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Deep Reinforcement Learning: What to Learn?

» Policies (select next action)
» Value functions (measure goodness of states or state-action pairs)

» Models (predict next states and rewards)



Model Free RL: (Rough) Taxonomy

Policy Optimization Dynamic Programming
modified
policy iteration
DFO / Evolution Policy Gradients Policy Iteration Value lteration
\ Q-Learning
Actor-Critic

Methods
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Policy Optimization vs Dynamic Programming

» Conceptually ...
» Policy optimization: optimize what you care about
» Dynamic programming: indirect, exploit the problem structure,
self-consistency
» Empirically ...
» Policy optimization more versatile, dynamic programming methods more
sample-efficient when they work
» Policy optimization methods more compatible with rich architectures
(including recurrence) which add tasks other than control (auxiliary
objectives), dynamic programming methods more compatible with
exploration and off-policy learning
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Parameterized Policies

» A family of policies indexed by parameter vector § € R¢
» Deterministic: a = 7 (s, 6)
» Stochastic: 7(a|s,0)
» Analogous to classification or regression with input s, output a.

» Discrete action space: network outputs vector of probabilities
» Continuous action space: network outputs mean and diagonal covariance of
Gaussian
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Episodic Setting

» In each episode, the initial state is sampled from p, and the agent acts until
the terminal state is reached. For example:

» Taxi robot reaches its destination (termination = good)
» Waiter robot finishes a shift (fixed time)
» Walking robot falls over (termination = bad)

» Goal: maximize expected return per episode

maximize E [R | 7]



Derivative Free Optimization / Evolution



Cross Entropy Method

Initialize u € R, 0 € R?
for iteration = 1,2,... do
Collect n samples of 8; ~ N(u, diag(c))
Perform one episode with each 6;, obtaining reward R;
Select the top p% of 6 samples (e.g. p = 20), the elite set
Fit a Gaussian distribution, to the elite set, updating p, 0.
end for
Return the final p.



Cross Entropy Method

» Sometimes works embarrassingly well



Cross Entropy Method

» Sometimes works embarrassingly well



Cross Entropy Method

» Sometimes works embarrassingly well

Method Mean Score Reference
Nonreinforcement learning

Hand-coded 631,167  Dellacherie (Fahey, 2003)

Genetic algorithm 586,103 (BShm et al.,, 2004)
Reinforcement learning

Relational reinforcement ~50 Ramon and Driessens (2004)

learning +kernel-based regression
Policy iteration 3183 Bertsekas and Tsitsiklis (1996)
Least squares policy iteration <3000 Lagoudakis, Parr, and
Littman (2002)

Linear programming + Bootstrap 274 Farias and van Roy (2006)

Natural policy gradient ~6800 Kakade (2001)

CE+RL 21252

CE+RL, constant noise 72,705

CE+RL, decreasing noise 348,895

|. Szita and A. Lorincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)



Cross Entropy Method

» Sometimes works embarrassingly well

Method Mean Score Reference
Nonreinforcement learning
Hand-coded 631,167 Dellacherie (Fahey, 2003)
Genetic algorithm 586,103 (BShm et al., 2004)
Reinforcement learning
Relational reinforcement ~50 Ramon and Driessens (2004)
learning +kernel-based regression . . . .
Policy iteration 3183 Bertsekas and Tsitsiklis (1996) Approximate Dynamic Programming Finally
Least squares policy iteration <3000 Lafﬁ;i:i\nzé’;zr;, and Perform s we“ in t}l e GB me Of Tetris
Linear programming + Bootstrap 4274 Farias and van Roy (2006)
Natural policy gradient ~6800 Kakade (2001)
CE+RL 21,252 Victor Gabillon Mohammad Ghavamzadeh* Bruno Scherrer
CE+RL, constant noise 72,705 INRIA Lille - Nord Europe, INRIA Lille - Team Sequel. INRIA Nancy - Grand Est,
CE+RL, decreasing noise 348,895 “Team Sequel., FRANCE & Adobe Re: h ‘Team Maia, FRANCE
i inria.fr mohammad. inria.fr  bruno.. inria.fr

|. Szita and A. Lorincz. “Learning Tetris using the noisy

cross-entropy method”. Neural computation (2006)
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Stochastic Gradient Ascent on Distribution

> Let p define distribution for policy my: 6 ~ P,(0)
» Return R depends on policy parameter ¢ and noise ¢
maximize Eq  [R(0, ¢)]
I

R is unknown and possibly nondifferentiable
» “Score function” gradient estimator:

Vo ¢ [R(0, )] = Eo ¢ [V, log P.(0)R(6, ()]

N
1
~ > V.log Pu(6:)R;

i=1
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Stochastic Gradient Ascent on Distribution

» Compare with cross-entropy method
» Score function grad:

N

1
VuEo ¢ [R(O.O)~ 5 > Viulog Pu(0)R
i=1

» Cross entropy method:

N
.1
maximize +; Z; log P,.(0:)f(R;) (cross entropy method)

where f(r) = 1[r above threshold]
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Connection to Finite Differences

» Suppose P, is Gaussian distribution with mean p, covariance o/

log P,.(0) = —||u — 0]]?/20° + const
V. log P,(0) = (0 — p)/0?
RV, log P,(0;) = Ri(6; — n)/o”

» Suppose we do antithetic sampling, where we use pairs of samples
0, =p+oz, 0_=pu—oz
1
5 (R(,u +0z,{)V,log P,(0+) + R(i — 0z,{")V , log Pu(é’_)>

- é(R(u +02,() = R(u—02,('))z

» Using same noise ( for both evaluations reduces variance
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Deriving the Score Function Estimator

» “Score function” gradient estimator:
Vo [R(0, Q)] = Eo ¢ [V, log PL(0)R(0, ()]
N
1
N >V, log Pu(6:)R;

i=1
» Derive by writing expectation as an integral

v, / dud¢ P,(0)R(6, )
_ / dudC Y, P, (0)R(0, C)

_ / dudC P, (6)V, log P,(0)R(8,C)
=Eg [V, log P.(O)R(0, )]
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Literature on DFO

v

Evolution strategies (Rechenberg and Eigen, 1973)

v

Simultaneous perturbation stochastic approximation (Spall, 1992)

v

Covariance matrix adaptation: popular relative of CEM (Hansen, 2006)

Reward weighted regression (Peters and Schaal, 2007), POWER (Kober and
Peters, 2007)

v
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Success Stories

» CMA is very effective for optimizing low-dimensional locomotion controllers
» UT Austin Villa: RoboCup 2012 3D Simulation League Champion

o] Walking Ci for Inputs and

JackM.Wang  DavidJ.Fleet  Aaron Hertzmann

» Evolution Strategies was shown to perform well on Atari, competetive with
policy gradient methods (Salimans et al., 2017)



Policy Gradient Methods



Overview

Problem:

maximize E[R | my]

» Here, we'll use a fixed policy parameter 6 (instead of sampling # ~ P,,) and
estimate gradient with respect to ¢



Overview

Problem:

maximize E[R | my]

» Here, we'll use a fixed policy parameter 6 (instead of sampling # ~ P,,) and
estimate gradient with respect to ¢

» Noise is in action space rather than parameter space
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Overview

Problem:
maximize E[R | my]

Intuitions: collect a bunch of trajectories, and ...
1. Make the good trajectories more probable
2. Make the good actions more probable

3. Push the actions towards better actions
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» Now random variable is a whole trajectory
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Score Function Gradient Estimator for Policies

» Now random variable is a whole trajectory
T = (S0, @0, 10,51, @1, 15 - - -, ST—1,3T—1, I'T—1,5T)

VoE[R(T)] = E- [V log P(7 | 0)R(7)]

> Just need to write out P(7 | 6):

T-1
P(r [ 0) = u(s0) [ [ [m(ac | s, 0)P(serr, e | sty ar)]
t=0
T-1
log P(7 | 0) = log fu(s0) + Y _ [log m(at | st,0) + log P(ses1, 1t | st ar)]
t=0
T-1
Volog P(7|0) = Vo > logm(a; | s¢,0)
t=0

T-1
VoE, [Rl=E, [RVy »  logm(a|s:,0)
t=0
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Policy Gradient: Use Temporal Structure

(Z> (Zv - sﬁ))]

t=0 t=0

» Previous slide:

VoE, [R] =

» We can repeat the same argument to derive the gradient estimator for a single reward
term ryp.

t/
VoE [rt’] =E |:ft’ Z Vg log 7T(3t | St 9)]

t=0

» Sum this formula over t, we obtain

-~

-1
VoE[R]=E { ry Y Vglogn(as | st,0)
t=0

~+

~ o~
— O

=FE

Vo logm(at | st, 0 Z rt,}

t'=t

....
Il
o



Policy Gradient: Introduce Baseline

» Further reduce variance by introducing a baseline b(s)

T-1
VoE. [R] = Z Vg logm(a; | s:, 0 (Z re — b(st )]



Policy Gradient: Introduce Baseline

» Further reduce variance by introducing a baseline b(s)

T-1
VoE. [R] = Z Vg logm(a; | s:, 0 (Z re — b(st )]

» For any choice of b, gradient estimator is unbiased.



Policy Gradient: Introduce Baseline

» Further reduce variance by introducing a baseline b(s)

T-1
VoE. [R] = Z Vg logm(a; | s:, 0 (Z re — b(st )]

» For any choice of b, gradient estimator is unbiased.

» Near optimal choice is expected return,
b(st) ~ E [I’t + I’t+1 + rt+2 —|— “ e + rTf]_]



Policy Gradient: Introduce Baseline

v

Further reduce variance by introducing a baseline b(s)

T-1
VoE. [R] = Z Vg logm(a; | s:, 0 (Z re — b(st )]

t'=t

v

For any choice of b, gradient estimator is unbiased.

v

Near optimal choice is expected return,

b(s) = E[r + rep1 + rgo + - - 4 rr_i]

Interpretation: increase logprob of action a; proportionally to how much
returns S/} ry are better than expected

v
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» Introduce discount factor «, which ignores delayed effects between actions
and rewards

T-1
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Discounts for Variance Reduction

» Introduce discount factor «, which ignores delayed effects between actions
and rewards

VoE, [R] ~ E,

T-1
nglogwat|st, (Zy rt/—bst)>]

t=0

» Now, we want b(s;) ~ E [rt + Y1 + VP rego - F VT’l’trT_l}
» Write gradient estimator more generally as

V@ET [R] =~ ET

T-1
Z Vo logm(a; | st, Q)At]

t=0

A, is the advantage estimate



“Vanilla” Policy Gradient Algorithm

Initialize policy parameter 6, baseline b
for iteration=1,2,... do
Collect a set of trajectories by executing the current policy
At each timestep in each trajectory, compute
the return R, = tT,;: v ~try, and
the advantage estimate A =R, — b(st).
Re-fit the baseline, by minimizing ||b(s:) — R:||?,
summed over all trajectories and timesteps.
Update the policy, using a policy gradient estimate g,
which is a sum of terms Vylog 7(a; | st, G)Z\t
end for



Advantage Actor-Critic

» Use neural network that represents policy mg and value function Vjy
(approximating V™)

» Pseudocode

for iteration=1,2,... do
Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

:‘%t =re+yre o+ 'VT_tJrer*l + ’yT_tVG(St)
AAt = ,%t — Vi(st)

Ry is target value function, in regression problem
A; is estimated advantage function

Compute loss gradient g = Vo 3/, {— log mo(a: | s¢:)A: 4+ c(Va(s) — ,‘%t)ﬂ
g is plugged into a stochastic gradient ascent algorithm, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. “Asynchronous methods for deep reinforcement learning” . (2016)
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Trust Region Policy Optimization

» Motivation: make policy gradients more robust and sample efficient

» Unlike in supervised learning, policy affects distribution of inputs, so a large
bad update can be disastrous

» Makes use of a “surrogate objective” that estimates the performance of the
policy around 7.q used for sampling

L7Told(7T) = % Z M’Z\\ (1)

Differentiating this objective gives the policy gradient

» L. .(m) is only accurate when state distribution of 7 is close to 7,4, thus it
makes sense to constrain or penalize the distance Dy, [moq || 7]



Trust Region Policy Optimization

» Pseudocode:
for iteration=1,2,... do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps

N ra(an | sn) ;

maximize
9 —1 7T9old(an ’ Sn)

subject to KL, (mp) <9
end for
» Can solve constrained optimization problem efficiently by using conjugate
gradient

» Closely related to natural policy gradients (Kakade, 2002), natural actor
critic (Peters and Schaal, 2005), REPS (Peters et al., 2010)



“Proximal” Policy Optimization

» Use penalty instead of constraint

» Pseudocode:

for iteration=1,2,... do
Run policy for T timesteps or N trajectories
Estimate advantage function at all timesteps
Do SGD on above objective for some number of epochs
If KL too high, increase 3. If KL too low, decrease f3.
end for

» ~~ same performance as TRPO, but only first-order optimization



Variance Reduction for Policy Gradients



Reward Shaping

b
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Reward Shaping

» Reward shaping: 0(s,a,s’) = r(s,a,s’) + y®(s’) — P(s) for arbitrary
“potential” ¢

A Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and application to reward shaping”. /G\VL. 1999.
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transform r — ¢, policy's value function satisfies Q(s,a) = Q*(s,a) — ®(s)

AL Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and applicationto reward shaping”. /G\VL. 1999.



Reward Shaping

» Reward shaping: 0(s,a,s’) = r(s,a,s’) + y®(s’) — P(s) for arbitrary
“potential” ¢

» Theorem: § admits the same optimal policies as r.!

» Proof sketch: suppose Q* satisfies Bellman equation (7Q = Q). If we
transform r — ¢, policy's value function satisfies Q(s,a) = Q*(s,a) — ®(s)
» Q* satisfies Bellman equation = @ also satisfies Bellman equation

AL Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and applicationto reward shaping”. /G\VL. 1999.
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Reward Shaping

» Theorem: § admits the same optimal policies as R. A. Y. Ng, D. Harada, and S. Russell.
“Policy invariance under reward transformations: Theory and application to reward
shaping”. [/CML. 1999

» Alternative proof: advantage function is invariant. Let's look at effect on V™ and Q™:

E [do + 761 + 702+ ... ]
=E [(r0 +79(s1) — ®(s0)) + (1 + 7P(2) — D(51)) +72(r2 + 7¥(53) — D(2)) + - -]
=E[rn+yn+7n+- — ()]
Thus,
VT(s) = V7(s) — &(s)
Q(s) = Q"(s,a) — ¥(s)
A" (s) = A™(s, a)

A™(s,7(s)) = 0 at all states = 7 is optimal
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» Shape with ® = V* = problem is solved in one step of value iteration



Reward Shaping and Problem Difficulty

» Shape with ® = V* = problem is solved in one step of value iteration

> Shaping leaves policy gradient invariant (and just adds baseline to estimator)

E[Vologmo(ao | 50)(r0 +7®(s1) — ®(50)) +v(n +7P(s2) — (s1))
+9%(n +79(s3) — (s2)) + ... ]

=E [Vglogmg(ao | 50)(ro +vr +¥°r+ - — ®(s0))]

=E [Vglogmg(ao | $0)(ro +vri +7°r2+...)]



Reward Shaping and Policy Gradients

> First note connection between shaped reward and advantage function:
Es [ro+7V™(s1) — V™(s0) | 5o = 5,30 = a] = A7 (s, a)

Now considering the policy gradient and ignoring all but first shaped reward (i.e., pretend
~ = 0 after shaping) we get

E S Volog malac | s0)(ri + 7V (se01) — V(50))

Z Vo log mo(a; | st)étl =E
t

=E

Z Vo logmg(as | st)A™ (st 3t)1
t



Reward Shaping and Policy Gradients

» Compromise: use more aggressive discount v\, with A € (0,1): called
generalized advantage estimation

Zva log mp(ay | st Z YA) 5t+k
k=0



Reward Shaping and Policy Gradients

» Compromise: use more aggressive discount v\, with A € (0,1): called
generalized advantage estimation

ZVG log mp(ay | st Z YA) 5t+k
k=0

» Or alternatively, use hard cutoff as in A3C

n—1
Z Vo logme(as | s¢) Z St
t k=0

= Z Ve logmg(a: | st) (Z”Y Fevk + 7" ®(St40) — (St))

k=0



Reward Shaping—Summary

» Reward shaping transformation leaves policy gradient and optimal policy
invariant
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Reward Shaping—Summary

» Reward shaping transformation leaves policy gradient and optimal policy
invariant
» Shaping with ® ~ V™ makes consequences of actions more immediate

» Shaping, and then ignoring all but first term, gives policy gradient



Aside: Reward Shaping is Crucial in Practice

> |. Mordatch, E. Todorov, and Z. Popovi¢. “Discovery of complex behaviors through
contact-invariant optimization”. ACM Transactions on Graphics (TOG) 31.4 (2012),
p. 43

L (s) = Lci (s) + Lphysies (S) + Lrask (8) + Luint (8)

AN

0> 4




Aside: Reward Shaping is Crucial in Practice

> |. Mordatch, E. Todorov, and Z. Popovi¢. “Discovery of complex behaviors through
contact-invariant optimization”. ACM Transactions on Graphics (TOG) 31.4 (2012),
p. 43

L (s) = Lci (s) + Lphysies (S) + Lrask (8) + Luint (8)

,{I

» Y. Tassa, T. Erez, and E. Todorov. “Synthesis and stabilization of complex behaviors
through online trajectory optimization”. Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. |EEE. 2012, pp. 4906-4913

The state-cost is composed of 4 terms. The first term
penalizes the horizontal distance (in the zy-plane) between
the center-of-mass (CoM) and the mean of the feet positions.
The second term penalizes the horizontal distance between
the torso and the CoM. The third penalizes the vertical
distance between the torso and a point 1.3m over the mean of
the feet. All three terms use the smooth-abs norm (Figure 2).




Choosing parameters 7y, A

Performance as v, A\ are varied

Cart-pole performance after 20 iterations

3D Biped
0.0 - -
0.92
0.5
0.96
,Y -1.0
0.98 b
3
S
-1.5
0.99
— y=0.995,A=0.98
2.0 7=0.995.1=0.99
1.0 .
== y=1, No value fn
s ; ; ;
0.68 0.84 ©.92 0.96 0.98 0.99 1.0 0 100 200 300 200 500

number of policy iterations

(Generalized Advantage Estimation for Policy Gradients, S. et al., ICLR 2016)



Pathwise Derivative Methods
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Deriving the Policy Gradient, Reparameterized
» Episodic MDP:

Want to compute VyE [Rr]. We'll use Vg logm(a; | s¢;6)
» Reparameterize: a; = (s, z:;0). z; is noise from fixed distribution.

» Only works if P(s; | s1,a1) is known —~



Using a Q-function

> G ERr |2 daf]
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SVG(0) Algorithm

» Learn Q, to approximate Q™”, and use it to compute gradient estimates.

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)



SVG(0) Algorithm

» Learn Q, to approximate Q™”, and use it to compute gradient estimates.
» Pseudocode:
for iteration=1,2,... do
Execute policy 7y to collect T timesteps of data
Update 7y using g oc Vy Z;l Q(st, w(s¢, 2t 0))

Update @, using g & Vi 3.7, (Qs(st, a:) — Q)% e.g. with TD())
end for

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)
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SVG(1) Algorithm

» Instead of learning @, we learn

» State-value function V ~ V™7
» Dynamics model f, approximating s;+1 = f(st, ar) + (t

» Given transition (s¢, ar, Se+1), infer ¢ = se11 — (st ar)

> Q(st,ar) =E[r +yV(st+1)] = E[re + vV (f(st, at) + Ce)], and ay = 7(st, 0, )
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SVG(oo) Algorithm

» Just learn dynamics model f
» Given whole trajectory, infer all noise variables

» Freeze all policy and dynamics noise, differentiate through entire deterministic
computation graph



SVG Results

» Applied to 2D robotics tasks

N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”. arXiv
preprint arXiv:1510.09142 (2015)



SVG Results

» Applied to 2D robotics tasks

.

]
\ N / //>

» Overall: different gradient estimators behave similarly
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N. Heess, G. Wayne, D. Silver, T.
preprint arXiv:1510.09142 (2015)

Lillicrap, Y. Tassa, et al. “Learning Continuous Control Policies by Stochastic Value Gradients”.

arXiv



Deterministic Policy Gradient

» For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. [CML. 2014
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» Intuition: finite difference gradient estimators

» But SVG(0) gradient is fine when o — 0

Vo> Qlse. (st 0.6e)

» Problem: there's no exploration.

» Solution: add noise to the policy, but estimate Q with TD(0), so it's valid
off-policy

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. [/CML. 2014



Deterministic Policy Gradient

» For Gaussian actions, variance of score function policy gradient estimator goes to
infinity as variance goes to zero

» Intuition: finite difference gradient estimators

» But SVG(0) gradient is fine when o — 0
v@ Z Q(Sh 71—(Si’a 67 Ct))
t

» Problem: there's no exploration.

» Solution: add noise to the policy, but estimate Q with TD(0), so it's valid
off-policy

» Policy gradient is a little biased (even with @ = Q™), but only because state
distribution is off—it gets the right gradient at every state

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, et al. “Deterministic Policy Gradient Algorithms”. [CML. 2014



Deep Deterministic Policy Gradient

» Incorporate replay buffer and target network ideas from DQN for increased
stability

» Use lagged (Polyak-averaging) version of Q, and my for fitting Q, (towards
Q™) with TD(0)

ét =r+ ’YQ¢>’(5t+1, 7T(5t+1; 9/))

» Pseudocode:
for iteration=1,2,... do
Act for several timesteps, add data to replay buffer
Sample minibatch
Update mp using g &< Vo 2 Q(st, w(st, z:; 6))
Update Q using g o< V4 ZtT:l(Q¢(5t, ar) — @r)%,
end for

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, et al. “Continuous control with deep reinforcement learning”. arXiv preprint
arXiv:1509.02971 (2015)



DDPG Results

Applied to 2D and 3D robotics tasks and driving with pixel input

f1—~12

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, et al. “Continuous control with deep reinforcement learning”. arXiv preprint
arXiv:1509.02971 (2015)
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Policy Gradient Methods: Comparison

» Two kinds of policy gradient estimator
» REINFORCE / score function estimator: Vlogm(a|s)A.
» Learn @ or V for variance reduction, to estimate A
» Pathwise derivative estimators (differentiate wrt action)
» SVG(0) / DPG: £ Q(s, a) (learn Q)
> SVG(1): L(r+~V(s')) (learn £, V)
» SVG(c0): d%t(rt +yrer1 + Y22 + ... ) (learn f)
» Pathwise derivative methods more sample-efficient when they work (maybe),
but work less generally due to high bias



Thanks

Questions?
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