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Abstract

Segmental structure is a common pattern in many
types of sequences such as phrases in human
languages. In this paper, we present a proba-
bilistic model for sequences via their segmenta-
tions.! The probability of a segmented sequence
is calculated as the product of the probabilities
of all its segments, where each segment is mod-
eled using existing tools such as recurrent neu-
ral networks. Since the segmentation of a se-
quence is usually unknown in advance, we sum
over all valid segmentations to obtain the final
probability for the sequence. An efficient dy-
namic programming algorithm is developed for
forward and backward computations without re-
sorting to any approximation. We demonstrate
our approach on text segmentation and speech
recognition tasks. In addition to quantitative re-
sults, we also show that our approach can dis-
cover meaningful segments in their respective
application contexts.

1. Introduction

Segmental structure is a common pattern in many types of
sequences, typically, phrases in human languages and letter
combinations in phonotactics rules. For instances,

e Phrase structure. ‘“Machine learning is part of artifi-
cial intelligence” — [Machine learning] [is] [part of]
[artificial intelligence].

e Phonotactics rules. “thought” — [th][ou][ght].

The words or letters in brackets “[ ]” are usually consid-
ered as meaningful segments for the original sequences. In
this paper, we hope to incorporate this type of segmental
structure information into sequence modeling.
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Mathematically, we are interested in constructing a condi-
tional probability distribution p(y|x), where output y is a
sequence and input  may or may not be a sequence. Sup-
pose we have a segmented sequence. Then the probability
of this sequence is calculated as the product of the prob-
abilities of its segments, each of which is modeled using
existing tools such as recurrent neural networks (RNN),
long-short term memory (LSTM) (Hochreiter & Schmid-
huber, 1997), or gated recurrent units (GRU) (Chung et al.,
2014). When the segmentation for a sequence is unknown,
we sum over the probabilities from all valid segmentations.
In the case that the input is also a sequence, we further need
to sum over all feasible alignments between inputs and out-
put segmentations. This sounds complicated. Fortunately,
we show that both forward and backward computations can
be tackled with a dynamic programming algorithm without
resorting to any approximations.

This paper is organized as follows. In Section 2, we de-
scribe our mathematical model which constructs the prob-
ability distribution of a sequence via its segments, and dis-
cuss related work. In Section 3, we present an efficient dy-
namic programming algorithm for forward and backward
computations, and a beam search algorithm for decoding
the output. Section 4 includes two case studies to demon-
strate the usefulness of our approach through both quanti-
tative and qualitative results. We conclude this paper and
discuss future work in Section 5.

2. Sequence modeling via segmentations

In this section, we present our formulation of sequence
modeling via segmentations. In our model, the output is
always a sequence, while the input may or may not be a se-
quence. We first consider the non-sequence input case, and
then move to the sequence input case. We then show how
to carry over information across segments when needed.
Related work is also discussed here.

2.1. Case I: Mapping from non-sequence to sequence

Assume the input x is a fixed-length vector. Let the output
sequence be y;.7. We are interested in modeling the prob-
ability p(y1.r|x) via the segmentations of y;.7. Denote by
S, the set containing all valid segmentations of y1.7. Then
for any segmentation a;.,, € Sy, we have 7(a1.,) = y1.71,
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Figure 1. For Section 2.1. Given output y:.3 and its segmentation
a1 = {y1,8} and a2 = {y2,ys,$}, input = controls the initial
states of both segments. Note that 7(a1:¢—1) is omitted here.

where 7 () is the concatenation operator and 7, is the num-
ber of segments in this segmentation. For example, let
T = 5 and 7, = 3. Then one possible a;.,, could be like
arr, = {{y1,$}, {v2,v3, 8}, {va, y5, $} }, where $ denotes
the end of a segment. Note that symbol $ will be ignored
in the concatenation operator 7(-). Empty segments, those
containing only $, are nor permitted in our setting. Note
that while the number of distinct segments for a length-T'
sequence is O(TQ), the number of distinct segmentations,
that is, |S, |, is exponentially large.

Since the segmentation is unknown in advance, the prob-
ability of the sequence y;.7 is defined as the sum of the
probabilities from all the segmentations in S,
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where p(ay.-, |x) is the probability for segmentation a;.r,
given input x, and p(a;|x, w(a1..—1)) is the probability for
segment a; given input x and the concatenation of all pre-
vious segments 7(aj.¢—1). Figure 1 illustrates a possi-
ble relationship between x and y;.r given one particular
segmentation. We choose to model the segment proba-
bility p(at|x, m(a1.1—1)) using recurrent neural networks
(RNNs), such as LSTM or GRU, with a softmax proba-
bility function. Input = and concatenation m(a;..—1) deter-
mine the initial state for this RNN. (All segments’ RNNs
share the same network parameters.) However, since |S,|
is exponentially large, Eq. 1 cannot be directly computed.
We defer the computational details to Section 3.

2.2. Case I1: Mapping from sequence to sequence

Now we assume the input is also a sequence x1.7 and the
output remains as y;.7. We make a monotonic alignment
assumption—each input element x; emits one segment a;,
which is then concatenated as 7(aq.7) to obtain y;.7. Dif-
ferent from the case when the input is not a sequence, we
allow empty segments in the emission, i.e., a; = {$} for

Y1 $ V2 Y3 $
b1 Y2 V3
% % $
" ), " >
X1 Xy X3 X4 X5

Figure 2. For Section 2.2. SWAN emits one particular segmenta-
tion of y1.7 with x; waking (emits y;) and x4 waking (emits y»
and y3) while x2, x3 and x5 sleeping. SWAN needs to consider
all valid segmentations like this for y;.7.

some ¢, such that any segmentation of y;.7 will always
consist of exactly 7" segments with possibly some empty
ones. In other words, all valid segmentations for the out-
put is in set S, = {a1.7v : m(a1.7v) = y1.r}. Since an
input element can choose to emit an empty segment, we
name this particular method as “Sleep-WAke Networks”
(SWAN). See Figure 2 for an example of the emitted seg-
mentation of yy.7.

Again, as in Eq. 1, the probability of the sequence ;.7 is
defined as the sum of the probabilities of all the segmenta-
tions in S,

T/
p(y1:T|I1:T')é Z Hp(at|xt77r(al:t—1))7 2

ay.pr €Sy t=1

where p(a;|xs, w(ay.4—1)) is the probability of segment a;
given input element z; and the concatenation of all previ-
ous segments 7(a1.¢—1). In other words, input element x;
emits segment a;. Again this segment probability can be
modeled using an RNN with a softmax probability func-
tion with z; and 7(ay.;—1) providing the information for
the initial state. The number of possible segments for y;.7
is O(T"T?). Similar to Eq. 1, a direct computation of Eq. 2
is not feasible since |S, | is exponentially large. We address
the computational details in Section 3.

2.3. Carrying over information across segments

Note that we do not assume that the segments in a seg-
mentation are conditionally independent. Take Eq. 2 as an
example, the probability of a segment a; given z, is defined
as p(a¢|xs, m(a1.4—1)), which also depends on the concate-
nation of all previous segments 7(aj.;—1). We take an ap-
proach inspired by the sequence transducer (Graves, 2012)
to use a separate RNN to model 7(a1.4—1). The hidden
state of this RNN and input z; are used as the initial state
of the RNN for segment a,. (We simply add them together
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Figure 3. For Section 2.3. SWAN carries over information across
segments using a separate RNN. Here the segments are a;—2 =
{yj—1,%}, at—1 = {$} and at = {y;, y,+1,$} emitted by input
elements x;_2, x+—1 and x; respectively.

in our speech recognition experiment.) This allows all pre-
vious emitted outputs to affect this segment a,. Figure 3 il-
lustrates this idea. The significance of this approach is that
it still permits the exact dynamic programming algorithm
as we will describe in Section 3.

2.4. Related work

Our approach, especially SWAN, is inspired by connec-
tionist temporal classification (CTC) (Graves et al., 2006)
and the sequence transducer (Graves, 2012). CTC defines
a distribution over the output sequence that is not longer
than the input sequence. To appropriate map the input to
the output, CTC marginalizes out all possible alignments
using dynamic programming. Since CTC does not model
the interdependencies among the output sequence, the se-
quence transducer introduces a separate RNN as a predic-
tion network to bring in output-output dependency, where
the prediction network works like a language model.

SWAN can be regarded as a generalization of CTC to al-
low segmented outputs. Neither CTC nor the sequence
transducer takes into account segmental structures of out-
put sequences. Instead, our method constructs a probabilis-
tic distribution over output sequences by marginalizing all
valid segmentations. This introduces additional nontrivial
computational challenges beyond CTC and the sequence
transducer. When the input is also a sequence, our method
then marginalizes the alignments between the input and the
output segmentations. Since outputs are modeled with seg-
mental structures, our method can be applied to the scenar-
ios where the input is not a sequence or the input length is
shorter than the output length, while CTC cannot. When we
need to carry information across segments, we borrow the
idea of the sequence transducer to use a separate RNN. Al-
though it is suspected that using a separate RNN could re-
sult in a loosely-coupled model (Graves, 2013; Jaitly et al.,

2016) that might hinder the performance, we do not find
it to be an issue in our approach. This is perhaps due to
our use of the output segmentation—the hidden states of
the separate RNN are not directly used for prediction but
as the initial states of the RNN for the segments, which
strengthens their dependencies on each other.

SWAN itself is most similar to the recent work on the neu-
ral transducer (Jaitly et al., 2016), although we start with
a different motivation. The motivation of the neural trans-
ducer is to allow incremental predictions as input stream-
ingly arrives, for example in speech recognition. From the
modeling perspective, it also assumes that the output is de-
composed into several segments and the alignments are un-
known in advance. However, its assumption that hidden
states are carried over across the segments prohibits ex-
act marginalizing all valid segmentations and alignments.
So they resorted to find an approximate “best” alignment
with a dynamic programming-like algorithm during train-
ing or they might need a separate GMM-HMM model to
generate alignments in advance to achieve better results.
Otherwise, without carrying information across segments
results in sub-optimal performance as shown in Jaitly et al.
(2016). In contrast, our method of connecting the segments
described in Section 2.3 preserves the advantage of exact
marginalization over all possible segmentations and align-
ments while still allowing the previous emitted outputs to
affect the states of subsequent segments. This allows us
to obtain a comparable good performance without using an
additional alignment tool.

Another closely related work is the online segment to seg-
ment neural transduction (Yu et al., 2016). This work treats
the alignments between the input and output sequences as
latent variables and seeks to marginalize them out. From
this perspective, SWAN is similar to theirs. However, our
work explicitly takes into account output segmentations,
extending the scope of its application to the case when
the input is not a sequence. Our work is also related to
semi-Markov conditional random fields (Sarawagi & Co-
hen, 2004), segmental recurrent neural networks (Kong
et al., 2015) and segmental hidden dynamic model (Deng
& Jaitly, 2015), where the segmentation is applied to the
input sequence instead of the output sequence.

3. Forward, backward and decoding

In this section, we first present the details of forward and
backward computations using dynamic programming. We
then describe the beam search decoding algorithm. With
these algorithms, our approach becomes a standalone loss
function that can be used in many applications. Here we
focus on developing the algorithm for the case when the
input is a sequence. When the input is not a sequence, the
corresponding algorithms can be similarly derived.
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3.1. Forward and backward propagations

Forward. Consider calculating the result for Eq. 2. We
first define the forward and backward probabilities,2

ai(3) = p(Yrj|w1:e),
Bi(3) = p(Wj+1.r|Te4117, Y1:5),

where forward oy (j) represents the probability that input
x1+ emits output y;.; and backward [;(j) represents the
probability that input x;1 1.7/ emits output ;41.7. Using
a(7) and 5:(j), we can verify the following, for any ¢ =
0,1,..,7",

!

plyrrlere) =Y ar(i)Bi(), 3)

=0

where the summation of j from 0 to T is to enumerate all
possible two-way partitions of output y;.7. A special case
is that p(y1.7|x1.77) = ar(T) = Bo(0). Furthermore, we
have following dynamic programming recursions accord-
ing to the property of the segmentations,

J
a(§) =Y a1 ()p(srs1:5120), 4)
—~

T
Bi(i) = Y Bera(1)p(yjs1:jrlaesa), (5)
J'=j
where p(y;41:j]x:) is the probability of the segment
Yj’+1:; emitted by x; and p(y;41.j/|T¢41) is similarly de-
fined. When j = j’, notation y;41.;- indicates an empty
segment with previous output as y;.;. For simplicity, we
omit the notation for those previous outputs, since it does
not affect the dynamic programming algorithm. As we dis-
cussed before, p(y;:41.;|2+) is modeled using an RNN with
a softmax probability function. Given initial conditions
ap(0) = 1 and B (T) = 1, we can efficiently compute
the probability of the entire output p(y1.7|x1.77).

Backward. We only show how to compute the gradient
w.r.t z; since others can be similarly derived. Given the
representation of p(y1.r|z1.7/) in Eq. 3 and the dynamic
programming recursion in Eq. 4, we have

T v
810gp(yl:T|$1:T') _ Z iwt(] j/)alogp(yj+1:j’|zt)

896,5 §=0j=0 axt
(6)
where w;(j, 7') is defined as
.. . . j+1:5 | T
w7, 5) 2 () B )

p(yl:T|xl:T/)

>The forward and backward probabilities are terms for dy-
namic programming and not to be confused with forward and
backward propagations in general machine learning.

Thus, the gradient w.r.t. x; is a weighted linear combina-
tion of the contributions from related segments.

More efficient computation for segment probabilities.
The forward and backward algorithms above assume that
all segment probabilities, log p(y,+1:;7|z+) as well as their
gradients %ﬂw, for0 < j < 43/ < T and
0 <t < T, are already computed. There are O(T"T?) of
such segments. And if we consider each recurrent step as a
unit of computation, we have the computational complex-
ity as O(T'T?). Simply enumerating everything, although
parallelizable for different segments, is still expensive.

We employ two additional strategies to allow more efficient
computations. The first is to limit the maximum segment
length to be L, which reduces the computational complex-
ity to O(T'"T L?). The second is to explore the structure of
the segments to further reduce the complexity to O(T'TL).
This is an important improvement, without which we find
the training would be extremely slow.

The key observation for the second strategy is that the
computation for the longest segment can be used to cover
those for the shorter ones. First consider forward propa-
gation with j and ¢ fixed. Suppose we want to compute
log p(y;+1:j|x¢) for any j' = j, ..., j + L, which contains
L + 1 segments, with the length ranging from 0 to L. In or-
der to compute for the longest segment log p(y;+1:j+1|%¢),
we need the probabilities for p(y = yjy1|ze, ho), p(y =
yj+2|yj+17xt7 hi), . p(y = yj+L|yj+L—17$t7 hg—1) and
p(y = $|yj+r, ¢, hr), where hy, 1 = 0,1, ..., L, are the re-
current states. Note that this process also gives us the prob-
ability distributions needed for the shorter segments when
j' =134,...,5 + L — 1. For backward propagation, we ob-
serve that, from Eq. 6, each segment has its own weight
on the contribution to the gradient, which is wy(j, ') for
P(Yjt+150]2¢), 3 = 7, ..., j + L. Thus all we need is to as-
sign proper weights to the corresponding gradient entries
for the longest segment ;4 1.;4 1, in order to integrate the
contributions from the shorter ones. Figure 4 illustrates the
forward and backward procedure.

3.2. Beam search decoding

Although it is possible compute the output sequence proba-
bility using dynamic programming during training, it is im-
possible to do a similar thing during decoding since the out-
put is unknown. We thus resort to beam search. The beam
search for SWAN is more complex than the simple left-to-
right beam search algorithm used in standard sequence-to-
sequence models (Sutskever et al., 2014). In fact, for each
input element x;, we are doing a simple left-to-right beam
search decoder. In addition, different segmentations might
imply the same output sequence and we need to incorporate
this information into beam search as well. To achieve this,
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(b) Backward pass

Figure 4. Illustration for an efficient computation for segments y;1.;/, ' = j,j + 1,...,5 + L with one pass on the longest segment
Yj+1:j+L, where V' is the vocabulary size and $ is the symbol for the end of a segment. In this example, we use j = 0 and L = 3.
Thus we have four possible segments {$}, {y1,$}, {y1,y2,$} and {y1, y2,ys,$} given input z;. (a) Forward pass. Shaded small
circles indicate the softmax probabilities needed to compute the probabilities of all four segments. (b) Backward pass. The weights are
wyr £ (0, 4") defined in Eq.7 for j° = 0, 1,2, 3 for four segments mentioned above. Shaded small circles are annotated with the
gradient values while unshaded ones have zero gradients. For example, y; has a gradient of w1 + w2 + w3 since y; appears in three

segment {y17 $}7 {yla Y2, $} and {yh Y2,Y3, $}

each time after we process an input element z;, we merge
the partial candidates with different segments into one can-
didate if they indicate the same partial sequence. This is
reasonable because the emission of the next input element
x,41 only depends on the concatenation of all previous seg-
ments as discussed in Section 2.3. Algorithm 1 shows the
details of the beam search decoding algorithm.

4. Experiments

In this section, we apply our method to two applications,
one unsupervised and the other supervised. These include
1) content-based text segmentation, where the input to our
distribution is a vector (constructed using a variational au-
toencoder for text) and 2) speech recognition, where the in-
put to our distribution is a sequence (of acoustic features).

4.1. Content-based text segmentation

This text segmentation task corresponds to an application
of a simplified version of the non-sequence-input model in
Section 2.1, where we drop the term 7(a1.;—1) in Eq.1.

Model description. In this task, we would like to auto-
matically discover segmentations for textual content. To
this end, we build a simple model inspired by latent Dirich-

let allocation (LDA) (Blei et al., 2003) and neural varia-
tional inference for texts (Miao et al., 2016).

LDA assumes that the words are exchangeable within a
document—*‘bag of words” (BoW). We generalize this as-
sumption to the segments within each segmentation—"bag
of segments”. In other words, if we had a pre-segmented
document, all segments would be exchangeable. How-
ever, since we do not have a pre-segmented document, we
assume that for any valid segmentation. In addition, we
choose to drop the term 7(a1.4—1) in Eq.1 in our sequence
distribution so that we do not carry over information across
segments. Otherwise, the segments are not exchangeable.
This is designed to be comparable with the exchangeabil-
ity assumption in LDA, although we can definitely use the
carry-over technique in other occasions.

Similar to LDA, for a document with words y1.7, we as-
sume that a topic-proportion like vector, 6, controls the dis-
tribution of the words. In more details, we define 6(¢)
exp(¢), where ¢ ~ N(0,I). Then the log likelihood of
words y1.7 is defined as

log p(yr.1) = log Ep¢ [p(y1.7|WO(())]
> Eqo)[log p(y1:7|WO(Q))] + Eq(c) [log 2 }

where the last inequality follows the variational inference
principle (Jordan, 1999) with variational distribution ¢(¢).
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Algorithm 1 SWAN beam search decoding

Input: input z;.7/, beam size B, maximum segment length L,
Y={o}land P ={@:1}.
fort =1to 7’ do
/I A left-to-right beam search given x;.
Set local beam size b = B, Vy = {} and P; = {}.
for j = 0to L do
fory € YV do
Compute the distribution of the next output for current
segment, p(y;|y, 1)
end for
if ; = L then
/I Reaching the maximum segment length.
fory € Y do
P(y) < P(y)p(y; = Sly, =)
end for
Choose b candidates with highest probabilities P (y)
from ) and move them into ); and P%.
else
Choose a set Vymp containing b candidates with highest
probabilities P (y)p(y;|y, z+) out of all pairs {y,y;},
wherey € YVandy; € {1,...,V, $}.
for {y,y;} € Yimp do
P(y) < P)p(y;ly, z:).
if y; = $ then
Move y from Y and P into ); and Px.
b+ b—1.
else
y < {y, s}
end if
end for
end if
if b = 0 then
break
end if
end for
Update Y < Yy and P < P;.
/I Merge duplicate candidates in ).
while There exists y; = y;s forany y;,y» € Y do
P(y:) < P(y:i) + P(yi)
Remove y;/ from ) and P.
end while
end for
Return: output y with the highest probability from ).

Here p(y1.7|W0(()) is modeled as Eq.1 with W§(() as the

input vector “z” and W being another weight matrix. Note
again that m(aq.¢—1) is not used in p(y1.7|W0(Q)).

For variational distribution ¢({), we use variational au-
toencoder to model it as an inference network (Kingma &
Welling, 2013; Rezende et al., 2014). We use the form sim-
ilar to Miao et al. (2016), where the inference network is a
feed-forward neural network and its input is the BoW of
the document — ¢(¢) = q(¢|BoW (y1.7)).

Predictive likelihood comparison with LDA. We use
two datasets including AP (Associated Press, 2,246 doc-
uments) from Blei et al. (2003) and CiteULike? scientific

3http: //www.citeulike.org

article abstracts (16,980 documents) from Wang & Blei
(2011). Stop words are removed and a vocabulary size of
10, 000 is chosen by tf-idf for both datasets. Punctuations
and stop words are considered to be known segment bound-
aries for this experiment. For LDA, we use the variational
EM implementation taken from authors’ website.*

We vary the number of topics to be 100, 150, 200, 250 and
300. And we use a development set for early stopping with
up to 100 epochs. For our model, the inference network is
a 2-layer feed-forward neural network with ReL.U nonlin-
earity. A two-layer GRU is used to model the segments in
the distribution p(y1.7|W6(¢)). And we vary the hidden
unit size (as well as the word embedding size) to be 100,
150 and 200, and the maximum segment length L to be 1,
2 and 3. We use Adam algorithm (Kingma & Ba, 2014) for
optimization with batch size 32 and learning rate 0.001.

We use the evaluation setup from Hoffman et al. (2013)
for comparing two different models in terms of predic-
tive log likelihood on a heldout set. We randomly choose
90% of documents for training and the rest is left for test-
ing. For each document y in testing, we use first 75% of
the words, y.ps, for estimating 6(¢) and the rest, Yeyais
for evaluating the likelihood. We use the mean of 6 from
variational distribution for LDA or the output of inference
network for our model. For our model, p(Yeyai|Yobs) =
P(Yevat|WO(Cops)), where (s is chosen as the mean of
q(C|yobs). Table 1 shows the empirical results. When the
maximum segment length L = 1, our model is better on AP
but worse on CiteULike than LDA. When L increases from
1 to 2 and 3, our model gives monotonically higher predic-
tive likelihood on both datasets, demonstrating that bring-
ing in segmentation information leads to a better model.

Example of text segmentations. In order to improve the
readability of the example segmentation, we choose to keep
the stop words in the vocabulary, different from the set-
ting in the quantitative comparison with LDA. Thus, stop
words are not treated as boundaries for the segments. Fig-
ure 5 shows an example text. The segmentation is obtained
by finding the path with the highest probability in dynamic
programming.’ As we can see, many reasonable segments
are found using this automatic procedure.

4.2. Speech recognition

We also apply our model to speech recognition, and present
results on both phoneme-level and character-level experi-
ments. This corresponds to an application of SWAN de-
scribed in Section 2.2.

‘nttp://www.cs.columbia.edu/~blei/lda-c/
SThis is done by replacing the “sum” operation with “max”
operation in Eq. 4.
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Table 1. Predictive log likelihood comparison. Higher values in-
dicate better results. L is the maximum segment length. The top
table shows LDA results and the bottom one shows ours.

#LDA ToprICS AP CITEULIKE
100 -9.25 -7.86
150 9.23 -7.85
200 -9.22 -7.83
250 9.23 -7.82
300 -9.22 -7.82
#HIDDEN L AP CITEULIKE
100 1 -8.42 -8.12
100 2 831 -7.68
100 3 -8.29 -7.61
150 1 -8.38 -8.12
150 2 -8.30 -7.67
150 3 -8.28 -7.60
200 1 -8.41 -8.13
200 2 -8.32 -7.67
200 3 -8.30 -7.61

Dataset. We evaluate SWAN on the TIMIT corpus fol-
lowing the setup in Deng et al. (2006). The audio data is
encoded using a Fourier-transform-based filter-bank with
40 coefficients (plus energy) distributed on a mel-scale,
together with their first and second temporal derivatives.
Each input vector is therefore size 123. The data is nor-
malized so that every element of the input vectors has
zero mean and unit variance over the training set. All 61
phoneme labels are used during training and decoding, then
mapped to 39 classes for scoring in the standard way (Lee
& Hon, 1989).

Phoneme-level results. Our SWAN model consists of a
5-layer bidirectional GRU with 300 hidden units as the en-
coder and two 2-layer unidirectional GRU(s) with 600 hid-
den units, one for the segments and the other for connect-
ing the segments in SWAN. We set the maximum segment
length L = 3. To reduce the temporal input size for SWAN,
we add a temporal convolutional layer with stride 2 and
width 2 at the end of the encoder. For optimization, we
largely followed the strategy in Zhang et al. (2017). We
use Adam (Kingma & Ba, 2014) with learning rate 4e — 4.
We then use stochastic gradient descent with learning rate
3e — b for fine-tuning. Batch size 20 is used during train-
ing. We use dropout with probability of 0.3 across the lay-
ers except for the input and output layers. Beam size 40
is used for decoding. Table 3 shows the results compared
with some previous approaches. SWAN achieves competi-
tive results without using a separate alignment tool.

[Exploiting] [generative models] [in] [discriminative classifiers]

[Generative probability models] [such as] [hidden Markov models] UNK
[principled way of] [treating missing information] [and] [variable length
sequences]. [On] [the other hand], [discriminative methods] [such as]
[support vector machines] [enable us to] [construct flexible] [decision
boundaries] [and] [often result in] [classification] UNK [to that] [of the]
[model based approaches]. UNK [should combine these] [two complementary
approaches]. UNK, [we develop] [a natural way] [of achieving this] UNK
[deriving kernel functions] [for use in] [discriminative methods] [such as]
[support vector machines] [from] [generative probability models].

Figure 5. Example text with automatic segmentation, obtained us-
ing the path with highest probability. Words in the same brackets
“[ ]” belong to the same segment. “UNK” indicates a word not in
the vocabulary. The maximum segment length L = 3.

We also examine the properties of SWAN’s outputs. We
first estimate the average segment length® ¢ for the out-
put. We find that ¢ is usually smaller than 1.1 from the
settings with good performances. Even when we increase
the maximum segment length L to 6, we still do not see a
significantly increase of the average segment length. We
suspect that the phoneme labels are relatively independent
summarizations of the acoustic features and it is not easy
to find good phoneme-level segments. The most common
segment patterns we observe are ‘sil ?°, where ‘sil’ is the si-
lence phoneme label and ‘?’ denotes some other phoneme
label (Lee & Hon, 1989). On running time, SWAN is about
5 times slower than CTC. (Note that CTC was written in
CUDA C, while SWAN is written in torch.)

Character-level results. In additional to phoneme-level
recognition experiments, we also evaluate our model on
the task to directly output the characters like Amodei et al.
(2016). We use the original word level transcription from
the TIMIT corpus, convert them into lower cases, and sep-
arate them to character level sequences (the vocabulary in-
cludes from ‘a’ to ‘z’, apostrophe and the space symbol.)
We find that using temporal convolutional layer with stride
7 and width 7 at the end of the decoder and setting . = 8
yields good results. In general, we found that starting with
a larger L is useful. We believe that a larger L allows more
explorations of different segmentations and thus helps opti-
mization since we consider the marginalization of all possi-
ble segmentations. We obtain a character error rate (CER)
of 30.5% for SWAN compared to 31.8% for CTC.’

We examine the properties of SWAN for this character-
level recognition task. Different from the observation from

The average segment length is defined as the length of the
output (excluding end of segment symbol $) divided by the num-
ber of segments (not counting the ones only containing $).

7 As far as we know, there is no public CER result of CTC for
TIMIT, so we empirically find the best one as our baseline. We
use Baidu’s CTC implementation: https://github.com/
baidu-research/warp-ctc.
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Table 2. Examples of character-level outputs with their segmentations, where

IR

represents the segment boundary, “[]” represents the

space symbol in SWAN’s outputs, the “best path” represents the most probable segmentation given the ground truth, and the “max
decoding” represents the beam search decoding result with beam size 1.

ground truth
best path
max decoding

one thing he thought nobody knows about it yet
o-nelJ-th-i-ng[J-he[]-th-ou-ght-[J-n-0-bo-d-y[J-kn-o-w-slJ-a-b-ou-tl]-i-tl]-y-e-t
o-nel]-th-a-n-[J-hel]-th-ou-gh-o-ttJ-n-0-bo-d-yl1-n-o0-sel]-a-b-ou-tlJ-a-t[]-y-e-t

ground truth
best path
max decoding

jeff thought you argued in favor of a centrifuge purchase
j-e-ff-0-th-ou-ghtt-you-[-a-r-g-u-edJ-in0J-f-a-vor-0-ofJ-a-Ul-c-en-tr-i-f-u-gelJ-p-ur-ch-a-s-e
j-a-ft-0-th-or-o-d-yl-a-reld-g-i-vi-ng[]-f-a-ver-U-of LJ-er-s-e-nt-[1-f-u-geld-p-er-ch-e-s

ground truth
best path
max decoding

he trembled lest his piece should fail

he-[J-tr-e-m-b-le-dCJ-1-e-s-t-[J-hi-s[J-p-i-e-celd-sh-oul-d[J-f-a-i:1
he-[-tr-e-m-b-leld-n-e-s-t-[J-hi-s[J-p-ea-s-u-de[]-f-a-i-1

Table 3. TIMIT phoneme recognition results. “PER” is the
phoneme error rate on the core test set.
Model PER (%)

BiLSTM-5L-250H (Graves et al., 2013) 18.4
TRANS-3L-250H (Graves et al., 2013) 18.3
Attention RNN (Chorowski et al., 2015) 17.6
Neural Transducer (Jaitly et al., 2016) 18.2
CNN-10L-maxout (Zhang et al., 2017) 18.2
SWAN (this paper) 18.1

the phoneme-level task, we find the average segment length
¢ is around 1.5 from the settings with good performances,
longer than that of the phoneme-level setting. This is ex-
pected since the variability of acoustic features for a char-
acter is much higher than that for a phone and a longer
segment of characters helps reduce that variability. Table 2
shows some example decoding outputs. As we can see,
although not perfect, these segments often correspond to
important phonotactics rules in the English language and
we expect these to get better when we have more labeled
speech data. In Figure 6, we show an example of mapping
the character-level alignment back to the speech signals,
together with the ground truth phonemes. We can observe
that the character level sequence roughly corresponds to the
phoneme sequence in terms of phonotactics rules.

Finally, from the examples in Table 2, we find that the space
symbol is often assigned to a segment together with its pre-
ceding character(s) or as an independent segment. We sus-
pect this is because the space symbol itself is more like
a separator of segments than a label with actual acoustic
meanings. So in future work, we plan to treat the space
symbol between words as a known segmentation boundary
that all valid segmentations should comply with, which will
lead to a smaller set of possible segments. We believe this
will not only make it easier to find appropriate segments,
but also significantly reduce the computational complexity.
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Figure 6. Spectrogram of a test example of the output sequence,
“please take this”. Here “-” represents the boundary and [ rep-
resents the space symbol in SWAN’s result. The “phonemes”
sequence is the ground truth phoneme labels. (The full list of
phoneme labels and their explanations can be found in Lee & Hon
(1989).) The “best path” sequence is from SWAN. Note that the

time boundary is not precise due to the convolutional layer.

5. Conclusion and Future work

In this paper, we present a new probability distribution for
sequence modeling and demonstrate its usefulness on two
different tasks. Due to the generality, it can be used as a loss
function in many sequence modeling tasks. We plan to in-
vestigate following directions in future work. The first is to
validate our approach on large-scale speech datasets. The
second is machine translation, where segmentations can be
regarded as “phrases.” We believe this approach has the
potential to bring together the merits of traditional phrase-
based translation (Koehn et al., 2003) and recent neural ma-
chine translation (Sutskever et al., 2014; Bahdanau et al.,
2014). For example, we can restrict the number of valid
segmentations with a known phrase set. Finally, applica-
tions in other domains including DNA sequence segmen-
tation (Braun & Muller, 1998) might benefit from our ap-
proach as well.
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