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Bayesian Learning

! Parameter vector X.

! Data items Y = y1, y2,... yN.

! Model:

! Aim:

! Inference algorithms:
!Variational inference: parametrise posterior as qθ and optimize θ. 
!Markov chain Monte Carlo: construct samples X1…Xn ~ p(X|Y).

p(X,Y ) = p(X)
NY

i=1

p(yi|X)

X

y1 y2 y3 y4 ..... yN

p(X|Y ) =
p(X)p(Y |X)

p(Y )
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Machine Learning on Distributed Systems

y1i y2i y3i y4i

! Distributed storage

! Distributed 
computation

! costly network 
communications
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Parameter Server

! Parameter server [Ahmed et al 2012], DistBelief network [Dean et al 2012].

parameter server:
• parameter x

worker:
• xi = x
• updates to xi’ 
• returns       
Δxi = xi’ - xi

y1i y2i y3i y4i



! Only communication at 
the combination stage.

Distributed Bayesian Learning with SNEP and Posterior Server Yee Whye Teh

Embarassingly Parallel MCMC Sampling

y1i y2i y3i y4i

Treat as independent
inference problems.
Collect samples.

“Combine” samples together.

{Xji}j=1...m,i=1...n

{Xi}i=1...n

[Scott et al 2013, Neiswanger et al 2013, 
Wang & Dunson 2013, Stanislav et al 2014]
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Embarassingly Parallel MCMC Sampling

! Unclear how to combine worker samples well.

! Particularly if local posteriors on worker                                              
machines do not overlap. 

Figure from Wang & Dunson
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Main Idea

! Identify regions of high (global) posterior 
probability mass.

! Shift each local posterior to agree with 
high probability region, and draw samples 
from these.

! How to find high probability region?
!Defined in terms of low order moments.
!Use information gained from local 
posterior samples (using small amount of 
communication). Figure from Wang & Dunson
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Tilting Local Posteriors

! Each worker machine j has access only to its data subset.

! where pj(X) is a local prior and pj(X | yj) is local posterior.

! Adapt local priors pj(X) so that local posterior agree on certain moments

! Use expectation propagation (EP) [Minka 2001] to adapt local priors.

pj(X | yj) = pj(X)
IY

i=1

p(yji |X)

Epj(X|yj)[s(X)] = s0 8j
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Expectation Propagation

! If N is large, the worker j likelihood term p(yj | X) should be well 
approximated by Gaussian

! Parameters fit iteratively to minimize KL divergence:

! Optimal qj is such that first two moments of                           agree with 
! Moments of local posterior estimated using MCMC sampling.
! At convergence, first two moments of all local posteriors agree.

p(yj |X) ⇡ qj(X) = N (X;µj ,⌃j)

[Minka 2001]

p(X | y) ⇡ pj(X | y) / p(yj |X) p(X)
Y

k 6=j

qk(X)

| {z }
pj(X)

qnewj (·) = arg min
N (·;µ,⌃)

KL
�
pj(· | y) kN (·;µ,⌃)pj(·)

�

N (·;µ,⌃)pj(·) pj(·|y)
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Posterior Server Architecture
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Bayesian Logistic Regression

! Simulated dataset.
!d=20, # data items N=1000.

! NUTS based sampler.
!# workers m = 4,10,50.
!# MCMC iters T = 1000,1000,10000.

! # EP iters k given as vertical lines.
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Bayesian Logistic Regression

! MSE of posterior mean, as function of total # iterations.
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Stochastic Natural-gradient EP

! EP has no guarantee of convergence.
! EP technically cannot handle stochasticity in moment estimates.
! Long MCMC run needed for good moment estimates.
! Fails for neural nets and other complex high-dimensional models.

! Stochastic Natural-gradient EP:
!Alternative variational algorithm to EP.
!Convergent, even with Monte Carlo estimates of moments.
!Double-loop algorithm [Welling & Teh 2001, Yuille 2002, Heskes & Zoeter 
2002]
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Demonstrative Example

EP (500 samples) SNEP (500 samples)
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Comparison to Maximum Likelihood  SGD

! Maximum likelihood via SGD:
!DistBelief [Dean et al 2012]
!Elastic-averaging SGD [Zhang et al 2015]

! Separate likelihood approximations and states per worker.
!Worker parameters not forced to be exactly same.

! Each worker learns to approximate its own likelihood. 
!Can be achieved without detailed knowledge from other workers.

! Diagonal Gaussian exponential family. 
!Variance estimates are important to learning.
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Experiments on Distributed Bayesian Neural Networks

! Bayesian approach to learning neural network:
! compute parameter posterior given complex neural network likelihood.
!Diagonal covariance Gaussian prior and exponential-family approximation.

! Two datasets and architectures: MNIST fully-connected, CIFAR10 convnet.

! Implementation in Julia.
!Workers are cores on a server.
!Sampler is stochastic gradient Langevin dynamics [Welling & Teh 2011].

!Adagrad [Duchi et al 2011]/RMSprop [Tieleman & Hinton 2012] type 
adaptation.

!Evaluated on test accuracy.
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MNIST 500x300
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MNIST 500x300

epochs per worker
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MNIST 500x300

epochs per worker
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MNIST Very Deep MLP
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CIFAR10 ConvNet

epochs per worker
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Concluding Remarks

! Novel distributed learning based on a combination of Monte Carlo and a 
convergent alternative to expectation propagation. 

! Combination of variational and MCMC algorithms.
!Advantageous over both pure variational and pure MCMC algorithms.

! Being Bayesian can be advantageous computationally in distributed setting.

! Thank you!


