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Bayesian Learning X

* Parameter vector X. /// \\

= Data items Y = y1, y2,... Yn. Y1 Yo Yj Yo o e YN
" Model: N
p(X,Y) =p(X) | [ p(y:| X)
i=1
" Alm: p(X)p(Y|X)
X|\Y)=
p(X[Y) (V)

" Inference algorithms:
= Variational inference: parametrise posterior as o and optimize 0.

= Markov chain Monte Carlo: construct samples X;... X, ~ p(XIY).
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Machine Learning on Distributed Systems

= Distributed storage

= Distributed
computation

= costly network
communications
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Parameter Server

= Parameter server [Ahmed et al 2012], DistBelief network [Dean et al 2012].

parameter server:
® parameter X

/
/ \\ worker:
; ) 5 ®*Xi=X

— =  updates to x;’
| LB * returns
& N AXi= Xi - Xj
y1| y2| y3i y4I
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Embarassingly Parallel MCMC Sampling

“Combine” samples together.
{Xiti=1..n

= == “"':"‘ Treat as independent
| | | | inference problems.

i// Collect samples.

= Only communication at
[SCOtt et al 2013, Neiswanger et al 2013, the Combination Stage.

Wang & Dunson 2013, Stanislav et al 2014 ]
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Embarassingly Parallel MCMC Sampling

10

— full data posterio
---- subset posterior
subset posterior

= Unclear how to combine worker samples well.

= Particularly if local posteriors on worker
machines do not overlap.

Figure from Wang & Dunson
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Main ldea

" Identify regions of high (global) posterior
probability mass.

10

subset posterior

= Shift each local posterior to agree with
high probability region, and draw samples
from these.

0.8
|

— full data posterio
---- subset posterior

* How to find high probability region?

= Defined 1n terms of low order moments.

= Use information gained from local
posterior samples (using small amount of
communication).

Figure from Wang & Dunson
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Tilting Local Posteriors

* Each worker machine j has access only to its data subset.

p; (X |y;) = Hp yji | X)

where p;(X) 1s a local prior and p;(X | yj) 1s local posterior.

* Adapt local priors p;j(X) so that local posterior agree on certain moments

By, xpyy)[s(X)] =80 Vj

" Use expectation propagation (EP) [Minka 2001 ] to adapt local priors.
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Expectation Propagation

" If N 1s large, the worker j likelihood term p(y; | X) should be well
approximated by Gaussian

p(y; | X) = q;(X) = N(X; py, 55)

" Parameters fit iteratively to minimize KL divergence'

p(X |y) ~ p;j(X |y) < ply; | X)p(X) || (X
k#j
p; (X)
;v () = arg Imin KL (p; (- | y) | N5 1, 2)p; (4))

* Optimal q; is such that first two moments of N (+; 1, X)p, (+) agree with p;(-|y)
" Moments of local posterior estimated using MCMC sampling.

= At convergence, first two moments of all local posteriors agree.
[Minka 2001 ]
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Posterior Server Architecture
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Bayesian Logistic Regression
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Bayesian Logistic Regression

" MSE of posterior mean, as function of total # iterations.
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Stochastic Natural-gradient EP

= EP has no guarantee of convergence.

* EP technically cannot handle stochasticity in moment estimates.

* Long MCMC run needed for good moment estimates.

" Fails for neural nets and other complex high-dimensional models.

" Stochastic Natural-gradient EP:
= Alternative variational algorithm to EP.

= Convergent, even with Monte Carlo estimates of moments.

* Double-loop algorithm [Welling & Teh 2001, Yuille 2002, Heskes & Zoeter
2002]
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Demonstrative Example

EP (500 samples) SNEP (500 samples)
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Comparison to Maximum Likelihood SGD

. o | — =
= Maximum likelihood via SGD: N /

= DistBelief [Dean et al 2012] A‘ A A A

= Elastic-averaging SGD [Zhang et al 20135] : : :

Likelihood Likelihood Likelihood

rrrrrr

= Separate likelihood approximations and states per worker.

= Worker parameters not forced to be exactly same.
= Each worker learns to approximate 1ts own likelihood.

= Can be achieved without detailed knowledge from other workers.
= Diagonal Gaussian exponential family.

= Variance estimates are important to learning.
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Experiments on Distributed Bayesian Neural Networks

= Bayesian approach to learning neural network:
= compute parameter posterior given complex neural network likelihood.

= Diagonal covariance Gaussian prior and exponential-family approximation.

= Two datasets and architectures: MNIST fully-connected, CIFAR10 convnet.

* Implementation 1n Julia.
= Workers are cores on a server.
= Sampler 1s stochastic gradient Langevin dynamics [Welling & Teh 2011].

= Adagrad [Duchi et al 2011]/RMSprop [Tieleman & Hinton 2012] type
adaptation.

= Evaluated on test accuracy.
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MNIST 500x300

Varying the number of workers
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MNIST 500x300

Power SNEP - Varying the number of workers
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MNIST 500x300

Comparison of distributed methods (8 workers)
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MNIST Very Deep MLP

16 workers
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CIFARTO ConvNet

Comparison of distributed methods (8 workers)
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Concluding Remarks

" Novel distributed learning based on a combination of Monte Carlo and a
convergent alternative to expectation propagation.

= Combination of variational and MCMC algorithms.

= Advantageous over both pure variational and pure MCMC algorithms.
= Being Bayesian can be advantageous computationally in distributed setting.

* Thank you!
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