrying about the nuances of how the DaaS
operates. One potential solution to this problem is for DaaS providers to
offer a new service called Benchmark as a Service (BaaS) where in the
user provides the parameters of their workload and SLA requirements,
and get a price quote.

1 Introduction

One of the greatest hurdles associated with deploying traditional on-site rela-
tional database management systems (RDBMSs) is the overall complexity of
choosing, configuring, and maintaining the RDBMS as well as the server it oper-
ates on. In choosing and configuring a particular RDBMS and server to deploy,
the users must have a firm understanding of the characteristics of their par-
ticular workload. Some of the important characteristics include the size of the
database, the nature of the queries (transactional or ad-hoc/analytic), and the
desired metric of performance (latency or throughput). Along with the upfront
decisions of a particular RDBMS and corresponding server, the user must con-
sider the long-term licensing, maintenance, and administration costs of running
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the system. This complexity that is associated with managing onsite DBMSs is
a key reason why cloud-based Database-as-a-Service (DaaS) is starting to gain
in popularity as an alternative to on-site RDBMS systems, especially for small
and mid-sized database users.

The widely perceived advantage of the DaaS paradigm is that the user has
now transferred the complex and nuanced decisions, and the heavy costs of op-
erating an on-site RDBMS to the DaaS provider. Specifically, by turning to a
DaaS, the user stores the data in the DaaS, and uses the DaaS APIs to query
their data, for a monthly subscriber fee. This monthly fee incorporates all the
responsibilities (such as data availability) that the provider has taken on. This
fee also includes an “on-demand” payment model for computing resources that
are consumed (this later component includes the costs that are associated with
the CPU cycles and the storage that is consumed). However, the DaaS providers
recognize that the needs of the database users varies significantly, and that one
fixed pricing model will alienate one or more segments of the customer market.
Consequently, in order to appeal to the entire spectrum of potential users, the
DaaS providers have begun to diversify their offerings with multiple pricing op-
tions, each promising different levels of computing power, storage capability, and
measures of performance. However, from the users’ perspective, there is now a
bewildering set of choices. As with the process of choosing an on-site RDBMS,
they must now fully understand the characteristics, such the raw DBMS perfor-
mance and query workload characteristics, when choosing an appropriate DaaS
product. In fact, with the addition of the pay-as-you-go model for the computing
resources, they now have an additional factor to consider — namely, the impact
of the computing resources usage on their bottom line.

Initially, it may seem that the DaaS products alleviate many of the pains that
are associated with running an on-site RDBMS. However, as we show in this
study, the truth is that the users are actually in a tough position — they must
now make an upfront decision of choosing a DaaS offering, while the long-term
performance and cost consequences of their decisions are harder to figure out.

A crucial point that we make in this paper is that currently the DaaS users
do not have an effective method to compare the suitability of one DaaS op-
tion over another, and fully understand the actual “cost” of their service. In
a traditional RDBMS setting, the database users know that they can always
turn to well-established benchmarks (such as the TPC benchmarks), to esti-
mate whether one solution is more suitable than another. However, while such
benchmarks identify price and performance as key metrics, these metrics have
not been defined for the complex variable pricing models of DaaS products. For
instance, they do not consider storage costs of the database or the utilization
hours as factors of the price/performance. Moreover, TPC benchmarks usually
take into consideration the total cost of ownership as a primary metric. This is
incompatible with the “pay-as-you-go” model of cloud computing since the cloud
customers are not directly exposed to the hardware, software maintenance, and
administration costs of the deployment.
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Fig.1. Cumulative monthly user cost as a function of workload repetitions, DBMS
type, and pricing model

To highlight the practical need for an easy to use and accurate pricing model,
consider the popular Amazon Relational Database Service (RDS) [I]. While
Amazon initially provided users with a database service backed by MySQL [11],
recently they have unveiled an option to swap the back-end to an Oracle RDBMS
instance [I2]. Of course, these two options are not price equivalent, and currently
the “Quadruple Extra Large DB” instance cost of the MySQL option is $2.60
per compute-hour, while the Oracle option is 31% more expensive at $3.40 per
compute-hour. This price difference is largely due to the licensing cost ($0.80 per
compute-hour) of the commercial Oracle system over the open-source MySQL
system. While a cursory glance at these numbers would suggest that the cost-
conscious user should buy the MySQL option, this choice ignores the fact that
the often superior performance of a commercial DBMS may actually result in
less computation time than the “free” MySQL option, and thus may actually be
the cheaper option in some cases!

To better illustrate this point, consider running the following Wisconsin bench-
mark [7] query (Query 21):

INSERT INTO TMP
SELECT MIN (unique3) FROM TABLE1
GROUP BY onePercent

When we run this query on MySQL and a commercial DBMS (SQL Server) on
the same physical machine (configuration details are described in Section [3),
SQL Server runs this query in 185 seconds while MySQL takes 621 seconds to
execute this query. How is the user’s cost affected by this 3.3X performance gap
when the user decides to run this workload on a DaaS?

Assuming a simple pricing model where the user pays a fixed cost of $1.30 per
compute-hour for the specific DB Instance Class used, and a monthly storage fee
of $25 for a database of 250GB, Figure [[l shows the cumulative monthly cost for
the full deployment when these two RDBMSs are used, and when the workload
consists of repetitions of the above query. For the SQL Server-based service, the
user has to pay an extra hourly license fee/cost. Figure [ll examines four possible
pricing models for the hourly license costs (1¢) ranging from $0.65 to $3.90.
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Interestingly, Figure [l shows that although the user does not need to pay any
license fee for MySQL, using this DBMS results in a higher total cost when the
license fee for SQL Server is less than $3.90, and the user frequently issues such
query requests. If the user load is high (e.g., around 4000 queries/month), then
choosing the commercial-based RDBMS can save the user up to 54%. The reason
for this behavior is that the higher efficiency of SQL Server results in decreased
resource usage, and overall reduces the end-to-end cost for the user.

1.1 Towards BaaS

As the example above illustrates, the actual cost that a DaaS user will incur
is hard to guess upfront. A simple approach to solve this pain point is to take
the existing pricing model a step further. So in this scenario, the user provides
the database and workload characteristics to the DaaS provider and in return
the DaaS provider gives a price quote for running that workload. Along with the
price quote the DaaS provider can attach a Service Level Agreement (SLA) that
make guarantees on aspects such as performance variability and availability, and
also lays out the penalty associated with SLA violations. (Alternatively, some
parameters in the SLA could be provided upfront by the user, or the DaaS
provider may come back with multiple price quotes at different SLA levels.)

Thus, what we need is for the DaaS providers to run another service — namely,
“Benchmark as a Service” (BaaS) that makes it transparent to the user what it
would cost to run their workload. Such a BaaS service could be free, and then
would be crudely analogous to the utility model that is present in other parts
of our lives — for example, internet service providers give an accurate price and
specify the upper limit of the bandwidth. We acknowledge that a DaaS provider
may have a more complicated problem at hand since the SLAs in a DaaS setting
could be complex (hence, this is a promising direction for future work). But, from
the perspective of the end-consumer of DaaS, a transparent pricing model could
be very appealing, and perhaps a competitive advantage for the DaaS providers
that choose to simplify their DaaS offering by coupling it with a BaaS service.

The BaaS approach also has a number of potential advantages for the DaaS
provider as it provides a strong motivation to find the most optimal way of
running the backend DBMS engine (rather than punting this decision to the
end user), thereby reducing their operational cost (and perhaps improving their
bottom line). Furthermore, the BaaS approach may provide more flexibility in
managing the DaaS infrastructure — for example, a DaaS provider may not need
to offer a range of DBMSs or data processing backends, and could simplify their
infrastructure management by using only a single data processing engine. Finally,
with a BaaS approach, the overall DaaS system potentially operates at a much
higher operating efficiency (generally the queries across the system are likely to
run far more efficiently then when the end user has to make nuanced decisions
about configuring their DBMS and making bad choices), which in most cases is
also likely to produce a more energy-efficient way of operating the Daa$S, since
in many cases the goal of energy efficiency lines ups with the goal of optimizing
for traditional performance goals.
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The remainder of this paper is organized as follows: Section 2] presents our
cost model. Experimental results are presented in Section Bl while Section H
discusses related work. Section [l contains our concluding remarks and points to
some directions for future work.

2 Cost Model

This section presents a simple cost model for using relational DBMSs in the
cloud. The model considers the cost that is incurred by the end user in using
a DaaS offering. We then use this model in our experiments (see Section [3) to
explore the costs associated with using a DaaS product.

We patterned a simple pricing model crudely using Amazon’s DaaS product
as a reference. According to the Amazon’s DaaS pricing model [I], the users pay
only for the resources that they consume. Several parameters determine this cost.
The first one, is an hourly fee that corresponds to the specific DB Instance Class
chosen by the customer. The DB Instance is a database environment in the cloud
with the compute and storage resources that the customer specifies. For example,
currently in Amazon’s RDS, 6 DB Instance Classes are provided. The “Small”
DB Instance Class has 1.7GB of main memory and one 1.0-1.2 GHz CPU core (1
ECU), whereas the “Extra Large DB Instance” has 15GB of main memory and
four 2.0-2.4 GHz CPU cores (8 ECUs). Generally, the hourly rates vary with the
DB Instance Classes, since each class has different hardware characteristics. An
extra hourly license cost/fee, is added for DB Instances backed by a commercial
DBMS, which also varies according to the DB Instance Class chosen. The last
parameter is a monthly storage fee per GB of the provisioned storage needed by
the workload.

Consider a fixed database instance type chosen by the user with corresponding
hourly cost dbc, an hourly license fee for the DBMS equal to 1c, a monthly fee
for the provisioned storage per GB equal to stc, and H hours of utilization per
month of the DB instance. Given that the DB instance has associated capacity
of DS GB, the monthly user cost (MUC') can be determined as:

MUC = H x (dbc+ lc) + DS x stc (1)

To keep our model simple, we do not consider the monthly network related
costs.We also do not consider the costs for the extra backup storage that may be
needed. These rates affect the total cost in a way similar to the storage fee stc
and can easily be added to the above equation. Moreover, our model assumes
that only one database instance is used by the customer. Creating and validat-
ing a more complex model that considers a combination of different database
instance classes and multiple database instances per class is part of future work.

3 Experimental Evaluation

In this section, we discuss our experimental results which include performance
measurements of a database server running different workloads and using dif-
ferent storage organizations, using MySQL and SQL Server. Based on these
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performance results and the pricing model presented in Section 2l we compare
the total cost that the user has to pay when using these two DBMSs in a DaaS.

The work by Schad et al. [I3] presents experimental results showing that per-
formance unpredictability is a major issue when running workloads in the cloud.
The variance observed can be attributed to several factors, including different
types of virtual systems provided by the service, different availability zones (dis-
tinct locations that are insulated from failures in other availability zones), and
time of the day/week when the workload was run. Similar observations are dis-
cussed in the work of Armbrust et al. [2]. All these parameters make it difficult
to estimate the impact on the cost and the performance of different database
systems serving applications in a cloud-based environment. In this study, in an
effort to eliminate these variances, we decided to measure the performance of
the different DBMSs on a stand-alone local server machine. We show that even
in this isolated environment, where variance due to the factors mentioned above
is eliminated, the impact of the workload type and the efficiency of the DBMS
on the monthly user’s bill is not straightforward to estimate.

3.1 Server Configuration

Our test platform is a HP Proliant server with a dual quad-core hyperthreaded
Intel Xeon L5630 processors (@ 2.13GHz), 32 GB of memory, and 12 HP 146GB
10K RPM SAS drives.

The server is dual booted with 64-bit Ubuntu Server 9.10 and 64-bit Windows
Server 2008 R2 Enterprise Edition. The Linux version is used to run MySQL
(MySQL Community Server 5.5.9) and the Windows version to run SQL Server
2008 R2 (Data Center Edition). Each disk is partitioned roughly evenly between
the two operating systems. The first hard disk is used for the installation of the
operating systems and all the database binaries.

3.2 DBMS Configuration

In our experiments, the database buffer pool is set to 24GB for both DBMSs.
One disk is used to store the log files and the remaining 10 disks are reserved for
the data files and the temporary space that is needed during query execution.

For SQL Server, we created a “file group” of 20 data files across the 20 data
disk partitions (the 10 Windows partitions are further subdivided into two par-
titions). In this way, each of the 16 (hyperthreaded) cores can be assigned to
one disk partition to allow parallel query processing. MySQL currently does not
support such intra-query parallelism. For this reason, we created one data file
striped across the 10 data disks so that we can get a high aggregate disk band-
width. For MySQL we used the InnoDB storage engine, which is the default
setting and the one used in Amazon’s RDS.

3.3 The Wisconsin Benchmark

For our experiments we decided to use workloads based on the Wisconsin
benchmark [7]. Our decision was driven by the fact that it is a simple “mi-
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cro” benchmark that is fairly easy to set up and does not have complicated rules
about how to run and measure a benchmark. Furthermore, this benchmark con-
tains a variety of queries including selections, joins, projections, aggregations
and updates. These simple queries are building blocks for more complex work-
loads and provide good insights about the potential impact on more complex
workload characteristics.

The benchmark uses three basic relations, two that have the same number of
tuples (T') and one that contains 7/10 tuples. Each relation consists of sixteen
attributes, thirteen 4-byte signed integers and three 52-byte varchars. The most
widely used attributes in the benchmark are uniquel, unique2 and onePercent.
The values of the uniquel attribute are uniformly distributed unique random
numbers in the range 0 to T'— 1. The values of unique2 are in sequential order
from 0 to T'— 1. The original benchmark paper [7] contains more information
about each attribute and its values.

The benchmark explores two different kinds of storage organizations. The first
one contains one heap file for each relation, and is called StorageOrg-H. This
storage layout doesn’t contain any primary key indices. In the second storage
organization, called StorageOrg-I, each relation has a clustered index on the
unique?2 attribute, a unique non-clustered index on the uniquel attribute and
a non-unique non-clustered index on the onePercent attribute.

3.4 Experimental Setting

For our experiments, we created six different types of workloads based on the
Wisconsin benchmark. The first two workloads contain all the queries in the
benchmark, and are called MixedWorkloadl and MixedWorkload2. The first
workload, MixedWorkload1, uses heapfiles as the storage layout (StorageOrg-H),
whereas the second workload, MixedWorkload2, uses the clustered and non-
clustered indices defined by the benchmark (StorageOrg-I). We generated a
DSS-like workload using a subset of the Wisconsin benchmark queries. From this
set of queries, we created two DSS workloads, DSSWorkload1 and DSSWorkload?2,
corresponding to the two storage layouts (StorageOrg-H and StorageOrg-1I re-
spectively). Similarly, we generated two OLTP workloads consisting of OLTP-
like queries. These two workloads are OLTPWorkloadl and OLTPWorkload2, and
correspond to the storage layouts StorageOrg-H and StorageOrg-I
respectively.

Note that some of the queries of the mixed workloads are not presented in
the OLTP or in the DSS workloads. More specifically, the 10% selection queries
(Q2, Q4, Q6) as well as the 1% selection to screen query (Q8) are only included
in the mixed workloads. We did not include the 10% selections in the other
workloads because we wanted to experiment with high-selective queries in the
OLTP workloads, and we wanted the DSS workloads to mainly consist of join
and aggregation queries. Query Q8 was omitted since most of its execution time
with MySQL was spent in printing the output to the screen, and not actually
evaluating the query result. In the original Wisconsin benchmark paper [7], some
of the queries are executed only on either Storage-H or Storage-I. In this work,
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we decided to execute all the queries using both storage layouts. This decision
was driven by the fact that for some queries the DBMSs don’t pick the execution
plan described in the benchmark. For example, Query 6 is supposed to use a
non-clustered index, that’s why it is tested only in Storage-I. However, in our
experiments the actual plan picked by the optimizer of both DBMSs is a scan
on the table. That’s the reason why some of the queries are presented twice in
some workloads (e.g., Q6 in MixedWorkloadl and MixedWorkload2).

We created three data files using a Wisconsin benchmark generator. Each file
corresponds to one relation of the benchmark. The two tables of the database
contain 400M tuples, and the third one has 40M tuples. The size of the flat
files for these tables is 80GB, 80GB, and 8GB respectively. Thus, the total raw
database size is approximately 168GB. Between the executions of queries we
purge the buffer pool (i.e., all reported numbers are “cold”). We also update the
statistics for all the tables that are used in a query before its execution starts.
The time to clean the buffer pool and update the statistics is not included in the
experiment’s total execution time. The temporary (TMP) tables that are used
to store the results of each query are dropped after the query is executed and
recreated when needed. Each query was run 3 times and the average value is
reported. We did not see a lot of variance across runs of the same query. All the
time values are reported in seconds. The data loading times were fairly similar
across both DBMSs, and are not included in computing the total cost below.

We used the model presented in Section [2] to estimate the total cost incurred
by the end DaaS subscriber/user. To compute the monthly user cost (MUC),
we set the DB instance fee (dbc) to $1.30 per hour. This dbc is equal to the
rate of a high-memory double extra large DB Instance offered in Amazon RDS,
which is the closest Amazon Instance configuration to our server. To get a bet-
ter sense of how the total cost is affected by the license cost/fee (1c), we ex-
perimented with the following hourly license rates for the commercial DBMS:
{$0.65, $1.30, $2.60, $3.90}. Since MySQL is open-source, its licensing fee is $0.
The monthly storage fee stc is set to $0.10 per GB (similar to Amazon’s RDS
rate). We set the provisioned storage DS (data, log files and temporary space)
for both DBMSs to 250GB.

To evaluate how the storage fee combined with the hourly fees affects the
monthly user cost, we varied the number of repetitions of the workload, so that
we can experiment with short and long-running workloads of the same type. We
first report the cumulative user cost when the workload is executed only once
(#repetitions=1). The next number of repetitions reported (#repetitions=N),
corresponds to a total execution time close to a period of one month (computed
based on the execution time of the workload on the slowest DBMS). This case
represents the scenario were the end user application is driving the provisioned
DBMS instance nearly to its peak capacity (for the slowest DBMS). Finally,
we also present the comparative monthly costs when N/10 repetitions are per-
formed. For example in Figure[ll, N = 4,000, since the slowest DBMS (MySQL)
can execute Query 21, approximately 4,000 times in a period of a month.
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Table 1. Mixed Workload 1 Table 2. Mixed Workload 2
SQL SQL
Server MySQL Server MySQL
Query Time Time Query Time Time
Query Description (secs) (secs) Query Description (secs) (secs)
Q1 1% selection 224 665 Q3 1% selection 22 51
on unique2 on unique?2
Q2  10% selection 482 1185 Q4 10% selection 203 551
on unique2 on unique?2
Q5 1% selection 195 739 Q6 10% selection 883 1146
on uniquel on uniquel
Q6 10% selection 332 1191 Single tuple
on uniquel Q7 selection 0.75 0.60
Single tuple to screen
Q7 selection 191 555 Q8 1% selection 62 1245
to screen to screen
Q8 1% selection 236 1721 Q12 JoinAselB 412 1071
to screen Q13  JoinABPrime 408 1004
Q18 1% projection 129 1523 Q14 JoinCselAselB 583 1512
Q20 Min. aggregate 190 482 Q18 1% projection 864 1495
Min. aggregate Q23 Minimum 0.21 0.83
Q21 with group by 185 621 aggregate
Sum aggregate Q29 Insert 1 tuple 0.99 0.57
Q22 with group by 187 747 Q30 Delete 1 tuple  0.65 0.66
Q26 Insert 1 tuple 0.20 0.23 Q31 Update 1.47 0.73
Q27 Delete 1 tuple 192 637 on unique?2
Q28 Update on 192 595 Q32 Update 0.75 0.71
unique2 on uniquel
Q32 Update on 197 609  Total 3441 8079
uniquel
Total 2932 11270

3.5 Mixed Workloads

The mixed workloads contain all the queries in the Wisconsin benchmark that
finished within 3 hours with both DBMSs. Some queries (i.e., MySQL running
joins in MixedWorkloadl) were stopped after 14 hours of execution. Although
the same queries were completed using SQL Server, we do not take into account
these numbers. It is clear that having such queries in the workload will lead
to poor performance and higher cost, and hence will favor the usage of the
commercial DBMS. However, we believe it’s interesting to see what happens
with respect to performance and cost when all the queries of the workload are
completed in both systems in a reasonable amount of time. Note that all the
queries that MySQL could finish within 14 hours were also completed by SQL
Server within 14 hours.
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Tables [ and contain the execution times for both DBMSs using
MixedWorkloadl and MixedWorkload?2 respectively. The last rows of the tables
contain the total execution time for each database system used. Figures[2 and Bl
show the estimated monthly cost for the customer when MySQL or SQL Server
is used.

As shown in Table [ when the database consists only of heapfiles
(MixedWorkloadl), MySQL is approximately 3.84X (2.3 hours) slower than SQL
Server. Notice that Table [[] does not show the original Wisconsin benchmark
Queries 9-17 — these are join queries that did not complete with MySQL but
completed using SQL Server in a reasonable amount of time (between 400-1000
seconds for each query).

Figure Plshows how the total user cost is affected by the performance gap that
exists between the two systems, when the repetitions of the workload as well as
the hourly license fee for the commercial DBMS is varied. As shown in this
figure, when the workload is executed only once, the difference in cost between
SQL Server and MySQL is very small. In this case, the execution time is not
long enough to make a significant impact, and thus the total cost is dominated
by the monthly storage fee. The difference in the total cost between the two
systems increases with the number of queries issued. As shown in the figure, the
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“free” open-source DBMS results in higher total cost when the license fee for
the commercial DBMS is below $3.90. When the workload is executed 20 times
the cost savings with SQL Server is 17%(lc = $2.60), 37% (lc = $1.30) and 47%
(lc = $0.65). In the case of 200 repetitions (almost a month running time with
MySQL), when the license fee is $2.60, using MySQL results in a 21% increase
in the user’s monthly bill. In the case of a license fee of $0.65, the increase is
more significant(59%). Regarding, the performance of the MixedWorkload?2, as
shown in Table[2] when the clustered and non-clustered indices are used, MySQL
is approximately 2.34X (1.28 hours) slower than SQL Server. In this case, the
existence of the clustered index on the unique2 attribute significantly improved
the execution of some joins (Q12, Q13, Q14) as well selections (Q3, Q4) and
updates (Q29, Q31). The existence of the non-clustered index on the uniquel
attribute improved the performance of the queries 30 and 32. However, it had
an adverse impact on other queries (e.g Q5 in MySQL). This behavior can be
attributed to the fact that the non-clustered index contains only two attributes:
uniquel and the primary key unique2. However, the query result contains all
the 16 attributes of the relation. Evaluating this query using the non-clustered
index as an access method possibly results in high random I/O behavior. A
clustered index scan would probably result in a more efficient query execution
(as was the case for the similar Q6 in both MySQL and SQL Server).

Figure[3 presents the total user cost similarly to Figurelfor MixedWorkload?2.
As before, the free MySQL systems often results in higher costs, though now the
license fee for the commercial DBMS has to be lower (around or below $1.30)
than it was in Figure [2] to win over MySQL.

3.6 DSS Workloads

In this section, we evaluate the performance of the two DBMSs when the work-
load contains only decision-support queries. Similar to Section 3.5 based on
these results and the cost model developed in Section 2] we estimate the total
user cost for both cases. The DSS workload includes all the join and aggregation
queries of the Wisconsin benchmark. Again, we report execution times only for
the queries that were completed in both systems.
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Table 3. DSS Workload 1 Table 4. DSS Workload 2
SQL SQL
Server MySQL Server MySQL
Query Time  Time Query Time Time
Query Description (secs) (secs) Query Description (secs) (secs)
Q20 Minimum 190 482 Q12 JoinAselB 412 1071
aggregate Q13 JoinABprime 408 1004
Minimum Q14 JoinCselAselB 583 1512
Q21 aggregate with 185 621 Minimum
100 partitions Q23 aggregate 0.21 0.83
Sum All 1403 3588
Q22 aggregate with 187 ey
100 partitions
All 562 1850

Regarding DSSWorkload1, as it is shown in Table [3, when using heapfiles as
a storage layout only the aggregation queries were completed in both systems.
In this case, MySQL was approximately 3.29X slower than SQL Server.

Figure [ presents the total cost for the user varying the same parameters
as in Figures Pl and [}l As it is shown in this figure, a similar pattern to that
of MixedWorkloadl is observed. The per hour cheap option (MySQL) does not
always result in the lowest total cost. In fact, when the hourly license fee for SQL
Server is less or equal to $2.60, choosing that over the free DBMS can result in
cost savings of up to 53% (lc = $0.65, 1400 repetitions). On the other hand,
using MySQL can result in cost savings of up to 17% when the license fee is
equal to $3.90 and the workload is executed 1400 times.

Table Ml presents performance results for DSSWorkload2. The existence of the
indices allows many joins to complete with MySQL, but negatively affected some
aggregation queries. The reasons for this behavior are discussed in section
In this case, MySQL is 2.55X slower than SQL Server.
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Table 5. OLTP Workload 1 Table 6. OLTP Workload 2
SQL SQL
Server MySQL Server MySQL
Query Time Time Query Time Time
Query Description (secs) (secs) Query Description (secs) (secs)
Ql 1% selection 224 665 Q3 1% selection 22 51
on unique2 on unique2
Q5 1% selection 195 739 Single tuple
on uniquel Q7 selection 0.75 0.60
Single tuple to screen
Q7 selection 191 555 Q29 Insert 1 tuple  0.99 0.57
to screen Q30 Delete 1 tuple  0.65 0.66
Q26 Insert 1 tuple 0.2 0.23 Q31 Update 1.47 0.73
Q27 Delete 1 tuple 192 637 on unique2
Q28 Update 192 595 Q32 Update 0.75 0.71
on unique2 on uniquel
Q32 Update 197 609 All 26.61 54.27
on uniquel
All 1191 3800

The corresponding user cost is presented in Figure[dl Similarly to the previous
results, the open-source DBMS is a more cost-effective choice when the license
fee is greater or equal to $2.60. As before, the cost savings increases as the
execution time increases, since in this case the monthly storage fee does not
have a significant impact on the total cost.

3.7 OLTP Workloads

The OLTP workload consists of the queries of the Wisconsin benchmark that
contain high-selective selections, insertions, deletions and updates. Similarly to
the previous experiments, only the queries that were completed in both DBMSs
are reported for each workload.

As shown in Table Bl when the database consists only of heapfiles, MySQL
is 3.19X slower than SQL Server. The corresponding user’s cost is presented
in Figure [0l Similarly to the previous experiments, MySQL is the most cost-
effective option when the hourly license fee is equal to $3.90. In all the other
cases, the cost savings when using SQL Server can be as high as 51%.

When indices are used, MySQL is approximately 2X slower than SQL Server.
Table [6] and Figure [[ present the performance results and the associated user
cost.

3.8 Discussion
We have shown that the process of estimating the cost of a DaaS is not straight-

foward, even in the simple case where the database system in not deployed in a
virtualized environment and factors such as different availability zones, locations
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or points of time are not taken into consideration. Parameters such as database
efficiency, type of workload, and pricing model can all affect the resulting user
cost. Consequently, often the option that initially seems cheap per hour, e.g., an
open-source DBMS; can actually result in a higher monthly bill than that of a
non-free, licensed DBMS.

4 Related Work

DBMS benchmarking is an age-old sport in the database community. The Wis-
consin benchmark [7] was one of the first benchmarks developed for evaluating
RDBMSs. Today, the series of the TPC benchmarks [16] are widely used for
measuring the performance and the cost or relational database systems.
Following the advent of cloud computing, recent work has evaluated different
cloud services on different types of workloads. More specifically, a recent paper [3]
presents some initial ideas on what a general cloud benchmark should consider,
focusing on the different kinds of cloud services and architectures and their
corresponding pricing plans. One of the (many) considerations in this paper
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is the end-user cost. A follow-up work [9] presents an evaluation of different
cloud services when running enterprise web applications with OLTP workloads.
Along the same lines, Berkeley’s Cloudstone project [I5] proposes a workload
and metrics to study cloud infrastructures that deploy Web 2.0 applications.
Comparing different cloud services has also been the focus of the recent work
by Garfinkel [8], which evaluates three popular Amazon Computing Services
(EC2, S3 and SQS). Another work [6] compares a traditional open-source RDMS
and existing cloud computing technology (HBase). Cooper et al. [5] propose a
benchmark to compare different popular datastores like Cassandra and PNUTS.

Virtualization techniques have been widely adopted in cloud-based environ-
ments. In a recent paper [10], the performance of relational database systems
running on top of virtual machines has been studied. Bose et al. [4] present per-
formance results from experiments running TPC database workloads on top of
virtual machines, and make the case for a database benchmark on top of virtual
machines. The follow-up work [I4] presents a high-level overview of TPC-V, a
benchmark designed for database workloads running in virtualized environments.

5 Concluding Remarks and Directions for Future Work

This paper has explored how two important dimensions in cloud environments,
namely performance and cost, are influenced when different types of DBMSs are
chosen by a DaaS user. More specifically, we have used a variety of simple work-
loads and storage organizations to evaluate two different relational DBMSs (one
open-source and one commercial RDBMS). Our results show that given the range
of the pricing models and the flexibility of the “on-demand” allocation of resources
in cloud-based environments, it is hard for a user to figure out their actual monthly
cost upfront. Interestingly, DaaS settings that at first sight seem cheaper per hour
(since the backend is an open-source DBMS) and thus more-cost effective, can re-
sult in higher total costs in the long-run, since the backend DBMS may have poor
performance characteristics on the users’ workload. On the other hand, a DaaS
setting backed by a high performance commercial DBMSs, while more expensive
on a per hour basis, may be cheaper overall since its higher performance more than
makes up for the hourly price differential. We note that these results should not
be construed to mean that free open source DBMSs are always more expensive in
the DaaS environment (or vice versa) — we have only tried two DBMSs in this pa-
per, picking the most popular free open-source DBMS and a commercial DBMS.
Rather, our work highlights that the real cost of running a workload in the DaaS
is complicated, and may in some cases produce surprising results.

Thus, what we need is real transparency and clarity in pricing DaaS. An
approach to this problem that we propose in this paper is “Benchmark as a
Service” (BaaS), where by the DaaS provider can take the user workload as
input (with SLA parameters) and provide an accurate price for that workload,
or perhaps different prices at different SLA levels. This BaaS approach would
move the DaaS offering closer to a true utility model (like gas and electricity,
or internet service). But, we acknowledge that setting up a BaaS is challenging
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as there are important aspects that need to be considered. For example, how
to specify the workload. A starting point for describing this workload could
be for the user to provide the database schema, average tuple sizes for each
table, and a query set. But, additional parameters may be required, such as
estimated database growth rates, or acceptable ranges for SLA parameters (e.g.,
query/workload response time or throughput). For simplicity from the users’
perspective it is desirable that the workload specifications should not be overly
complicated, but from the DaaS provider’s perspective more details are probably
required. Finding a good and practical balance is one direction for future work.
Other aspects of future work include designing methods for a DaaS provider to
efficiently run a mix of workloads that started with a BaaS, and monitoring and
reacting to changes in workloads that started with a price quote from the BaaS.
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